Dietary Fibre and the Effect on Digestive Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Performance Nutrition Programs Ready to Shine Learn About the Performance Nutrition for the University of Dela- Nutrition Science
Baltimore Convention Center Baltimore, MD DAILY #Nutrition2019 Where the Best in Science & Health Meet www.nutrition.org Performance nutrition programs ready to shine Learn about the performance nutrition for the University of Dela- nutrition science. They’ll also give tritional science can change with nutrition opportunities in the ware. And the field has expanded an overview of the opportunities each; ultra-distance performance burgeoning field of sports science well beyond the collegiate ranks, for performance nutrition in differ- nutrition; and the four-year cycle of offering opportunities for dietitians ent settings. The session, which is preparing an Olympic athlete,” said Twenty-five years ago, sports nu- at the pro, endurance and Olympic organized by ASN and the Collegiate Rossi, who will serve as the session trition science was such a novelty athlete levels, as well as in military and Professional Sports Dietitians chair. that only one U.S. collegiate athletic and tactical training. Association, will be held from 1:00 - program had a full-time registered On Friday, June 7, during the ses- 5:00 PM in rooms 307 and 308. Speakers include: dietitian on staff. sion “Practical Integration of Sports “Hot topics are going to be nutri- Allen Tran, MS, RD, high-perfor- Today, almost all universities in Science to Optimize Performance ents that help with injury; tactical mance chef for the United States Ski the Power Five conferences have a Nutrition: Olympic, Tactical, Pro, En- versus traditional athletes and the and Snowboard Association full-time sports RD, said Kelly Rossi, durance,” four sports dietitians will different tasks and environments MS, RD, CSSD, director of sports discuss the current status of sports they deal with, and how much nu- Continued on page 5 We look forward to seeing you in Baltimore! With a unique vibe all to its own, Baltimore is the place to be from June 8-11. -
Prediction of Cellular ATP Generation from Foods in the Adult Human
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Prediction of cellular ATP generation from foods in the adult human - application to developing specialist weight-loss foods A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Nutritional Science at Massey University, Palmerston North, New Zealand. Leah Theresa Coles 2010 i Abstract For the accurate prediction of the potential ‘available energy’ of a food at the cellular level (i.e. ATP generation from food) it is necessary to be able to predict both the quantity and location of uptake (upper-tract or colon) for each energy-yielding nutrient. The objective was to develop a valid model (‘Combined Model’) for predicting the (potential) ATP available to the body from absorbed nutrients across the total digestive tract. The model was intended for the adult human under conditions where energy intake ≤ energy expenditure and all absorbed nutrients are catabolised. The development of the model involved two parts: (i) the experimental development of a dual in vivo – in vitro digestibility assay (‘dual digestibility assay’) to predict human upper-tract nutrient digestibility, as modelled by the rat upper digestive tract, and colonic digestibility, as predicted by fermenting rat ileal digesta in an in vitro digestion system containing human faecal bacteria; and (ii) the development of a series of mathematical equations to predict the net ATP yielded during the post-absorptive catabolism of each absorbed nutrient at the cellular level. -
The Early History of American Nutrition Research from Quality to Quantity
Chapter One The Early History of American Nutrition Research From Quality to Quantity On May 15, 1862, President Abraham Lincoln approved a bill to establish the United States Department of Agriculture. The USDA was born with $60,000 in six rooms in the basement of the Patent Offi ce building.1 Draw- ing from the European import of a scientifi c approach to agriculture, which relied largely on the nascent fi eld of chemistry, the USDA’s directive was to advance scientifi c research. The department was “laying the foundation for becoming a great science-producing agency of government” (Cochrane, 1993, p. 96). It was the expressed goal of the newfound department to: “Test by experiment the use of agricultural implements and the value of seeds, soils, manures, and animals; undertake the chemical investigation of soils, grains, fruits, vegetables, and manures, publishing the results.”2 From cotton to cattle to cucumbers, the USDA had an array of directions in which to take their scientifi c research. In the years after the approval of this bill, federally funded scientists, in USDA-sanctioned labs, set to unearthing the chemical components of food, and the physiological processes of digestion. Chemists used the pro- cess of calorimetry to break food down into calories, fats, proteins, and carbohydrates. Techniques of dehydration, precipitation, and combustion reduced foods to their constituent molecular parts. These experiments, as well as experiments using the calorimeter to quantify human action, ren- dered the relationship between food and eater measurable. The emerging 21 © 2009 State University of New York Press, Albany 22 Measured Meals science of nutrition introduced the notion of the balanced human-food equation based on the zero-waste model of the combustion engine. -
