Trophis Scandens (Lour.) Hook

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Australian Tropical Rainforest Plants - Online edition Trophis scandens (Lour.) Hook. & Arn. subsp. scandens Family: Moraceae Hooker, W.J. & Arnott, G.A.W. (1837) Botany Beechey Voyage : 214. Common name: Burney Vine; Burny Vine; Fire Vine; Firevine; Smarty Smarty; Vine, Burney; Vine, Fire; Ash, Crow; Crow Ash Stem Vine stem diameters to 6 cm recorded. Lenticels quite numerous, pale. Leaves Male flowers. © CSIRO Twigs and petioles produce a milky exudate. Leaf blades about 4-11 x 1.5-5 cm, petioles about 0.2- 1.2 cm long. Stipules about 2 mm long, sheathing the terminal bud. Stipular scars small and inconspicuous. Younger twigs marked by pale, elongated lenticels. Lower surface of the leaf blade scabrous. Lateral veins forming loops inside the blade margin. Flowers Male flowers: Flowers in spikes about 20-30 mm long. Flowers globose, about 1-1.5 mm diam. Tepals about 1.5 x 1 mm, outer surface densely clothed in hairs. Anthers about 1.2 x 1.2 mm, filaments about 3.5 mm long. Female flowers: Flowers borne in globular heads about 4 mm diam. Heads solitary or in racemes. Individual flowers about 1-1.2 x 1 mm. Usually about 2-4 fertile flowers per head. Perianth urn-shaped, completely enclosing the ovary, only the stigmas protruding at the Female flowers. © CSIRO apex. Style short, stigmas about 5-7 mm long. Fruit Receptacle orange-red, tuberculate, about 10-15 mm long with 1-3 fruits attached. Each fruit about 9 mm long, ellipsoid, style persistent at the apex. Seeds about 7 mm long, one cotyledon much longer than the other and completely enveloping the smaller one. Radicle about 2 mm long. Seedlings One or two cataphylls produced before the first pair of true leaves. First pair of true leaves ovate, about 20-30 x 12-18 mm, margins crenate or lobed, petioles about 1-2 mm long. Stipules narrowly Fruits and seed. © W. T. Cooper triangular or filiform, about 2 mm long. At the tenth leaf stage: leaf blade ovate, about 8-9 x 4-5 cm, apex acute to acuminate, base auriculate, petiole about 4 mm long. Stipules about 2 mm long, sheathing the terminal bud. Lateral veins forming loops inside the blade margin. Seed germination time 17 to 28 days. Distribution and Ecology Occurs in WA, NT, CYP, NEQ, CEQ and southwards as far as south-eastern New South Wales. Altitudinal range in northern Australia from near sea level to 1100 m. Grows in beach forest, monsoon forest, lowland, upland and mountain rain forest. Also occurs in Malesia. Natural History & Notes Food plant for the larval stages of the Two-brand Crow and Eastern Brown Crow Butterflies. Fruit. © CSIRO Common & Waterhouse (1981). Synonyms Malaisia scandens (Lour.) Planch., Annales des Sciences Naturelles, Botanique ser. 4, 3 : 293(1855). Malaisia scandens (Lour.) Planch. subsp. megacarpa P.S.Green, Journal of the Arnold Arboretum 67: 113(1986). Caturus scandens Lour., Fl. Cochinch. : 612(1790), Type: Indo-China, J. de Loureiro; holo: BM. Fide E. D. Merrill, Trans. Amer. Phil. Soc. 24: 133 (1935). Malaisia cunninghamii Planch., Annales des Sciences Naturelles, Botanique ser. 4, 3 : 294(1855), Type: Nouvelle-Hollande, cote orientale intertropicale; dans le forets epaisses de la riviere Brisbane et de Moreton-Bay. Allan Cunningham. Malaisia acuminata Planch., Annales des Sciences Naturelles, Botanique ser. 4, 3 : 294(1855), Type: Nouvelle-Hollande, sur le mont Marshall, dans le district dIllawara, Bakhouse in herb. Hook. Malaisia viridescens Planch., Annales Leaves and fruit. © CSIRO des Sciences Naturelles, Botanique ser. 4, 3 : 293(1855), Type: Nouvelle-Hollande, cote orientale intertropicale, Allan Cunningham. Malaisia tortuosa var. viridescens (Planch.) Bureau, Prodromus 17: 222(1873). Malaisia tortuosa var. acuminata (Planch.) Bureau, Prodromus 17: 222(1873). Malaisia tortuosa Blanco, Flora de Filipinas : 789(1837), Type: Algunos indios le conocen y fan a beber su cocimiento a las mugeres paridas. RFK Code 2144 Copyright © CSIRO 2020, all rights reserved. Scale bar 10mm. © CSIRO Cotyledon stage, hypogeal germination. © CSIRO 10th leaf stage. © CSIRO Vine stem bark and vine stem transverse section. © CSIRO Web edition hosted at https://apps.lucidcentral.org/rainforest.
Recommended publications
  • Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name

    Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name

    Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name FERNS & ALLIES Aspleniaceae Asplenium nidus Birds Nest Fern Blechnaceae Stenochlaena palustris Climbing Swamp Fern Dryopteridaceae Coveniella poecilophlebia Marsileaceae Marsilea mutica Smooth Nardoo Polypodiaceae Colysis ampla Platycerium hillii Northern Elkhorn Fern Pteridaceae Acrostichum speciosum Mangrove Fern Schizaeaceae Lygodium microphyllum Climbing Maidenhair Fern Lygodium reticulatum GYMNOSPERMS Araucariaceae Agathis robusta Queensland Kauri Pine Podocarpaceae Podocarpus grayae Weeping Brown Pine FLOWERING PLANTS-DICOTYLEDONS Acanthaceae * Asystasia gangetica subsp. gangetica Chinese Violet Pseuderanthemum variabile Pastel Flower * Sanchezia parvibracteata Sanchezia Amaranthaceae * Alternanthera brasiliana Brasilian Joyweed * Gomphrena celosioides Gomphrena Weed; Soft Khaki Weed Anacardiaceae Blepharocarya involucrigera Rose Butternut * Mangifera indica Mango Tuesday, 31 August 2010 Checklist of Plants for Cattana Wetlands RLJ Page 1 of 12 Class Family Code Taxon Common Name Semecarpus australiensis Tar Tree Annonaceae Cananga odorata Woolly Pine Melodorum leichhardtii Acid Drop Vine Melodorum uhrii Miliusa brahei Raspberry Jelly Tree Polyalthia nitidissima Canary Beech Uvaria concava Calabao Xylopia maccreae Orange Jacket Apocynaceae Alstonia scholaris Milky Pine Alyxia ruscifolia Chain Fruit Hoya pottsii Native Hoya Ichnocarpus frutescens Melodinus acutiflorus Yappa Yappa Tylophora benthamii Wrightia laevis subsp. millgar Millgar
  • The Island Rule and Its Application to Multiple Plant Traits

    The Island Rule and Its Application to Multiple Plant Traits

    The island rule and its application to multiple plant traits Annemieke Lona Hedi Hendriks A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity Victoria University of Wellington, New Zealand 2019 ii “The larger the island of knowledge, the longer the shoreline of wonder” Ralph W. Sockman. iii iv General Abstract Aim The Island Rule refers to a continuum of body size changes where large mainland species evolve to become smaller and small species evolve to become larger on islands. Previous work focuses almost solely on animals, with virtually no previous tests of its predictions on plants. I tested for (1) reduced floral size diversity on islands, a logical corollary of the island rule and (2) evidence of the Island Rule in plant stature, leaf size and petiole length. Location Small islands surrounding New Zealand; Antipodes, Auckland, Bounty, Campbell, Chatham, Kermadec, Lord Howe, Macquarie, Norfolk, Snares, Stewart and the Three Kings. Methods I compared the morphology of 65 island endemics and their closest ‘mainland’ relative. Species pairs were identified. Differences between archipelagos located at various latitudes were also assessed. Results Floral sizes were reduced on islands relative to the ‘mainland’, consistent with predictions of the Island Rule. Plant stature, leaf size and petiole length conformed to the Island Rule, with smaller plants increasing in size, and larger plants decreasing in size. Main conclusions Results indicate that the conceptual umbrella of the Island Rule can be expanded to plants, accelerating understanding of how plant traits evolve on isolated islands.
  • Approved Conservation Advice for the Monsoon Vine Thickets on the Coastal Sand Dunes of Dampier Peninsula

    Approved Conservation Advice for the Monsoon Vine Thickets on the Coastal Sand Dunes of Dampier Peninsula

    Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) Approved Conservation Advice for the Monsoon vine thickets on the coastal sand dunes of Dampier Peninsula 1. The Threatened Species Scientific Committee (the Committee) was established under the EPBC Act and has obligations to present advice to the Minister for Sustainability, Environment, Water, Population and Communities (the Minister) in relation to the listing and conservation of threatened ecological communities, including under sections 189, 194N and 266B of the EPBC Act. 2. The Committee provided its advice on the Monsoon vine thickets on the coastal sand dunes of Dampier Peninsula ecological community to the Minister as a draft of this approved conservation advice. In 2013, the Minister accepted the Committee’s advice, adopting it as the approved conservation advice. 3. The Minister amended the list of threatened ecological communities under section 184 of the EPBC Act to include the Monsoon vine thickets on the coastal sand dunes of Dampier Peninsula ecological community in the endangered category. It is noted that the ecological community is also listed as the Monsoon vine thickets on the coastal sand dunes of Dampier Peninsula on the Western Australian list of threatened ecological communities endorsed by the Western Australia Minister for the Environment. 4. The nomination and a draft description for this ecological community were made available for expert and public comment for a minimum of 30 business days. The Committee and Minister had regard to all public and expert comment that was relevant to the consideration of the ecological community. 5. This approved conservation advice has been developed based on the best available information at the time it was approved; this includes scientific literature, advice from consultations, existing plans, records or management prescriptions for this ecological community.
  • Cunninghamia Date of Publication: April 2020 a Journal of Plant Ecology for Eastern Australia

    Cunninghamia Date of Publication: April 2020 a Journal of Plant Ecology for Eastern Australia

    Cunninghamia Date of Publication: April 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) A Systematic Flora Survey, Floristic Classification and High-Resolution Vegetation Map of Lord Howe Island Paul Sheringham 1*, Peter Richards2, Phil Gilmour3, Jill Smith1 and Ernst Kemmerer 4 1 Department of Planning, Industry and Environment, Locked Bag 914 COFFS HARBOUR NSW 2450 2 17 Coronation Avenue, SAWTELL NSW 2452 3 523 Roses Rd, GLENIFFER, NSW 2454 4 Cradle Coast NRM, PO Box 338, BURNIE TAS 7320 * Author for correspondence: [email protected] Abstract: The present study took advantage of the availability of high resolution ADS40 digital imagery to 1) systematically resample the vegetation of the Lord Howe Island Group (LHIG, excluding Ball’s Pyramid); 2) conduct a numerical analysis of the floristic data; 3) map vegetation extent and the distribution of vegetation communities and 4) compare the resultant classification and mapping with those of Pickard (1983). In July 2013, a total of 86 full floristic and 105 rapid floristic sites were sampled across the island, based on a stratified random sampling design. A hierarchical agglomerative clustering strategy (Flexible UPGMA) and Bray-Curtis dissimilarity coefficient with default beta, along with nearest neighbour analysis to identify anomalous site allocations, was used to analyze the floristic data. In total 33 vegetation communities were delineated and mapped: 19 mapping units from the full floristic analysis; 7 variants identified within five of the above 19 groups; 3 mapping units from analysis of canopy- only floristic data; and 4 mapping units recognised in previous studies that are mapped but were not sampled in this survey.
  • Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018

    Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018

    Frieda River Limited Sepik Development Project Environmental Impact Statement Appendix 8b – Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018 Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments Sepik Development Project (Infrastructure Corridor) August 2018 SDP-6-G-00-01-T-003-018 page i CONTRIBUTORS Wayne Takeuchi Wayne is a retired tropical forest research biologist from the Harvard University Herbaria and Arnold Arboretum. He is one of the leading floristicians in Papuasian botany and is widely known in professional circles for wide-ranging publications in vascular plant taxonomy and conservation. His 25-year career as a resident scientist in Papua New Guinea began in 1988 at the Wau Ecology Institute (subsequently transferring to the PNG National Herbarium in 1992) and included numerous affiliations as a research associate or consultant with academic institutions, non-governmental organisations (NGOs) and corporate entities. Despite taking early retirement at age 57, botanical work has continued to the present on a selective basis. He has served as the lead botanist on at least 38 multidisciplinary surveys and has 97 peer-reviewed publications on the Malesian flora. Kyle Armstrong, Specialised Zoological Pty. Ltd – Mammals Dr Kyle Armstrong is a consultant Zoologist, trading as ‘Specialised Zoological’, providing a variety of services related to bats, primarily on acoustic identification of bat species from echolocation call recordings, design and implementation of targeted surveys and long term monitoring programmes for bats of conservation significance, and the provision of management advice on bats. He is also currently Adjunct Lecturer at The University of Adelaide, an Honorary Research Associate of the South Australian Museum, and had four years as President of the Australasian Bat Society, Inc.
  • Appendix E Terrestrial Biology

