Copyright (c) American Society for Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 DOI 10.1600/036364411X553090 © Copyright2011 bythe American SocietyofPlantTaxonomists Systematic Botany morphologically identifiedas S.cuspidatum between European andeasternNorth American plantsof lite ( Szövényi etal.2008 ) studiesdetectedlittledivergence et al.2009 ). Isozyme( Hanssen etal.2000 ) andmicrosatel-and Eddy1985 ; Europe andeasternNorth McQueen and America ( Andrus 2007 Andrus 1980 ; ; that itisrestricted tothe northern hemisphere, occurringin Daniels Anderson 1984, Crum 1988; 1985, 1977, 1994 Eddy 1949; ). Others,includingthemostcurrent reports, conclude 1919, Andrews 1911 ; ent inbothNorthernandSouthernhemispheres ( Warnstorf sider has thusbeenthesubjectofcontroversy ( Table 1 tum ). Somecon- such species.Plantsmorphologicallysimilarto datum species thatare reported tobewidespread. mine whenbasedsolelyuponmorphology, particularlyfor distribution of in somespecies.Thus,thedeterminationofgeographic sive environmentally introduced morphologicalvariation another. Systematicproblems are compoundedbytheexten- cally similarandoftendifficult todistinguishfrom one further considered species asendemictooneorbothofthesetwocountries.He New Zealand.Healsoreported 13othersection has notbeenundertaken. endemic toPatagonia.Notingthat Spet 2006). Seppelt section 2006 ) andtheHolantarctic 1992 ; Scott andStone1976 ; Catcheside 1980 ; accepted Fife 1996 Andrews’ conclusions( ; Sainsbury 1955 Seppelt ; Beever etal. ent in Australasia ( Andrews 1949 ). Subsequentresearchers catulum Patagonia andin Australasia. Hefurtherconcludedthat (1949) concludedthat perhaps questionably, distinct”from Mn coey eae related closely Many antr (91 eotd reported (1911) Warnstorf occurinmanypartsoftheworldanditsdistribution formed asubcladewithin related tothe Australian plantswascollectedinthePhilippines,andsamplesfrom Australia, thePhilippines,Colombia,andE lected from otherregions. Thespecieswasfoundtooccurin Australia aswelloneverycontinentexcept Antarctica. Thesam morphologicallyidentifiedas except Antarctica recent authorsconsider S.falcatulum S. cuspidatum Ehrh. exHoffm. ( Abstract— Keywords— rc . Karlin, F. Eric wasprobably theonlysection Cuspidata (2011), 36(1):pp.22–32 1 . A comparativestudy ofthegeneticsplants School ofTheoretical & Applied Science,RamapoCollege,Mahwah,NewJersey07340-1680,U.S. A. , aHolantarctic specieswhichisreported from Tasmania, NewZealand,andChile.

4 The distributionof Dipartimento diBiologiaStrutturale eFunzionale,Universita’degliStudidiNapoliFedericoII, speciesreported for Australasia ( Fife 1996 ; looyliy, Asrlsa, itrlia hbiiain, peoyi vrain, pyoegah phylogeography , variation, phenotypic hybridization, interploidal Australasia, Allopolyploidy , Te et os Peat The tobeawidespread speciesthatispres- S. falcatulum Complesso UniversitarioMonteS. Angelo, Via Cinthia—Edificio7,80126Napoli,Italy 3

Australian Antarctic Division,ChannelHighway, Kingston7050,Tasmania, Australia 2 1 Duke University, DepartmentofBiology, Durham, NorthCarolina 27708,U.S. A. , 5 Snr B Boles, B. Sandra S. falcatulum Sphagnum Sphagnum speciesisoftendifficult todeter- S. cuspidatum S. falcatulum S. cuspidatum S. cuspidatum Besch.(section Sphagnum cuspidatum S speciesare morphologi- section S. cuspidatum . . . Microsatellites furthershowthat falcatulum S. cuspidatum, likelyco-occurred in

5 Cuspidata Author forcorrespondence ([email protected]) Sphagnum cuspidatum S. cuspidatum iscurrently theonly for Australia and Provide aGlobalPerspective 2 onaglobalbasis Communicating Editor:FernandoZuloaga Cuspidata Rde D Seppelt, D. Rodney Sphagnum cuspi- were compared tomicrosatellites ofplantsmorphologicallyidentifiedas was“slightly, speciespres- Cuspidata S. cuspida- tobeendemicEurope andeasternNorth America. Microsatellites from Australian hasbeensubjecttocontroversy. Although historicallyreported from allcontinents Andrews Cuspidata ) isone S. fal- ) as )

