Progestogens in Menopausal Hormone Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Progestogens in Menopausal Hormone Therapy DOI: 10.5114/pm.2015.52154 Prz Menopauzalny 2015; 14(2): 134-143 Review papeR Progestogens in menopausal hormone therapy Małgorzata Bińkowska1, Jarosław Woroń2 11st Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Warsaw, Poland 2Department of Clinical Pharmacology, Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland Abstract Progestogens share one common effect: the ability to convert proliferative endometrium to its secretory form. In contrast, their biological activity is varied, depending on the chemical structure, pharmacokinetics, receptor affinity and different potency of action. Progestogens are widely used in the treatment of menstru- al cycle disturbances, various gynaecological conditions, contraception and menopausal hormone therapy. The administration of progestogen in menopausal hormone therapy is essential in women with an intact uterus to protect against endometrial hyperplasia and cancer. Progestogen selection should be based on the charac- teristics available for each progestogen type, relying on the assessment of relative potency of action in experi- mental models and animal models, and on the indirect knowledge brought by studies of the clinical use of dif- ferent progestogen formulations. The choice of progestogen should involve the conscious use of knowledge of its benefits, with a focus on minimizing potential side effects. Unfortunately, there are no direct clinical studies comparing the metabolic effects of different progestogens. Key words: progestogens, menopausal hormone therapy, progesterone, progestin. Introduction mechanisms. In addition, progestogens modulate gene Progestogens are substances exhibiting a proge- transcription due to their affinity to other steroid recep- stagenic effect, i.e. inducing secretory transformation tors: androgen receptor (AR), glucocorticoid receptor in the endometrium which was previously affected by (GR) and mineralocorticoid receptor (MR). Studies of af- oestrogens, thus mimicking the activity of endogenous finity, as well as the type and relative potency of action progesterone in the luteal phase of the menstrual cycle. of different progestogens, are based on experiments Although progestogens are currently widely used in conducted on animal models and human cell lines and gynaecology, and not uncommonly also in obstetrics, tissues. However, biological response may differ depend- the body of knowledge about progestogens, as well as ing on the achieved concentration, duration of action terminology, appears rather chaotic and insufficiently and effects caused by adjacent structures and tissues. systematized. A variety of interchangeable names are The biological activity of progestogens is varied and used, including progestagen, progestogen, gestagen, influenced by their chemical structure, pharmacokinet- gestogen and progestin. According to the recommenda- ics and potency of action (Table II). The metabolism of tions issued by the North American Menopause Society, progestogens is still poorly understood, however it is the present study uses the term “progestogen”, by anal- definitely determined by the route of administration, ogy to other classes of hormonal drugs, e.g. oestrogens among other factors. Following oral administration, or androgens, and the term “progestin” which refers to progestogens are partially metabolized by enzymes pro- synthetic progestogens, i.e. excludes progesterone [1]. duced by bacteria living in the stomach and small in- Classification of progestogens is shown in Table I. testine, and during the process of mucosal absorption. Progestogens produce their physiological and biolog- After reaching the liver, the “first passage effect” is ob- ical effects via the progesterone receptors A (PR-A) and B served, i.e. an intensive metabolic process involving pri- (PR-B). Both of them are nuclear receptors, the difference marily cytochrome P450 enzymes. The liver is the main being that PR-B has an additional amino acid sequence site for the metabolism of progestogens also when they at the terminal NH2 group. In experimental conditions are administered via other routes. Some progestins (e.g. progestins bind to both progesterone receptors with desogestrel or norgestimate) are pro-drugs, i.e. become a high, though varied, affinity. The expression of genes active only through the formation of metabolites. Final- by PR is regulated through different, also extragenomic, ly, due to the activity of sulphatases, some conjugated Corresponding author: Małgorzata Bińkowska, 1st Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Submitted: 29.04.2015 Education, 231 Czerniakowska St., 00-416 