    Appendix E Terrestrial Biology

    Alcan Gove Alumina Refinery Expansion Project Appendix E Draft Environmental Impact Statement Terrestrial Biology Alcan Gove Alumina Refinery Expansion Project Appendix E.1 Draft Environmental Impact Statement Flora Species Database Records Alcan Gove Alumina Refinery Expansion Project Appendix E.1 Draft Environmental Impact Statement Flora Species Database Records Appendix E1 Flora Species Records of the Northern Territory Herbarium Database and Environment Australia Listings of Potential Flora Presence Based on Potential Habitat Presence for the Area 12°09’ to 12°15’S; and 136°40’ to 136°50’E Key to Conservation Status Territory Parks and Wildlife Commission Act 2000 LC – Least Concern DD – Data Deficient NE – Not Evaluated Environment Protection and Biodiversity Conservation Act 1999 V - Vulnerable Nomenclature for native flora follows Wheeler (1992), Wightman & Andrews (1989), Brooker & Kleinig (1994), Brock (2001), except where more recent taxonomic revisions are known to have been published (eg. Checklist of Northern Territory Vascular Plant Species1 Northern Territory Herbarium, 2003), and/or where the Northern Territory recognises a different binomial name. Other texts used to assist in identification include, Yunupinu et al. (1995), Milson (2000), Hacker (1990), Sainty & Jacobs (1994), Stephens & Dowling (2002), Smith (2002), Auld & Medd (1999). Conservation Status Taxon NT Comm. ACANTHACEAE Hypoestes floribunda R.Br. Ruellia tuberosa L. AIZOACEAE Trianthema portulacastrum L. AMARANTHACEAE Achyranthes aspera L. Alternanthera dentata (Moench) Stuchlik Amaranthus sp Gomphrena celosioides Mart. Ptilotus spicatus F.Muell. ex Benth. ANACARDIACEAE Buchanania obovata Engl. ANNONACEAE Cyathostemma glabrum (Span.) Jessup Miliusa traceyi Jessup APOCYNACEAE Alyxia spicata R.Br. Catharanthus roseus (L.) G.Don Wrightia saligna (R.Br.) F.Muell. ex Benth.
  • Lower Fitzroy River Infrastructure Project Draft Environmental Impact Statement

    Lower Fitzroy River Infrastructure Project Draft Environmental Impact Statement

    Not government policy Commercial in confidence Appendix 1. Vascular plant species recorded from the Lower Dawson River study area. Nomenclature according to Henderson (2002). ACANTHACEAE ARECACEAE Brunoniella australis Livistona decipiens Cabbage palm Dipteracanthus australasicus subsp. australasicus Pseuderanthemum variabile Love Flower ASCLEPIADACEAE *Asclepias curassavica Redhead cottonbush ADIANTACEAE *Cryptostegia grandiflora Rubbervine Cheilanthes sieberi Rock Fern *Gomphocarpus physocarpus Balloonbush Marsdenia viridiflora AIZOACEAE Sarcostemma viminale subsp brunonianum Caustic vine Tetragonia tetragonioides box burr Zaleya galericulata subsp. galericulata ASTERACEAE *Ageratum houstonianum Blue billygoat weed AMARANTHACEAE Bracteantha bracteata Achyranthes aspera Chaff flower *Bidens pilosa Coblers peg Alternanthera denticulata Lesser joyweed Calotis cuneata Blue burr daisy Alternanthera nana Hairy joyweed Cassinia laevis Coughbush Alternanthera nodiflora Centipeda minima var. minima Amaranthus interruptus Chrysocephalum apiculatum Yellow buttons Amaranthus viridus Green amaranth *Cirsium vulgare Spear thistle *Gomphrena celosioides Gomphrena *Conyza canadiensis Fleabane Nyssanthes diffusa Barb wire weed Cyanthillium cinereum Veronia *Emilia sonchifolia Emilia AMARYLLIDACEAE *Lactuca serriola Prickly lettuce Crinum flaccidum Murray lily Olearia sp *Parthenium hysterophorus Parthenium ANACARDIACEAE Pluchea dioscoridis Pleiogynium timorense Burdekin plum Pterocaulon redolens Toothed ragwort Pterocaulon serrulatum *Senecio lautus
  • Keith Et Al.Indd