22 S. cuspidatum Lake plants( Fig. 1a,b ), closely matchingthedescription for ment. Theywere smallerandmore compact thantheBrown there reflected their occurrence inanonaquatic environ- ally moisthabitatandthemorphology oftheplantscollected a Quaternarycoastalsanddune system.Thiswasaseason- quenervia level). Theplantsgrew inpartialshadeunder Noosa NationalPark(26.4500° S,153.0833°E,30mabovesea tion some121kmnorthofBrown LakeatMarcus Beachin mens were collectedbyR.D.Pattersonfrom asecondloca- subsp. this sitecloselymatchedthedescriptionof E; :55mabovesealevel).Plantsinthesixcollectionsfrom land atthesouthernendofBrown Lake(27.4947°S,153.4322° were growing insmallisolatedclumpsaheath/sedgewet- Hines from onesiteonNorthStradbroke Island.Theplants catulum closely matchingthatof Tasmania ( Shaw andGoffinet 2000 ; Karlin etal.2009 ). for justtwo Australian specimensof ( Karlin etal.2009 ), withgeneticanalyseshavingbeen reported focused primarilyonplantsfrom SouthIsland,NewZealand Karlin etal.2009 ). Priorgeneticstudyof sections appear tohaveparental species from twodifferent sections: one oftheparent species ( Karlin etal.2009 ). Bothcytotypes interploidal hybridization,withtheallodiploidplantsbeing ( Karlin etal.2009 ). Theallotriploid plantshaveahistoryof plants havingeitherallodiploidorallotriploidgametophytes S.falcatulum et al.1998 ; Szövényi etal.2008 ), geneticanalyseshaveshown to havehaploid( 2009 ; seeDiscussion).Unlike cally similarto noted above,somethatare morphologicallyandecologi- ora ofmorphotypes( Fife 1996 ; Karlin etal.2009 ), with,as are atthenorthernlimitofreported distributionfor from twocoastalsitesinQueensland, Australia. Thetwosites 3 Twelve section Sphagnumfalcatulum Seao Terracciano , Stefano inAustralia:Microsatellites cuspidatum ( Seppelt 2006 ). Sixspecimenswere collectedbyH.B. Subsecunda (Cav.) S.F. Blakeopen forest inashallowswale on isoneoftheparental speciesofthedoubleallopolyploid tobeanallopolyploid(alloploid)complexof S. cuspidatum

n givenby Eddy (1977 , 1988 ). Sixotherspeci- Cuspidata = and x ) gametophytes( Fritsch 1991 ; Temsch isavariablespecieshavingpleth- S. cuspidatum Cuspidata 4 n . oahn Shaw Jonathan A. and specimenshavingamorphology S. cuspidatum ( Andrews 1949 ; Karlin etal. Sphagnum falcatulum ( Shaw andGoffinet 2000 ; S. falcatulum were recently collected S. cuspidatum , whichisreported quatorial Guinea ple mostclosely S. falcatulum Melaleuca quin- S. cuspidatum . , bothfrom col- 2

S. fal- has

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 30 cyclesof94°Cfor 30s,54°Cfor90and72°C60 s,withafinalexten- of aninitialdenaturation andhot-startactivationat95°C for15min,then mented forallprimer sets,withnoadditionaloptimization. Thisconsisted template ineachreaction. A standard thermocyclingregime wasimple- dations. Fiveto20ngofgenomicDNA in3µldistilledwaterservedas recommen- tions, butotherwiseusedaccording tothemanufacturer’s Qiagen MultiplexPCRkit(Valencia, California),scaledforsmallerreac- Technologies, Coralville, Iowa).Multiplexingwasaccomplishedusinga ward primerfluorescently labeledwithHEXor6-FAM (IntegratedDNA products) andalternatingfluorophores. Each primerpairincludedafor- according toexpectedfragment sizes(fornonoverlappingamplification each targeting asetof3 loci. Primersetswere arrayedformultiplexing al. 2009 ). Microsatellites were amplifiedin8µlmultiplexedreactions, the 16samplesofallodiploidcytotype et al.(2008) and Szövényi etal.(2008) . Inaddition,microsatellite dataon imens hadbeenpreviously usedformicrosatellite-based studiesby Shaw (DUKE) andUniversityofMichiganHerbarium(MICH).Somethespec- lowing herbariawere used(withpermission):DukeUniversityHerbarium et al.2008 ), mostspecimenswere lessthantenyearsold.Plantsfrom thefol- than fifteenyearsoldyieldsporadicresults withmicrosatellites ( Karlin tum were chosentorepresent theputativegeographicdistributionof selected formicrosatellite analyses(Appendix1).Theherbariumspecimens 39 herbariumspecimensmorphologicallyidentifiedas points. Inadditiontothetwelvespecimensof Australian “ occurrence of S.cuspidatum to study thegeneticrelationship of Australian “ Australian “ required toidentifytheseplants,andhere werefer tothemas phological variantsof 23 tum 1977 , 1988 ). Thesetwelvespecimenswere either S.cuspidatum This study KARLINET AL.: SPHAGNUMCUSPIDATUM IN AUSTRALIA (1911 ) Warnstorf Source 2011] nesne l 09)+E------+ - - - + - - ? + ------+ + - + + - - + - - + - E E + E E + E + + + + + + + Anderson etal.( 2009 ) McQueen and Andrus ( 2007 ) Daniels andEddy( 1985 ) 1994 ) (1984, Crum (1980 ) Andrus 1988) 1985, (1977, Eddy 1949) (1919, Andrews from thatmarkeringenome Toftheallotriploid samples of Australian 4, 5,9,10,14,17,18,19,20,22,30.Inaddition,marker7wasrun onthe numbered asin Shaw etal.(2008) , were assayedforthepresent study:1, described by Shaw etal.(2008) . Thefollowing12microsatellite markers, and microsatellite characteristics forthelocianalyzedinthisstudywere according totheprotocols describedin Shaw etal.(2003) . Primersequences term Australasia torefer to Australia andNewZealand. where themostcommon alleleexceedsafrequency of0.95.We usethe it beagametophyteorsporophyte. Monomorphicmarkersare those number ofmonoploidsetschromosomes present inaplant,whether tion (Appendix1). P. Beauv. (section et al.(2009) were alsoutilized.Fiveherbariumspecimensof At thetwo Australian sites,collectionswere madeacross the extentof The objectiveofthisstudywastousemicrosatellites to Table Mcoaelt Genotyping— Microsatellite Definitions— S. falcatulum . As priorstudieshaveshownthatspecimens from collectionsgreater (whichisnotcurrently reported for Australasia) or mor- . eotd itiuin f of distribution Reported 1. S. cuspidatum S. cuspidatum.” from otherregions. subsp. We usethetermshaploid,diploid,etc.torefer tothe Cuspidata andtoplantsmorphologically identifiedas aeil ad Methods and Materials S. cuspidatum subrecurvum S. falcatulum ) were includedasanoutgroup fortheordina- , withaminimumofonembetweencollection