Warsaw, Poland, e-mail: [email protected] Accepted: 1.06.2015 134 Menopause Review/Przegląd Menopauzalny 14(2) 2015 metabolites may be subject to secondary absorption in and exerts marked antimineralocorticoid and antian- the intestine and repeated activity. drogenic effects as a result of competitive inhibition of Indications for progestogen treatment in the pre- 5α-reductase activity in the skin. menopausal period are menstrual disorders affecting After oral administration P is rapidly metabolized in both the frequency of the menstrual cycle (polymenor- the gastrointestinal tract and liver, producing up to 30 rhea, oligomenorrhea) and the severity of bleeding (hy- metabolites. Among them, 5α- and 5β-pregnanolones pomenorrhea, hypermenorrhea), and heavy prolonged have a sedative effect through binding to the GABAA bleeding without an underlying organic condition. Some (gamma-aminobutyric acid type A) receptor. Other im- progestins are used as contraceptives, either alone or in portant metabolites include 20-dihydroprogesterone conjunction with oestrogen. (25-50% of progestogen potency), 11-deoxycorticos- The only indication for progestogen use during men- terone (strong mineralocorticosteroid), 17α-hydroxy- opausal hormone therapy (MHT) is to protect the uter- progesterone and the inactive end product – pregnan- us from endometrial hyperplasia and thus eliminate the ediol. The proportions of metabolites show a very high risk of endometrial cancer which would be induced by degree of individual variation. Low bioavailability after the prolonged use of unbalanced oestrogens [2]. oral administration was improved by micronization and The selection of progestogens for therapy should be then encapsulation of micronized progesterone sus- based on the available knowledge of their mechanisms pended in oil in gel capsules. Following oral administra- of action and differences between them. The bioavail- tion of 200 mg of progesterone in this form, the maximum ability of different progestogens depends on multiple P concentration determined by RIA (radioimmunoassay) factors including the route of administration, metabo- occurs after 4 hours and amounts to 12 ng/ml, lism, protein-binding strength and additional binding to the concentration of 5α-pregnanolon is 30 ng/ml and other steroid receptors (AR, GR, MR) and action triggered 5β-pregnanolon – 60 ng/ml. Approximately 17% of cir- via this pathway. Progestogens vary in their activity (not culating P is bound with a high affinity to CBG, and 80% only as a result of differences in chemical structure but is bound with low affinity to albumins. also in the strength of binding to different receptors), Oral micronized progesterone (MP) preparations are intracellular activity and often also biological and clini- used in MHT at daily doses of 200-300 mg, ensuring cal effects. What is more, they may exhibit differences in sufficient protection against endometrial hyperplasia the safety profile and the risk of interactions with other with a standard oestrogen dose. In sequential therapy, drugs used concomitantly in combination therapy. combining MP at a dose of 200 mg for 12-14 days with Another important factor affecting the pharmacoki- oral or transdermal oestrogen at a standard dose pre- netics of all drugs, progestogens included, is the aging vents endometrial hyperplasia, causing regular with- process. Changes arise as a result of deteriorated liver drawal bleeding in 60% of women and amenorrhoea function (impairment of the cytochrome P450 system, in a part of the remaining group. MP at a lower dose modified activity of P-glycoprotein) and kidney func- (100 mg) administered for 21-25 days of the cycle in tion, but also reduced cardiac output and decline in conjunction with 150 µg of oestradiol via the transder- lung function. Another factor which merits considera- mal route improved tolerance (reduced drowsiness, tion is the reduction of conjugation processes occurring tiredness and dizziness), and increased the percentage in the liver, which is important for the metabolism and of amenorrhoea. clearance of certain progestogens. It is usually accom- The intramuscular form of MP in oil (50-100 mg dai- panied by changes in body weight and composition, ly), which is still available in some countries, is mainly and aging-related decreased muscle mass. The factors used today in in vitro fertilization programmes. Clinical should be taken into account in differentiating treat- trials are currently under way investigating an aque- ment and drug doses between perimenopausal and el- ous solution for subcutaneous administration which, at derly women (over 65 years of age). a dose of 25 mg, would deliver a similar effect as intra- vaginal gel at a daily dose of 90 mg. Intravaginal progesterone in the form of 8% gel Progesterone (90 mg) or tablets (200 mg)