    Keith Et Al.Indd

    Spatial Analysis of Risks Posed by Root Rot Pathogen, Phytophthora cinnamomi: Implications for Disease Management DAVID A. KEITH1,2, KEITH L. MCDOUGALL1,3, CHRISTOPHER C. SIMPSON1 AND JILLIAN L. WALSH1 1 NSW Offi ce of Environment & Heritage, PO Box 1967, Hurstville NSW 2220. 2 Australian Wetlands and Rivers Centre, University of New South Wales, Sydney NSW 2052. 3 Department of Environmental Management & Ecology, La Trobe University, PO Box 821, Wodonga, Victoria 3689. Published on 3 September 2012 at http://escholarship.library.usyd.edu.au/journals/index.php/LIN Keith, D.A., McDougall, K.L., Simpson, C.C. and Walsh, J.L. (2012). Spatial analysis of risks posed by root rot pathogen, Phytophthora cinnamomi: implications for disease management. Proceedings of the Linnean Society of New South Wales 134, B147-B179. Phytophthora cinnamomi, a soil-borne pathogen that infects the roots of plants, is listed as a Key Threatening Process under Commonwealth and NSW state biodiversity legislation due to its deleterious effects on native fl ora. In warm temperate eastern Australia, the disease may cause insidious declines in plant species that have slow rates of population turnover, and thereby threaten their long term persistence. Phytophthora cinnamomi has been known to occur in Royal National Park since the 1970s and systematic surveys for the pathogen were carried out a decade ago. Development of effective management strategies to mitigate the impacts of the disease requires information on the spatial distribution of risks posed by the disease. In this study, we use limited disease survey data to identify areas that are most at risk. We propose and apply a simple risk model in which risks of disease impact are proportional to the product of habitat suitability for the pathogen and abundance of susceptible biota.
  • Lose the Plot: Cost-Effective Survey of the Peak Range, Central Queensland

    Lose the Plot: Cost-Effective Survey of the Peak Range, Central Queensland

    Lose the plot: cost-effective survey of the Peak Range, central Queensland. Don W. Butlera and Rod J. Fensham Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Botanic Gardens, Mt Coot-tha Road, Toowong, QLD, 4066 AUSTRALIA. aCorresponding author, email: [email protected] Abstract: The Peak Range (22˚ 28’ S; 147˚ 53’ E) is an archipelago of rocky peaks set in grassy basalt rolling-plains, east of Clermont in central Queensland. This report describes the flora and vegetation based on surveys of 26 peaks. The survey recorded all plant species encountered on traverses of distinct habitat zones, which included the ‘matrix’ adjacent to each peak. The method involved effort comparable to a general flora survey but provided sufficient information to also describe floristic association among peaks, broad habitat types, and contrast vegetation on the peaks with the surrounding landscape matrix. The flora of the Peak Range includes at least 507 native vascular plant species, representing 84 plant families. Exotic species are relatively few, with 36 species recorded, but can be quite prominent in some situations. The most abundant exotic plants are the grass Melinis repens and the forb Bidens bipinnata. Plant distribution patterns among peaks suggest three primary groups related to position within the range and geology. The Peak Range makes a substantial contribution to the botanical diversity of its region and harbours several endemic plants among a flora clearly distinct from that of the surrounding terrain. The distinctiveness of the range’s flora is due to two habitat components: dry rainforest patches reliant upon fire protection afforded by cliffs and scree, and; rocky summits and hillsides supporting xeric shrublands.
  • Anjo Peninsula Flora and Vegetation Assessment

    Anjo Peninsula Flora and Vegetation Assessment

    ANJO PENINSULA FLORA AND VEGETATION ASSESSMENT Prepared for DEPARTMENT OF INDUSTRY AND RESOURCES Job No 08.178 Report No RP007 DEPARTMENT OF INDUSTRY AND RESOURCES – Anjo Peninsula Flora and Vegetation Assessment ANJO PENINSULA FLORA AND VEGETATION ASSESSMENT Prepared for DEPARTMENT OF INDUSTRY AND RESOURCES Prepared by ENV Australia Pty Ltd Level 7, 182 St Georges Terrace PERTH WA 6000 Phone: (08) 9289 8360 Fax: (08) 9322 4251 Email: [email protected] Prepared by: Kevin Kenneally, Tim Willing, Kerryn McCann Status: Final QA Review: Dr Michael Brewis Technical Review: Rebecca McIntyre Content Review: Dr Mitchell Ladyman Date: 23 October 2008 08.178 RP007 Final (23-10-2008) DEPARTMENT OF INDUSTRY AND RESOURCES – Anjo Peninsula Flora and Vegetation Assessment TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................III 1 INTRODUCTION ..........................................................................................1 1.1 OBJECTIVES....................................................................................................................................... 1 1.2 LOCATION........................................................................................................................................... 2 1.3 REGIONAL BIOGEOGRAPHY ............................................................................................................ 2 1.4 CLIMATE.............................................................................................................................................
  • MORACEAE Genera Other Than FICUS (C.C