DNA extractionswere accomplished toallowforacomparison withalleles Europe Sphagnum cuspidatum + + (Warnst.) A. Eddy( Eddy . Geneticanalysiswasthus S. falcatulum North America S. falcatulum S. cuspidatum S. cuspidatum E + usedby Karlin S. cuspidatum,” . “E”:limitedwithinNorth America toeasternNorth America. S. cuspida- S. recurvum (Kri et (Karlin S. cuspida- were Southeast Asia ”

+ - 19, oneatmarker 20,andoneatmarker30 ( Table 2 were each heterozygous atjustone marker:twoatmarker ). As the microsatellite marker. Fourothersamples of Australian “ (“uh”, Nei 1987 ) andpercent polymorphicloci(%P). haploid genediversity(“h”, Nei 1987 ), unbiasedhaploidgenediversity Brown andWeir 1983 ), informationindex(“I”, otypes (“Gt”),numberofalleles(“Na”),effective numberofalleles(“Ne”, Brown andWeir 1983 ), was assessedbysixindicesusingGen AlEx 6.2:numberofmultilocusgen- ences amongthemultilocusgenotypesof genetic distanceoptioninGenAlExwasusedtocalculatepairwisediffer- the Neighborprogram in Phylip3.69( Felsenstein 1989 ). The“Haploid” variance. ( Peakall etal.1995 ). Neighbor-joining analysiswasdonewith is theproportion ofthevariance amongpopulationsrelative tothetotal AMOVA, “Codom-Genotypic”geneticdistanceproduces PhiPT, which by Peakall etal.(1995) and Smouse andPeakall(1999) and neighbor-joining analysis.Thisdistancemeasurement isdescribed . Whenusedwith genetic distanceoption(withinterpolation)wasusedfor AMOVA, PCO, cipal coordinates analysis(PCO; Orloci 1978 ). The“Codom-Genotypic” et al.1992 ), Nei’sgeneticdistanceandidentity( Nei 1972 , 1978 2006 ), andprin- ). Theseincludedanalysisofmolecularvariance(AMOVA; Excoffier tistical calculationswere doneusingGenAlEx6.2( Peakall andSmouse alleles incommon)to1(identicalandallelefrequencies). Othersta- manually. ThePOSA values,reported assimilaritydata,rangefrom 0(no which measures similarityofallelesandallelefrequencies, wascalculated of thematrixcells(8/473)havingnullalleles. cus genotypes(32unique)basedon11 microsatellite markers,with1.7% genotypes of (absence ofamplification)were used(notcountingmarker5inmultilocus each (seebelow). loci, withtheexceptionofspecimenswhichhadoneheterozygous locus alleles forthelattertwospecieswere scored asbeing homozygousatall pidatum microsatellite variationbetweentheallodiploid than tovariationinrepeat numberalone(datanotshown).To compare allelic variationcouldbeattributedtoindelsinflankingregions rather lated, asitwasclearfrom sequencingselectedfragmentsthatsomeofthe as beinggametophyticallydiploid. cally haploid.Plantshavingtwoallelesatmostmarkerswere interpreted allele atall,orallbutonemarker, were interpreted asbeinggametophyti- rosatellite markers( Karlin etal.2009 ; Ricca etal.2008 ). Plantswithone State College,Pennsylvania). assignments were madeusingGeneMarker1.75software (Softgenetics, trophoresis onan ABI 3730sequencer. Sizedeterminationsandgenotype Hi-Di™ Formamide(AppliedBiosystems,FosterCity, California)forelec- water, and1.2µlofthedilutionwas mixedwithGS500sizestandard and sion at60°Cfor30min. Amplification products were dilutedinsterile Forty-six ofthe amplicons withthemicrosatellite markers,onedid not. The percent ofshared alleles(POSA, Bowcock etal.1994 ), anindex For statisticalanalyses,onlymultilocusgenotypeshaving Saitcl Analyses— Statistical Determination— Ploidy Eleven ofthetwelve Australian “ ad and Northeast Asia S. recurvum S. cuspidatum S. cuspidatum + + S. cuspidatum (whichbothhavehaploidgametophytes),the Microsatellite repeat numberswere notcalcu- ). For Ploidy inallsampleswasinferred from mic- Australasia ” samples, hadonealleleateach Results S. cuspidatum + + samples, includingallofthe S. cuspidatum S. cuspidatum thisresulted in43multilo- South America S. falcatulum + - . Geneticdiversity S. cuspidatum £ 1nullallele and ” yielded ” S. cus- Africa + -