Recommended publications
  • Classification and Pharmacology of Progestins
    Maturitas 46S1 (2003) S7–S16 Classification and pharmacology of progestins Adolf E. Schindler a,∗, Carlo Campagnoli b, René Druckmann c, Johannes Huber d, Jorge R. Pasqualini e, Karl W. Schweppe f, Jos H. H. Thijssen g a Institut für Medizinische Forschung und Fortbildung, Universitätsklinikum, Hufelandstr. 55, Essen 45147, Germany b Ospedale Ginecologico St. Anna, Corso Spezia 60, 10126 Torino, Italy c Ameno-Menopause-Center, 12, Rue de France, 06000 Nice, France d Abt. für Gynäkologische Endokrinologie, AKH Wien, Währingergürtel 18-20, 1090 Wien, Austria e Institute de Puériculture26, Boulevard Brune, 75014 Paris, France f Abt. für Gynäkologie und Geburtshilfe, Ammerland Klinik, Langestr.38, 26622 Westerstede, Germany g Department of Endocrinology, Universitair Medisch Centrum Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands Abstract Besides the natural progestin, progesterone, there are different classes of progestins, such as retroprogesterone (i.e. dydroges- terone), progesterone derivatives (i.e. medrogestone) 17␣-hydroxyprogesterone derivatives (i.e. chlormadinone acetate, cypro- terone acetate, medroxyprogesterone acetate, megestrol acetate), 19-norprogesterone derivatives (i.e. nomegestrol, promege- stone, trimegestone, nesterone), 19-nortestosterone derivatives norethisterone (NET), lynestrenol, levonorgestrel, desogestrel, gestodene, norgestimate, dienogest) and spironolactone derivatives (i.e. drospirenone). Some of the synthetic progestins are prodrugs, which need to be metabolized to become active compounds. Besides
    [Show full text]
  • 2011/097571 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau „ (10) International Publication Number (43) International Publication Date \i\ 11 August 2011 (11.08.2011) 2011/097571 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/22 (2006.01) A61P 11/06 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/573 (2006.01) A61P 11/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61P 29/00 (2006.01) A61P 37/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/023917 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 7 February 201 1 (07.02.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/302,325 8 February 2010 (08.02.2010) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 13/021,950 7 February 201 1 (07.02.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant (for all designated States except US): EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, PRAIRIE PHARMACEUTICALS, LLC [US/US]; LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 1041 1 Motor City Drive, Suite 750, Bethesda, MD 20817 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (US).
    [Show full text]
  • A Review of Mastalgia in Patients with Fibrocystic Breast Changes and the Non-Surgical Treatment Options
    REVIEW ARTICLE A Review of Mastalgia in Patients with Fibrocystic Breast Changes and the Non-Surgical Treatment Options Khalid Rida Murshid FRCS(C), FACS Department of Surgery, College of Medicine, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia Abstract Objectives The objectives of this study are to review fibrocystic changes of the breast, their causal and associated factors and their correlation to mastalgia, and then to review the available treatment options for mastalgia (caused by fibrocystic changes) short of surgery. Methods The author reviews all the articles obtained from a PubMed research on mastalgia and fibrocystic changes of the breast, published in English over the last 14 years. Results Fibrocystic changes of the breast are common and can be considered as a normal phase of breast development. These changes are sometimes asymptomatic; however, when painful, patients would seek medical advice. Lifestyle changes and the avoidance of certain dietary elements as well as the use of some non-pharmacological agents have shown some beneficiary effects. In severe cases, stronger pharmacological and hormonal agents are resorted to being more effective but are associated with greater side effects. Conclusion Fibrocystic changes of the breast are common and should not be considered a disease. When painful, reassurance and non-pharmacological measures should be used first as a treatment. Stronger pharmacological and hormonal agents hold more serious side effects. Some of these remedies are supported by good clinical evidence, while others are not. The ideal treatment for mastalgia caused by fibrocystic changes is to be identified by sound recent randomized controlled clinical studies on simple remedies before being performed on stronger ones.