Measurement of Energy in Food and During Physical Activity 171
98421_Ch06 12/28/07 10:15 AM Page 170 Chapter 6 Measurement of Energy in Food and During Outline Measurement of Food Energy I The Calorie—A Unit of Energy Physical Activity Measurement I Gross Energy Value of Foods I Net Energy Value of Foods I Energy Value of a Meal Measurement of Human Energy Expenditure I Energy Released by the Body I The Respiratory Quotient I The Respiratory Exchange Ratio I Measurement of Human Energy Generating Capacities I Energy Expenditure During Rest and Physical Activity I Factors Affecting Energy Expenditure I Energy Expenditure During Physical Activity I Average Daily Rates of Energy Expenditure I The Metabolic Equivalent (MET) 98421_Ch06 12/28/07 10:15 AM Page 171 Chapter 6 Measurement of Energy in Food and During Physical Activity 171 Answer these 10 statements about the measurement of energy in food and during physical activity. Use the scoring key at the end of the chapter to check your results. Repeat this test after you have read the chapter and compare your results. 1. T F The calorie is a unit of energy measurement. 2. T F The bomb calorimeter operates on the principle of indirect calorimetry by measuring the oxygen consumed as the food burns completely. 3. T F Heat of combustion refers to a food’s ability to release carbon dioxide in relation to oxygen consumed as it burns completely. 4. T F The heat of combustion for all carbohydrates averages 5.0 kCal per gram. 5. T F The heat of combustion for lipid averages 6.0 kCal per gram. -
Open Rachellouisemoranfinaldiss.Pdf
The Pennsylvania State University The Graduate School The College of the Liberal Arts BODY POLITIC: GOVERNMENT AND PHYSIQUE IN TWENTIETH CENTURY AMERICA A Dissertation in History and Women’s Studies by Rachel Louise Moran ©2013 Rachel Louise Moran Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 ii The dissertation of Rachel Louise Moran was review and approved* by the following: Lori Ginzberg Professor of History and Women’s Studies Dissertation Adviser Chair of Committee Greg Eghigian Associate Professor of History Chloe Silverman Assistant Professor of English and Women’s Studies Lee Ann Banaszak Professor of Political Science and Women’s Studies Jennifer Mittelstadt Associate Professor of History Special Member Rutgers University Michael Kulikowski Professor of History and Classics and Ancient Mediterranean Studies Head, Department of History * Signatures are on file with the Graduate School. iii Abstract Although often believed to be a recent phenomenon, there is a long history of federal projects designed to shape American weight and physique. These issues have not been taken seriously because they are not obvious state interventions, but are instead part of what I define as the “Advisory State.” I conceptualize the advisory state as a repertoire of governing tools, as well as the actual use of these tools. Advisory state tools are political projects instituted not through physical force and not through coercion. Rather, these governing tools include federal research with explicit social aims, an expectation that persons and groups outside the state will voluntarily do the work asked of them by state, and the use of persuasive discourses like quantification and advertising to compel what cannot be legislated. -
Energy Flow and Metabolic Efficiency Attributed to Brown Adipose Tissue
DWWULEXWHGWR ! ! " # $% &' ()*' ) % " $ + &,$( - + "$ . ,$" $ ! &/!() + ) ) $ 0 "/ ,$"1 + ) + /!) " 2 )2 ,$ "$ + /! " ,$ +) " 3 "4 ) /! /! - ) + + ) "$ /! "$ ) /! "1 + ) " ! ! 566 "" 6 7 8 55 5 5 !9 !: 2,*:;:!<9:=9 2,*:;:!<9:=> !"# )! <:! DOCTORAL THESIS Energy flow and metabolic efficiency attributed to brown adipose tissue Gabriella von Essen Energy flow and metabolic efficiency attributed to brown adipose tissue Gabriella von Essen The present thesis is based on the following enclosed papers: Paper I Adaptive Facultative Diet-induced Thermogenesis in Wild-type but not in UCP1-ablated Mice Gabriella von Essen, Erik Lindsund, Barbara Cannon and Jan Nedergaard Submitted for publication Paper II Highly recruited brown adipose tissue does not in itself protect against obesity Gabriella von Essen, Elaina Maldonado, Erik Lindsund, Barbara Cannon and Jan Nedergaard Under revision for Cell Metabolism Paper III At thermoneutrality, medium-chain fatty acids totally protect against diet-induced obesity in a UCP1-independent manner Gabriella von Essen, Petter Englund, Barbara Cannon and Jan Nedergaard Submitted for publication Paper IV No insulating -
Energy Value of Foods