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 S.cuspidatum conclude thatalloftheseplants havehaploidgametophytes. be duetoaneuploidy, geneticmosaics,orsamplingerror. We resulted from duplicated lociinthosesamples.Itmayalso heterozygosity waslimitedtoonemarker, itmostlikely S.falcatulum [Volume 36 SYSTEMATIC BOTANY 24 ogy similarto divisions =1mm. All ofthemicrosatellite markerswere polymorphicacross Fig. 1. 1. Sphagnum cuspidatum withamacromorphology similarto S. cuspidatum , , S. falcatulum . E–F. Morphologicalvariantsofallotriploid and , and S. falcatulum S. recurvum . . A. . S cuspidatum Sphagnum cuspidatum . Noneofthe . D. Allotriploid from Brown Lake.B.S S. falcatulum yielded amplicons withmarker5, annealing siteformarker5in likely reflects alackofalignmentbetweentheprimerand the tum S.cuspidatum alleles. Incontrast, samplesof S. falcatulum ”, yieldedampliconswithmarker5( Table 2 ). Thismost havingamacromorphology distinctfrom (withtwocapitulaononestem)havingamacromorphol- samples,including Australian “ phagnum cuspidatum S. cuspidatum S. falcatulum from Marcus Beach.C. Allodiploid S. falcatulum , resulting innull and S. cuspidatum S. recurvum S. cuspida- having . Scale .

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 were amplifiedacross thetwelvemarkers. S.cuspidatum a1 ul1 62 0715 1 7 10 2 5 25 16 17 null 7 10 Ho Na N Brown Lake “ including Australian left iscomposedofthemultilocusgenotypes three distinctgroups ( Fig. 2 ). Thelarge Scuspidatum group inthelower microsatellite markers,aPCOofthemultilocusgenotypes ferent population,were includedinthedataset.Basedon12 of 32multilocusgenotypes the Australian plantswere selectedforthisanalysis. A total bias. Thetwomostdivergent multilocusgenotypesamong Norway) wasincludedinthestatisticalanalysestominimize tions, onepopulationfrom Ireland, andonepopulationfrom sented bytwoormore specimens (thetwo Australian popula- from eachofthefourpopulations of were represented byonespecimeneach,only tical analyses.Sincemostofthepopulations in allspecimensof S.recurvum tances amonggenotypesof specimens of diversity indices( Table 3 ). diversity thantheMarcus Beachpopulationacross allseven ( Table 3 ). TheBrown Lake populationhadahighergenetic with onlyonepairwisedifference occurringbetweenthem otypes (outofsixsamples)were detectedatMarcus Beach, pairwise differences amongthemrangingfrom 1–2.Two gen- five samples)were detected atBrown Lake( Table 3 1–3 across 12microsatellite markers.Fourgenotypes(outof Australian samples,withpairwisedifferences rangingfrom ), with 1. Table graphic region for 25 of 103 microsatellite alleleswere detectedacross the50samples from one(marker22)to2514, Table 2 ). A totalof ber ofallelespermarkerinthe and 22)were monomorphicwithin al. 2009 ). Two (ofeleven)microsatellite markers(markers18 two loci(loci5and5a)amplifiedbythatprimer( Karlin et KARLINET AL.: SPHAGNUMCUSPIDATUM IN AUSTRALIA 2011]

oa en1. . . .2 .2 .3 25.00% 0.139 8.33% 0.127 0.028 0.225 0.023 1.3 0.038 1.6 1.0 6 1.1 11.0 2 Mean 6.0 Mean Total Marcus Beach markers intwopopulationsof Australian Nei’s haploidgeneticdiversity(h),unbiased (uh),andpercentage ofpolymorphicmarkers(%P) Population Table Table The allele“1”wasarbitrarilyassignedtomarker5forall Six multilocusgenotypeswere detectedamongtheeleven S. cuspidatum

. Mean (±SE)samplesize(N),no.ofmultilocusgenotypes (Gt),no.ofalleles(Na),effective alleles(Ne),Shann 3. 2. Number ofsamples(N),numberalleles(Na),andobservedheterozygosity (Ho)for12microsatellite markersacross 50 45 0.00 1 (including Australian . Thisallowedforthenullallelesthatmarker , , S. recurvum, S. cuspidatum ( Table 2 ). Allele frequencies listedbygeo- S. cuspidatum S. cuspidatum 47 0.00 E00–0100008003008– 0.028 0.023 0.038 0.0 0.1 – 0.0 SE E00–0302010009006– 0.086 0.069 0.120 0.2 0.3 – 0.0 SE SE Mean 4 S . . cuspidatum andallodiploid forcalculationsofgeneticdis- S. cuspidatum S. cuspidatum S. cuspidatum 50 – 5 are provided inSupplemental S. cuspidatum tobeincludedinthesestatis- Sphagnum cuspidatum. 0.0 5.0 N ” ( Fig. 2 ). Theothertwo S. cuspidatum 45 0.00 S. cuspidatum 9 ). Noampliconswere amplifiedatmarker5inanyofthe S. falcatulum , , S. falcatulum, , eachfrom adif- samplesranged S. cuspidatum Gt S. cuspidatum – 4 . Thenum- 43 0.00 10