    [Show full text]
  • Part I Biopharmaceuticals
    1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays
    [Show full text]
  • Progestogens and Venous Thromboembolism Among Postmenopausal Women Using Hormone Therapy. Marianne Canonico, Geneviève Plu-Bureau, Pierre-Yves Scarabin
    Progestogens and venous thromboembolism among postmenopausal women using hormone therapy. Marianne Canonico, Geneviève Plu-Bureau, Pierre-Yves Scarabin To cite this version: Marianne Canonico, Geneviève Plu-Bureau, Pierre-Yves Scarabin. Progestogens and venous throm- boembolism among postmenopausal women using hormone therapy.. Maturitas, Elsevier, 2011, 70 (4), pp.354-60. 10.1016/j.maturitas.2011.10.002. inserm-01148705 HAL Id: inserm-01148705 https://www.hal.inserm.fr/inserm-01148705 Submitted on 5 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progestogens and VTE Finale version Progestogens and venous thromboembolism among postmenopausal women using hormone therapy Marianne Canonico1,2, Geneviève Plu-Bureau1,3 and Pierre-Yves Scarabin1,2 1 Centre for Research in Epidemiology and Population Health, U1018, Hormones and Cardiovascular Disease 2 University Paris-Sud, UMR-S 1018, Villejuif, France 3 University Paris Descartes and Hôtel-Dieu Hospital, Paris, France Adresse: 16 av. Paul Vaillant Couturier 94807 Villejuif Cedex Tel: +33 1 45 59 51 66 Fax: +33 1 45 59 51 70 Corresponding author: Marianne Canonico ([email protected]) 1/21 Progestogens and VTE Finale version Abstract Hormone therapy (HT) is the most effective treatment for correcting menopausal symptoms after menopause.
    [Show full text]
  • Combined Estrogen–Progestogen Menopausal Therapy
    COMBINED ESTROGEN–PROGESTOGEN MENOPAUSAL THERAPY Combined estrogen–progestogen menopausal therapy was considered by previous IARC Working Groups in 1998 and 2005 (IARC, 1999, 2007). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.2 Progestogens (a) Chlormadinone acetate Combined estrogen–progestogen meno- Chem. Abstr. Serv. Reg. No.: 302-22-7 pausal therapy involves the co-administration Chem. Abstr. Name: 17-(Acetyloxy)-6-chlo- of an estrogen and a progestogen to peri- or ropregna-4,6-diene-3,20-dione menopausal women. The use of estrogens with IUPAC Systematic Name: 6-Chloro-17-hy- progestogens has been recommended to prevent droxypregna-4,6-diene-3,20-dione, acetate the estrogen-associated risk of endometrial Synonyms: 17α-Acetoxy-6-chloro-4,6- cancer. Evidence from the Women’s Health pregnadiene-3,20-dione; 6-chloro-Δ6-17- Initiative (WHI) of adverse effects from the use acetoxyprogesterone; 6-chloro-Δ6-[17α] of a continuous combined estrogen–progestogen acetoxyprogesterone has affected prescribing. Patterns of exposure Structural and molecular formulae, and relative are also changing rapidly as the use of hormonal molecular mass therapy declines, the indications are restricted, O CH and the duration of the therapy is reduced (IARC, 3 C 2007). CH3 CH3 O C 1.1 Identification of the agents CH3 H O 1.1.1 Estrogens HH For Estrogens, see the Monograph on O Estrogen-only Menopausal Therapy in this Cl volume. C23H29ClO4 Relative molecular mass: 404.9 249 IARC MONOGRAPHS – 100A (b) Cyproterone acetate Structural and molecular formulae, and relative Chem.
    [Show full text]
  • Rominder P.S. Suri, Phd, PE Robert F. Chimchirian & Sandhya Meduri Department of Civil & Environmental Engineering Villa
    Emerging Contaminants and Water Supply – Speaker Abstracts Emerging Contaminants and Water Supply – Speaker Abstracts PRESENCE OF ESTROGEN HORMONES AND ANTIBIOTICS IN detection limits for all 12 estrogen compounds ranged from 0.1 ng L-1 to THE ENVIRONMENT 10 ng L-1 using a sample size of 1 L. Eight antibiotics and venlaflaxine Rominder P.S. Suri, PhD, PE were detected in the effluent with concentrations that ranged from 50 to Robert F. Chimchirian & Sandhya Meduri 2,930 ng L-1. Department of Civil & Environmental Engineering Twenty-one streams in Chester County, southeast Pennsylvania, were Villanova University, Villanova PA 19085 also sampled for aqueous concentrations of the above hormones and 610-519-7631 [email protected] antibiotics. Chester County represents a very diverse land use. In addition to concentrated urban developments, there are many In recent years, the detection of trace amount of pharmaceutically active agricultural farms (dairy, cattle, hog, poultry, and mushroom). The compounds (PACs) in the surface water has gained widespread watershed is comprised of about 280,000 acres that eventually drain into attention. The presence of the PACs in the natural water systems causes the Chesapeake Bay via the Susquehanna River. The results showed that ecological problems and possible adverse effects to humans. Two classes there was at least one estrogen detected in every stream sampled and six of PACs, estrogen hormones and antibiotics make their way into the estrogens were detected at three different locations. The most abundant surface waters through effluents from wastewater treatment plants and PAC was estrone, which was detected in all but one stream, with areas where animal manure and biosolids are land applied, amongst concentrations as high as 2.4 ng L-1.