■^Ä*^^^/, CORE LIST r ENERGY VALUE OF FOODS • • • basis and derivation UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No. 74 mmmgiimgimmi ENERGY VALUE OF FOODS •I. ■ basis and derivation Do«miem Delivery SeM«sB,anch 'NíAL Sid Ï'' ' "-'• '■- .c.,r^,, . Bernice K. Waff , ' *""ô, A10 2Ü7Ü5■^^'"cJoS f Human Nutrition Research Branch AGRICULTURAL RESEARCH SERVICE UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No. 74 Slishtly revised February 1973 For sole by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price $1.25 domestic postpaid or $1.00 GPO Bookstore Stock Number 0100-02770 PREFACE The kilocalorie, which has been defined as the amount of heat energy needed to raise the temperature >f a kilogram of water 1° C, is the unit that has been used traditionally for expressing the energy value >f foods. Recently the International Bureau of Weights and Measures has recommended that the joule, L unit of energy applicable to electrical, work, and chemical energy, be adopted as the preferred unit for L11 forms of energy. The joule is derived from basic units in the International System of Units (SI) and s defined as a measure of force (newtons) times distance (metres). In the interest of uniform nomenclature, some nutritionists have proposed that the kilojoule replace he kilocalorie. The conversion factor for expressing kcalories as kjoules, as recommended by the Com- nittee on Nomenclature of the International Union of Nutritional Sciences, is 1 kcalorie equals 4.184 goules, based on the kcalorie determined at 14.5° to 15.5° C. Use of kjoules in place of kcalories as the unit of measure for energy in no way invalidates the )rinciples underlying the Atwater system for determining energy value of foods and the energy needs md energy expenditures of man. -
Leonard Amby Maynard
Leonard Amby Maynard November 8, 1887 — June 22, 1972 Professor Leonard Amby Maynard was born on a farm in the town of Hart- ford, Washington County, New York. The rural environment of his youth stimulated his interest in plants and animals and was the basis of his lifelong work in biology and agriculture. Following eighth grade in the Hartford village two-room school, he completed his secondary education at Troy Conference Academy, Poultney, Vermont, where he received a classical training in language, literature, and mathematics. Professor Maynard then enrolled in Wesleyan University, Middletown, Connecticut, in 1907 and was graduated in 1911, cum laude. The course in chemistry taught by Professor W.P. Bradley furnished the inspiration leading to his future career. In Bradley’s course he learned of the pioneer work of Wilbur Olin Atwater, who established and directed the first agricultural experiment station in the United States at Middletown in 1875. Fascinated by the accounts of Atwater’s varied research activities in applying chemical knowledge and techniques to the problems of agriculture and human and animal nutrition, Maynard determined to specialize in chemistry and proceeded to take all the courses that were available. Professor Maynard enrolled in Cornell University in the fall of 1913 as a graduate major in chemistry, after serving two years as an assistant in chemistry at the agricultural experiment stations at Iowa and at Rhode Island. During graduate study, Maynard received great stimulation from Professor Wilder D. Bancroft, whom he described as a teacher whose “facile mind, familiarity with both classic and current literature of chemistry,” and whose “wealth of ideas for research and enthusiasm made contacts with him, both in lectures and conferences, of outstanding interest and value.” He received the Ph.D. -
Becoming What You Eat: the New England Kitchen and the Body As a Site of Social Reform
Downloaded from https://doi.org/10.1017/S1537781419000288 The Journal of the Gilded Age and Progressive Era (2019), 18, 441–460 doi:10.1017/S1537781419000288 ARTICLE https://www.cambridge.org/core Becoming What You Eat: The New England Kitchen and the Body as a Site of Social Reform Nicholas J.P. Williams* . The Bakken Museum University of Athens *Corresponding author. E-mail: [email protected] Abstract Reformers at the turn of the century struggled to understand why people were the way they were and whether they could really be changed. The reformers behind the New , on England Kitchen (NEK), a dietary reform experiment in 1890s Boston that hoped to 30 Sep 2021 at 04:02:36 change working-class diets, dedicated much of its efforts to answering the question at the heart of all social reform movements: Were people’s behaviors determined by biolog- ical or social factors? In the course of their work, these reformers came to understand the relationship between food and bodies as central to social reform and sought to use dietary reform to change working-class bodies. Their actions and ideas disrupt the neat categories historians have come to rely upon when discussing reformist thought and push us to , subject to the Cambridge Core terms of use, available at embrace the messiness of ideas as they are being worked out. This article explores these messy ideas, using four conceptions of the body that emerged from the NEK efforts— the caloric body, the changing body, the citizen body, and the managed body—to make sense of ideas that were later taken up by the USDA and the Children’s Bureau, as well as other reform efforts in the Progressive Era. -