repre- shows and 0.4 1.3 Na Microsatellite Markers 43 ,

0.00 14 vum groups are composedofthemultilocusgenotypes ( plants andtheEuropean andNorth American plantswas0.188 regions ( Table 4 ). PairwisePhiPTbetweenthe Austral-African Table 4 occurred amongthethree regions (PhiPT=0.112, ). Mostofthegeneticvariation (88.8%)occurred within GenAlEx, AMOVA showedthat11.2% ofthegeneticvariation populations. Usingthehaploidgeneticdistanceoptionin tion amongpopulations;itdoesnotincludevariationwithin genetic variationwithinregions inthisstudyreflects varia- population withinaregion was represented byonesample, clade), Europe (n=10),and North America (n=16). As each including oneColombiansampleoutsideofthe Austral-Africa into three regional groups for AMOVA: Austral-Africa (n=6, occurred withinthe tilocus genotypesof nested Australian allodiploid The secondaxis,with20.79%ofthegeneticvariation,resolves with 42.48%ofthegeneticvariation,resolves ( tion isavailableforthetwo Australian populations andtwo the 32multilocusgenotypesof analysis. more thanonemarkerprevented itfrom beingusedinthis Austral-African group, but theoccurrence ofnullallelesat suggest thataJapanesesamplealsoappeared tobelongthe tions associatedwithothersubclades( Fig. 3 ). Microsatellites distribution whichwasdistinctfrom thegeographicdistribu- ter referred toasthe Austral-African group) hadageographic eastern Asia (thePhilippines)( Fig. 3 ). Thissubclade(hereaf- (Equatorial Guinea),South America (Colombia),andsouth- subclade whichincludedmultilocusgenotypesfrom Africa ( Fig. 3 ). The Australian multilocusgenotypeswere partofa multilocus genotypesfrom more thanonegeographicregion p p <0.001)and0.148( =0.005)betweenEuropean and North American plants. Neighbor-joining analysisgeneratedadendrogram which Microsatellite dataonwithin-populationgeneticvaria- Based on11 microsatellite markers(marker5wasexcluded), 0.2 1.3 Ne andallodiploid 48 0.00 17 S. falcatulum 0.128 0.167 50 0.00 18 I S. cuspidatum S. cuspidatum S. falcatulum S. cuspidatum p <0.001)respectively. PhiPTwas0.060 and S. cuspidatum 42 0.05 19 0.070 0.100 S. recurvum h withinacladeformedbymul- S. cuspidatum , respectively. Thefirstaxis, clade,andmostcontained (Fg 3 . eea subclades Several 3). (Fig. samples. A totalof103alleles 46 0.02 20 (Fg 2). (Fig. on InformationIndex(I), across 12microsatellite 0.077 0.125 uh were separated 50 S. cuspidatum 0.00 22 p samples of <0.001; S. recur- 16.67% %P 49 – 0.02 30 . Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 samples ranged from 6–9( Table 6 ). ples andthose of theremaining non-Australian ences betweenthemultilocus genotypesof Australian sam- 3–5 outof11 microsatellite markers( Table 6 ). Pairwisediffer- these three samplesandthe Australian plantsranged from (see above).Collectively, thepairwisedifferences between Australian samplescomprise the Austral-African subclade (Africa) respectively ( Table 6 ). Thesethree samplesplusthe collected inColombia(South America) andEquatorial Guinea ( Table 6 ). Thenexttwomostgeneticallysimilarplantswere had thegreatest geneticsimilaritytothe Australian plants plants showedthataPhilippinecollectionof genotypes ofthe Australian plantstothoseofnon-Australian tum another geneticallythantheywere toplantsof 6). (Table study this in included pairwise differences detectedamonganyofthepopulations within thesefourpopulationswaslowerthantherange of populations. Thustheminimumpairwisedifference detected four populations,nomultilocusgenotypewasdetectedacross same multilocusgenotypewere detectedwithineachofthese identical multilocusgenotypes. Although plantssharingthe sented bytwosamplesandineachcasethehad Two European populationsof were detectedhavingthe same multilocusgenotype( Table 3 ). lations ( Table 5 genetic variationoccurred betweenthetwo Australian popu- ). Inbothpopulations,twoormore samples European populations. AMOVA showsthatthemajorityof allodiploid [Volume 36 SYSTEMATIC BOTANY 26 The two Australian populationswere more similartoone Fig. from otherregions ( Table 6 ). Comparing themultilocus 2. Principal Coordinates Analysis basedon12microsatellite markersinspecimensof S. falcatulum, and S. recurvum S. cuspidatum . Thefirsttwoprincipalcoordinates accountfor42.48and20.79%ofthetotalvariation(63.27%cumulatively). were eachrepre- S. cuspidatum S. cuspidatum S. cuspida-

gests acloserelationship withgenome T. Specimensofboth ence ofnullalleles atmarker5in identical across thesesixmicrosatellite markers.Thepres- “ satellite markershadnoshared allelesbetween Australian distinct from allodiploid show 3) (Fig. neighbor-joining datum that theallelesandallelefrequencies of Australian “ 0.000; satellite markersisnotsignificantly different from 0(PHiPT= is highlydivergent from bothofthesegenomes. 2009 ) andgeneticanalysesclearlyindicatethat tulum was 0.115. Thetwogenomespresent inallodiploid Nei’s geneticdistancewas2.165andidentity aged across the12microsatellite markersaveraged0.071. and genomeTofallotriploid genetic differentiation between Australian “ was 0.999. Analysis ofmolecularvarianceindicates thatthe of allotriploid markers in Australian “ 2009 ). Nei’sgeneticdistancebetweentheallelesatthesesix genome Tinallotriploid lite markershavebeenestablishedasbeingassociatedwith loid and T),withgenomesRSbeingcontributedbyallodip- S. cuspidatum Comparison withS.falcatulum— Altili Allotriploid S. falcatulum havebeenreferred toasgenomesRandS( Karlin etal. ” andgenomeTofallotriploid p =0.325). The POSA was0.977. All fourindicesindicate S. falcatulum ” andallodiploid S. falcatulum S. cuspidatum ( Karlin etal.2009 ). Alleles atsixmicrosatel- S. cuspidatum S. falcatulum S. falcatulum was0.001;Nei’sGeneticIdentity hasthree nucleargenomes(R,S, (including Australian “ S. falcatulum S. cuspidatum S. falcatulum S. cuspidatum ” andthoseingenomeT oh C (Fg 2) and 2) (Fig. PCO Both . Eightoutof12micro- S. falcatulum (Tbe aln t al. et Karlin 7; (Table atthesesixmicro- tobegenetically S. cuspidatum ; POSA aver- S. cuspidatum S. cuspidatum furthersug- are nearly S. cuspi- S. falca- ”), ”