    MORACEAE Genera Other Than FICUS (C.C

    Flora Malesiana, Series I, Volume 17 / Part 1 (2006) 1–152 MORACEAE GENera OTHer THAN FICUS (C.C. Berg, E.J.H. Corner† & F.M. Jarrett)1 FOREWORD The following treatments of Artocarpus, Hullettia, Parartocarpus, and Prainea are based on the monograph by Jarrett (1959–1960) and on the treatments she made for this Flora in cooperation with Dr. M. Jacobs in the 1970s. These included some new Artocarpus species described in 1975 and the re-instatement of A. peltata. Artocarpus lanceifolius subsp. clementis was reduced to the species, in A. nitidus the subspe- cies borneensis and griffithii were reduced to varieties and the subspecies humilis and lingnanensis included in var. nitidus. The varieties of A. vrieseanus were no longer recognised. More new Malesian species of Parartocarpus were described by Corner (1976), Go (1998), and in Artocarpus by Kochummen (1998). A manuscript with the treatment of the other genera was submitted by Corner in 1972. Numerous changes to the taxonomy, descriptions, and keys have been made to the original manuscripts, for which the present first author is fully responsible. References: Corner, E.J.H., A new species of Parartocarpus Baillon (Moraceae). Gard. Bull. Singa- pore 28 (1976) 183–190. — Go, R., A new species of Parartocarpus (Moraceae) from Sabah. Sandaka- nia 12 (1998) 1–5. — Jarrett, F.M., Studies in Artocarpus and allied genera I–V. J. Arnold Arbor. 50 (1959) 1–37, 113–155, 298–368; 51 (1960) 73–140, 320–340. — Jarrett, F.M., Four new Artocarpus species from Indo-Malesia (Moraceae). Blumea 22 (1975) 409–410. — Kochummen, K.M., New species and varieties of Moraceae from Malaysia.
  • Can Oldfield Regrowth Dominated by Non-Native Privet Trees Contribute to Biodiversity and Rainforest Regeneration?

    Can Oldfield Regrowth Dominated by Non-Native Privet Trees Contribute to Biodiversity and Rainforest Regeneration?

    Can oldfield regrowth dominated by non-native privet trees contribute to biodiversity and rainforest regeneration? Debbie Lynae Rudd B.Sc. Honours Dissertation A dissertation submitted in partial fulfilment of the requirements for the degree of Bachelor of Science with Honours. This thesis has been subject to examination and was deemed to meet a standard suited to the award of the BSc (Hons) degree. The work was conducted under the supervision of Carla Catterall and Jacinta Zalucki. Effort has been made to avoid errors in preparation and presentation of information. However it cannot be guaranteed that the thesis is entirely free from errors. It can be cited as: Rudd, D.L. (2017). Can oldfield regrowth dominated by non-native privet trees contribute to biodiversity and rainforest regeneration? BSc Hons Thesis, Griffith University. Griffith University School of Environment June 2017 1 ABSTRACT Widespread clearing of tropical and subtropical rainforests is a major threatening process for biodiversity and ecosystem functions worldwide. Deforestation has primarily occurred to create areas of livestock pasture and other agricultural uses, causing diverse and complex forest ecosystems to be replaced with much more simplistic ecosystems dominated by non-native species. To mitigate these impacts, reforestation is needed over large spatial scales. The process of unassisted regrowth on the oldfields that result from retirement of land from livestock grazing provides a potentially important pathway of rainforest restoration. However, oldfield regrowth in Australia is often dominated by non-native pioneer tree species, and the positive and negative roles of these species are strongly debated. This study investigated the role of a non-native species, small-leaved privet (Ligustrum sinense), in oldfield regrowth on the eastern Dorrigo Plateau of subtropical Australia.