Energy Value of Foods
ENERGY VALUE OF FOODS . basis and derivation by Annabel L. Merrill Bernice K. Watt Human Nutrition Research Branch AGRICULTURAL RESEARCH SERVICE UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No. 74 Slishtiy revised February 1973 Far solo by 114, Sapetintandirnt af Documents. U.S. Goy•rnmenr Printing M., Washington, D.C. 20402 Pric• S1.22 cionwilic poopaid or $1.00 GPO Sao War. Stock Number 0100-02n0 - PREFACE The kilocalorie, which has been defined as the amount of heat energy needed to raise the temperature of a kilogram of water 1° C., is the unit that has been used traditionally for expressing the energy value of foods. Recently the International Bureau of Weights and Measures has recomrnended that the joule, a unit of energy applicable to electrical, work, and chemical energy, be adopted as the preferred unit for all forms of energy. The joule is derived from basic units in the International System of Units (SI) and is defined as a measure of force (newtons) times distance (metres). In the interest of uniform nomenclature, soine nutritionists have proposed that the kilojoule replace the kilocalorie. The conversion factor for expressing kcalories as kjoules, as reconunended by the Com- mittee on Nomenclature of the International Union of Nutritional Sciences, is 1 kcalorie equals 4.184 kjoules, based on the kcalorie determined at 14.6 to 15.5' C. Use of kjoules in place of kcalories as the unit of measure for energy in no way invalidates the principles underlying the Atwater system for determining energy value of foods and the energy needs and energy expenditures of man. -
Human Nutrition and Dietetics College
NAME: SALAMI, OLUWABUNMI HANNAH MATRIC NO: 19/MHS04/005 DEPARTMENT: HUMAN NUTRITION AND DIETETICS COLLEGE: COLLEGE OF MEDICINE AND HEALTH SCIENCE COURSE CODE: NTD212 LECTURER: DR AJAYI QUESTION Ten Important Scientists who have made significant contributions to the field of nutrition and state out their discoveries. ANSWER 1. Antoine-Laurent de Lavoisier ( 1743 – 1794) He showed that oxygen consumption increased during work, exposure to cold and during digestion (specific dynamic effect) and was lower during fasting (basal metabolism). He was the father of calorimetry. To Lavoisier, the principle of balanced sheet was very important, so he was meticulous in his accounting for where substances and calories went. He was dubbed the Father of nutrition. Lavoisier theorized that nutrients play a part in metabolism and respiration. Antoine- Laurent Lavoisier is considered the father of modern chemistry, and he was among the first to relate this science to physiology by exploring the ideas of metabolism and respiration. Lavoisier placed a guinea pig into an ice calorimeter – a container inside another insulated container filled with ice. The amount of ice that melted would be a measure of the heat given off by the guinea pig. Through this experiment, Lavoisier was able to demonstrate that respiration was a form of slow combustion. He began to investigate how the body converts food into tissues before his death in 1794. Nevertheless, Lavoisier’s work laid the foundation for later investigations of the role of food in the human body. 2. Agnes Fay Morgan (1884 – 1968) Dr. Morgan conducted research on “women's issues,” i.e., human nutrient requirements and foods. -
Physiological Effects of Isocaloric and Mineral Deficient Maternal Mouse Diets on Offspring Growth and Body Composition
PHYSIOLOGICAL EFFECTS OF ISOCALORIC AND MINERAL DEFICIENT MATERNAL MOUSE DIETS ON OFFSPRING GROWTH AND BODY COMPOSITION A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Amanda Palowski IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE CO-ADVISORS Christopher Faulk, Gerald C. Shurson August 2018 Ó Amanda Palowski 2018 Acknowledgements First, I would like to acknowledge and express my thankfulness to my academic advisors, Drs. Gerald Shurson and Christopher Faulk. Both of my advisors have challenged me to think outside of the box, pushed me to keep improving, and provided me with the knowledge and tools to be successful in the research field. I would not be the student and scientist that I am today without their guidance and support. Secondly I would like to thank all of the Integrated Animal Systems Biology professors. It has been a great pleasure working with all of you and I thank you for your guidance and help throughout my graduate career. I would also like to thank Dr. Dan Gallaher for being a part of my committee and providing an outside set of eyes on my project and thesis, I appreciate all of your comments and guidance. I would also like to thank all of the graduate and undergraduate students who helped me with my project; Mathia (Tia) Colwell, Mickie Trudeau, Yuan-tai Hung, Anna Clarke, Melissa Drown, and Chelsea Drown. I also want to thank all of the other graduate students in our department, Marta Ferrandis, Joey Mielke, Leonard Fung, Zhikai Zeng, Jinlong Zhu, Edward Yang, Audrey Walter, and Julia Holen, thank you for showing me friendship and helping me with classes.