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 site (stateorprovince forNorth American sites)isindicated. Samplesofallodiploid 27 KARLINET AL.: SPHAGNUMCUSPIDATUM IN AUSTRALIA 2011] S.cuspidatum Fig. 3 3. Neighbor-joining dendrogram showinggeneticrelationships in from thirty-two populationsare included, witheachpopulationbeingrepresented byone sample. Thenationassociatedwithea S. cuspidatum S. falcatulum (including Australian “ and S. recurvum S. cuspidatum are included asoutgroups. ”). Multilocusgenotypesof ch collection Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 ihnPp .3 .2 .2 36.1% 0.426 0.426 3.833 9 Total Within Pops Among Pops degrees offreedom, SS=SumofSquares, MS=MeanoftheSquares. pidatum [Volume 36 SYSTEMATIC BOTANY cytotypes of Total Among Regions ( and Austral-Africa. Basedon11 microsatellite markers.PhiPT=0.112 types of 28 ihnRgos2 03631731788.8% 3.117 3.117 90.396 29 Within Regions the Squares. S.cuspidatum et al.(2008) reflect theinclusionofspecimenswhichwere not Thus thealleleslistedfor et al.(2008) , beingconsidered as used in Shaw etal.(2008) andeightwere usedin Szövényi ongoing. Microsatellite dataontenofthesespecimenswas plants isbeyondthescopeofthisproject andworkonthisis Teasing outthetaxonomicstatusandrelationships ofthese (n =5),Central America (n=1),andSouth America (n=3). eastern North America (n=5),northwesternNorth America These specimensincludedcollectionsfrom Europe (n=4), because theywere genetically distinctfrom thatspecies. to identified as loid ences withthemultilocusgenotypesofgenomeTinallotrip- multilocus genotypesof Australian samplesandtheonePhilippinesample,noother 0.644, respectively. Aside from themultilocusgenotypesof 0.440, respectively. Nei’sgeneticidentitywas0.906,0.775,and genome Tinallotriploid samples. Nei’sgeneticdistancebetweenthesegroups and with European samples, andonewithNorth American samples andtheonesamplefrom EquatorialGuinea,one rated intothree groups: onecomposedofthetwoColombian 1.000). Theremaining samples of allotriploid Nei’s geneticdistancebetweenthisgroup andgenomeTin at thesefivemarkerstheywere considered tobeonegroup. samples andtheonePhilippinesamplehadidenticalalleles all samplesof alleles atfiveoftheabovesixmicrosatellite markersacross lated betweengenomeTofallotriploid individual inallotriploid tributed analleleatmarker5there wouldbefourallelesper the third parental speciesofallotriploid roughly twiceaslarge astheothertwo( Karlin etal.2009 ). If tern ofthree allelesatmarker5,twosimilarinsizeandone genome Tin for mostsamples).Thesemarkersare allmonomorphicfor p