    [Show full text]
  • Combined Estrogen–Progestogen Menopausal Therapy
    PHARMACEUTICALS volume 100 A A review of humAn cArcinogens This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 14-21 October 2008 LYON, FRANCE - 2012 iArc monogrAphs on the evAluAtion of cArcinogenic risks to humAns COMBINED ESTROGEN–PROGESTOGEN MENOPAUSAL THERAPY Combined estrogen–progestogen menopausal therapy was considered by previous IARC Working Groups in 1998 and 2005 (IARC, 1999, 2007). Since that time, new data have become available, these have been incorporated into the Monograph, and taken into consideration in the present evaluation. 1. Exposure Data 1.1.2 Progestogens (a) Chlormadinone acetate Combined estrogen–progestogen meno- Chem. Abstr. Serv. Reg. No.: 302-22-7 pausal therapy involves the co-administration Chem. Abstr. Name: 17-(Acetyloxy)-6-chlo- of an estrogen and a progestogen to peri- or ropregna-4,6-diene-3,20-dione menopausal women. The use of estrogens with IUPAC Systematic Name: 6-Chloro-17-hy- progestogens has been recommended to prevent droxypregna-4,6-diene-3,20-dione, acetate the estrogen-associated risk of endometrial Synonyms: 17α-Acetoxy-6-chloro-4,6- cancer. Evidence from the Women’s Health pregnadiene-3,20-dione; 6-chloro-Δ6-17- Initiative (WHI) of adverse effects from the use acetoxyprogesterone; 6-chloro-Δ6-[17α] of a continuous combined estrogen–progestogen acetoxyprogesterone has affected prescribing. Patterns of exposure Structural and molecular formulae, and relative are also changing rapidly as the use of hormonal molecular mass therapy declines, the indications are restricted, O CH and the duration of the therapy is reduced (IARC, 3 C 2007).
    [Show full text]
  • Synthesis and Regulation of Sex Hormones in Breast Tissue During Pre- and Postmenopause
    JOURNAL FÜR MENOPAUSE PASQUALINI JR Synthesis and regulation of sex hormones in breast tissue during pre- and postmenopause Journal für Menopause 2001; 8 (Supplementum 2) (Ausgabe für Schweiz), 10-13 Homepage: www.kup.at/menopause Online-Datenbank mit Autoren- und Stichwortsuche TERIUMTE IM KLIMAKZEITSCHRIFTISCHE ASPEKT FÜR DIAGNOSTISCHE, THERAPEUTISCHE UND PROPHYLAK Indexed in EMBASE/ Krause & Pachernegg GmbH · VERLAG für MEDIZIN und WIRTSCHAFT · A-3003 Gablitz Excerpta Medica SYNTHESIS AND J. R. Pasqualini REGULATION OF SEX HORMONES IN BREAST SYNTHESIS AND REGULATION OF SEX TISSUE DURING HORMONES IN BREAST TISSUE DURING PRE- AND POSTMENOPAUSE PRE- AND POSTMENOPAUSE and the “sulphatase pathway” which INTRODUCTION converts E1S into E1 by the estrone- ESTRONE SULPHATASE sulphatase (EC: 3.1.6.1) [8–10]. The final step of steroidogenesis is the ACTIVITY IN BREAST CANCER Most breast cancers (~ 95 %) are in conversion of the weak E1 to the AND ITS CONTROL their early stage hormone-sensitive, potent biologically active E2 by the where the estrogen estradiol (E2) action of a reductive 17β-hydroxy- plays an important role in the gen- steroid dehydrogenase type 1 activity For many years the endocrine therapy esis and development of this tumour (17β-HSD-1, EC 1.1.1.62) [11–12]. in breast cancer has been mainly by [1, 2]. About two thirds of breast the utilization of antiestrogens (e.g. cancers occur during the postmeno- Quantitative evaluation indicates Nolvadex, tamoxifen citrate) which pausal period when the ovaries have that in human breast tissue E1S “via block the estrogen receptor. ceased to be functional. Despite the sulphatase” is a much more likely low levels of circulating estrogens, precursor for E2 than is androsten- More recently, another endocrine the tissular concentrations of estrone edione “via aromatase” (Fig.