£ Table Table Eighteen additionalspecimensthatwere morphologically Nei’s geneticdistanceandidentitywascalcu- S. cuspidatum, 0.001).df=degrees offreedom, SS=SumofSquares, MS=Meanof Source Source S. falcatulum basedon12microsatellite markers.PhiPT= 0.639 ( S. cuspidatum . 5. Summary AMOVA oftwo Australian populationsof 4. Summary AMOVA tablecomparing32multilocusgeno- S. falcatulum S. cuspidatum, . S. falcatulum S. falcatulum. S. cuspidatum were analyzedandexcludedfrom thisstudy 10 across thesefivemicrosatellite markers. df 1 grouped intothree regions: Europe, North America, 31 df 2 was0.000(Nei’sgeneticidentity 8.364 4.530 104.412 S. cuspidatum SS S. falcatulum 14.016 eachhavethesameunusualpat- S. falcatulum S. cuspidatum orthatwere morphologicallyclose “ the Australian As SS (dataonmarker7waslacking S. cuspidatum 4.530 MS S. cuspidatum 7.008 MS . had0pairwisediffer- was0.099,0.255,and atmarker5by Shaw S. falcatulum S. falcatulum Est. Var. 1.178 0.752 Est. Var. 3.511 0.394 S. cuspidatum inbothcases. p were sepa- =0.003).df hadcon- andthe 100.0% 100.0% S. cus- 63.9% 11.2% % % ” a larger sample sizeisrequired to establishthis. between theEuropean andNorth American plants,although American plantsappearsto begreater thanthatdetected Austral-African plantsandboth theEuropean andthe North not latter studyincludedanumber ofspecimensthatare, in fact, It shouldbenotedthatthe the findingsof Hanssen etal.(2000) and Szövényi etal.(2008) . between European andNorth American plants,confirming its globaldistribution.Littlegeneticdivergence wasdetected genetic relationship amongtheplantsof (Europe, North America, Austral-Africa), indicatingaclose genetic variationoccurred withinthethree regions studied include European andNorth American plants.Mostofthe clade isnestedwithinlarger subcladesin samples of cated withanasterisk),andbetweenmultilocusgenotypesof Australian multilocus genotypesof Australian samplesof number ofmultilocusgenotypesislistedwithinparentheses. S.cuspidatum Range Mean Australian samplesof and rangeofpairwisedifferences amongthemultilocusgenotypesof detected in tion thatisgeographicallydistinctfrom theothersubclades African distribution( Fig. 3 ). Although havingadistribu- E0070210210000000100.091 0.888 0.120 0.930 0.000 0.000 0.000 0.000 0.211 0.516 0.211 0.516 0.047 0.704 SE SD are partofasubcladewithin lian collectionhavingtheclosestproximity to Australia. They collection from thePhilippines, whichwasthenon-Austra- of thelatterneedstoberevisited. pidatum logical similaritybetweentheMarcus Beachplantsand environmental regimes present atthetwosites.Themorpho- appear tobephenotypicvariationresulting from thedifferent logical differences betweenthetwopopulations( Fig. 1a,b ) ( Daniels andEddy1985 ; Anderson etal. 2009 and terrestrial plantsof ), themorpho- to afoundereffect and/or ageneticbottleneck. As aquatic genetic divergence between thetwopopulationsislikelydue within eachofthe Australian populationssuggeststhatthe are geneticallyquiteclose. Thelowgeneticdiversitydetected the two Australian populationsof detected innorthwesternNorth America. eastern North America andinJapan, Africa (EquatorialGuinea,Madagascar). Although present in Asia (Philippines), Australia, South America (Colombia),and Norway, Scotland,Sweden),Northeast Asia (Japan),Southeast United States),Europe (Belgium, England,Finland,Ireland, confirmed ineasternNorth America (easternCanada,eastern tum Table The Australian plantswere mostsimilargeneticallytoa Although there issignificantgeneticdivergence between Microsatellite analysesconfirmthepresence of

oneverycontinentexcept Antarctica ( Table 1 ). Theplantis S. cuspidatum Australia subsp. Within 2.067 1–3 6. Mean, standard deviation(SD),standard error (SE), (6) S. cuspidatum from otherregions. Basedon11 microsatellite markers.The S cuspidatum Philippines* subrecurvum (seeabove).Geneticdivergence betweenthe 3.667 3–4 (1) S. cuspidatum S. cuspidatum andthebalanceofmultilocusgenotypes S. cuspidatum Discussion Colombia* S. cuspidatum ( Fig. 3 ), the Austral-African sub- 4.667 4–5 suggestthatthetaxonomicstatus S. cuspidatum (1) S. cuspidatum andeachofthethree mostsimilar , betweenmultilocusgenotypesof detectedfrom otherregions (indi- 5.000 Africa* (1) 5 S. cuspidatum differ inmorphology S. cuspidatum Colombia samples usedinthe S. cuspidatum 6.000 S. cuspidatum havingan Austral- (1) 6 Europe 6.500 , theplants 6–8 (10) S. cuspida- wasnot across which S. cus- America 7.031 6–8 (16) N. Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 15---0.031 - - - 105 22 20 19 7 29 1 Marker KARLINET AL.: SPHAGNUMCUSPIDATUM IN AUSTRALIA et al.(2009) . cies forgenomeTofallotriploid genome Tofallotriploid ellite markersin 2011] and genomeTofallotriploid loid Table S. falcatulum Allele/N 1 0.063 0.094 0.094 0.188 0.063 - - - - 0.438 ------0.063 - - 0.010 ------0.014 - 314 - - 308 0.029 - 301 - - 0.029 - 296 - - - 295 - - 0.800 - 291 - 0.014 - 290 0.393 - - 0.086 288 0.500 - - 0.029 287 0.107 - - 285 - 284 - 0.032 - - 281 - 0.032 - - - 0.129 - - 0.113 - 277 - 0.032 276 - - 0.065 274 - - 0.081 - 272 - - 0.242 - 270 0.02 0.242 - 269 - 0.050 0.032 - 266 0.031 - 263 0.438 - - 261 0.469 - - - 258 0.031 - - - 257 0.031 - - 252 - 0.100 - 251 0.100 - - 0.100 - - - – - 196 - - - - - 195 - - 0.050 194 - 0.500 - 193 - - 0.050 191 - - 0.100 190 - - - 189 0.063 - - 186 0.531 - - 0.010 185 - - - - 183 0.406 - - 0.010 181 - - - 179 - - 0.021 177 0.147 - 173 0.059 - - - 0.029 - 0.029 270 - - - 0.088 269 0.412 268 - 0.147 267 - 0.029 265 - 263 - - 259 0.029 257 - 255 0.029 254 251 250 243 N N N N 7. Allele frequencies andsamplesize(N)forsixmicrosat- N 0---0.031 0.469 ------1.000 90 89 83 . Alleles shared by Australian plantsof Non-Australian S.cuspidatum Sphagnum cuspidatum, (35) (10) (34) (39) (31) S. falcatulum