    [Show full text]
  • The Treatment of Monophasic Cycles with the Retroprogesterone Ro 4-8347
    The treatment of monophasic cycles with the retroprogesterone Ro 4-8347 Autor(en): Taubert, H.-D. / Jürgensen, O. Objekttyp: Article Zeitschrift: Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften = Bulletin de l'Académie Suisse des Sciences Medicales = Bollettino dell' Accademia Svizzera delle Scienze Mediche Band (Jahr): 25 (1969) PDF erstellt am: 25.09.2021 Persistenter Link: http://doi.org/10.5169/seals-307794 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Abteilung fiir gynäkologische Endokrinologie (Leiter: Prof. TT.-T). Taubert) der Universitälsfraueiiklinik, Frankfurt/Main (Direktor; Prof. 0. Käser) The Treatment of Monophasic Cycles with the Retroprogesterone Ro 4-8347 H.-l).
    [Show full text]
  • Menopausal Hormone Therapy and Risk of Endometrial Cancer: a Systematic Review
    cancers Review Menopausal Hormone Therapy and Risk of Endometrial Cancer: A Systematic Review Clemens B. Tempfer 1,* , Ziad Hilal 1, Peter Kern 2, Ingolf Juhasz-Boess 3 and Günther A. Rezniczek 1 1 Department of Gynecology and Obstetrics, Ruhr-Universität Bochum, Bochum, Germany and Comprehensive Cancer Center of the Ruhr-Universität Bochum (RUCCC), 44708 Bochum, Germany; [email protected] (Z.H.); [email protected] (G.A.R.) 2 Department of Gynecology and Obstetrics, St. Elisabeth-Krankenhaus Bochum, 44787 Bochum, Germany; [email protected] 3 Department of Gynecology and Obstetrics, University of Freiburg, 79110 Freiburg, Germany; [email protected] * Correspondence: [email protected] Received: 18 July 2020; Accepted: 5 August 2020; Published: 6 August 2020 Abstract: Background: Menopausal hormone therapy (MHT) is an appropriate treatment for women with the climacteric syndrome. The estrogen component of MHT effectively alleviates climacteric symptoms but also stimulates the endometrium and thus may increase the risk of endometrial cancer (EC). Materials and Methods: We performed a systematic literature search of the databases PubMed and Cochrane Central Register of Controlled Trials to identify controlled and uncontrolled clinical trials reporting on the prevalence and/or incidence of EC among women using MHT. Results: 31 publications reporting on 21,306 women with EC diagnosed during or after MHT were identified. A significantly reduced risk of EC among continuous-combined (cc)MHT users with synthetic progestins (SPs) was demonstrated in 10/19 studies with odds ratios (ORs)/hazard ratios (HRs) between 0.24 and 0.71. Only one study documented an increased risk of EC among long-term users ( 10 years), not confirmed in three other sub-group analyses of women with 6, 5, and >10 years ≥ ≥ ≥ of ccMHT use.
    [Show full text]
  • The Selective Estrogen Enzyme Modulators in Breast Cancer: a Review
    Biochimica et Biophysica Acta 1654 (2004) 123–143 www.bba-direct.com Review The selective estrogen enzyme modulators in breast cancer: a review Jorge R. Pasqualini* Hormones and Cancer Research Unit, Institut de Pue´riculture, 26 Boulevard Brune, 75014 Paris, France Received 21 January 2004; accepted 12 March 2004 Available online 15 April 2004 Abstract It is well established that increased exposure to estradiol (E2) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95–97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E2 by the breast cancer tissue itself. This information extends the concept of ‘intracrinology’ where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E2 from circulating precursors. Two principal pathways are implicated in the last steps of E2 formation in breast cancer tissues: the ‘aromatase pathway’ which transforms androgens into estrogens, and the ‘sulfatase pathway’ which converts estrone sulfate (E1S) into E1 by the estrone-sulfatase.
    [Show full text]