S. falcatulum S.cuspidatum Australian 1.000 1.000 1.000 1.000 1.000 (11) (11) (11) (11) (11) S. falcatulum , andgenomesR&Sofallodip-

Asrla “ Australian

are inbold. Allele frequen- (allotriploid) S.falcatulum Genome T are takenfrom Karlin 1.000 0.990 1.000 0.930 0.958 (98) (97) (98) (96) (96) - - - - -

S. cuspidatum S. cuspidatum Genomes R&S (allodiploid) S.falcatulum (16) (16) (16) (16) (14) ”,

18---0.156 - - - 118 30 Marker this conformswiththedescriptionof Australian plantswere occasionallyseptate(divided).While logical characterof homoplasy). phylogenetic relationships within rosatellite basedsubcladesdetectedinthisstudymayreflect and alsosupportsthepossibilitythatatleastsomeofmic- variability present inmicrosatellites compared toisozymes more thanonepopulation. Thisbothhighlightsthegreater Europe andNorth America detectedinthisstudyoccurred in none ofthe26microsatellite basedmultilocusgenotypesfrom (2000) co-occurred inEurope andNorth America. Incontrast, nine populationsof tive propagation. viduals ofthesamesex)wouldbegeneratedsolelybyvegeta- populations foundedbyoneindividual(ortwoormore indi- 1985 ; McQueen and Andrus 2007 , cuspidatum Anderson etal.2009 ) and North American populations( Hanssen etal.2000 ). the rangeofisozymebasedhreported forEuropean and Australian populationsof not directly comparable, microsatellite basedhforthetwo between thetwo Australian populations( Table 5 ). Although rosatellite datashowthat most geneticvariationalsooccurred multilocus genotypedetectedinthree populations.Ourmic- detected ineachpopulationrangedfrom 1–5,withjustone ( Hanssen etal.2000 ). Thenumberofmultilocusgenotypes the fiveEuropean and four North American populations Haploid genediversity(h)rangedfrom 0.00–0.11 across ity ofgeneticvariation(86%)occurringamongpopulations. tum found thatgeneticvariationwithinpopulationsof primary charactersseparating and Eddy(1985) orby Eddy (1977 , 1985 hyaline cellseptationin , and 1988 McQueen ). As oneofthe 1994; 1984, Andrus 2007 Crum ; 1980; Anderson etal.2009 (Andrus ). Nomention ofstemleaf septate rarely stem leafhyalinecellsof Hansen (1961) and Flatberg (1988) , othershavefoundthe itense needs clarification. 2007 ; Anderson etal.2009 ), theconfusion aboutthischaracter leaf hyalinecellsin related There isconfusionintheliterature concerningonemorpho- Three oftheeightmultilocusgenotypesdetectedacross the Based upon11 putativeisozymeloci, Hanssen etal.(2000) waslowcompared tomanybryophytes,withthemajor- (Adu 18 rm 94, 19 cue ad Andrus and McQueen 1994; 1984, Crum 1980; (Andrus Allele/N S. trinitense 147 N 112 4 .1 - - 0.933 - - - - - 0.010 - - - - - 0.013 0.026 - - 0.697 146 - 144 0.237 143 141 140 138 isreported tobedioecious( Daniels andEddy Non-Australian S.cuspidatum 0.026 C.Müll.istheabsenceofseptationinstem (38) S. cuspidatum S. cuspidatum - S. cuspidatum Table S. cuspidatum

S. cuspidatum S. cuspidatum S.cuspidatum 7. Continued. Australian (11) 1.000 S. cuspidatum - - . Stemleafhyalinecellsofthe andtheirpresence in studiedby Hanssen etal.

S. cuspidatum

S. cuspidatum wasmadeby Daniels (allotriploid) S.falcatulum Genome T tobenonseptateor ( Table 3 ) fellwithin 0.990 (98) - - from theclosely -

(insteadof Genomes R&S S. cuspida- Sphagnum (allodiploid) givenby S.falcatulum 0.313 0.067 (15) S. trin-

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 22) wasmonomorphicacross allsamplesof and allodiploid the interploidalhybridizationevent(s)between ers haveapparently beenstable inbothtaxasincethetimeof indicates thattheallelesattheseparticularmicrosatellite mark- tum (based onsixmicrosatellite markers)of Australian sal to,andestablishmentin,thesewidelyseparatedareas. existence forasufficient period oftimetoallowforitsdisper- ( Karlin etal.2009 ). Thusallotriploid Zealand (where itiswidespread ontheSouthIsland),andChile scopic levels, in ing additionalgeneticandmorphological workinprogress. For thetimebeing,wemakeno nomenclaturalchanges,pend- meaningful wayandtheyshould betreated asseparate taxa. types cannotbeconsidered conspecificinanyevolutionarily idatum distinctness isfurtherhighlighted bythepresence ofa tulum that itmostlikelyreflects ashared evolutionaryhistory. Austral-African subcladereflects homoplasy, weconclude similarity ofthemultilocusgenotypesassociatedwith tinents ( Hanssen etal.2000 ). Although itispossiblethatthe based multilocusgenotypesof possibility isalsosupportedbytheco-occurrence ofisozyme subclade likelyshare acommonancestor. As notedabove,this falcatulum that Australasian over aperiodoftimesufficient toallowforthedetermination to belessstablethanthealleleatmarker22,theyare stable loid the Austral-African subcladeandalsoingenomeTofallotrip- tum 20, and30were polymorphic across allsamplesof ble atleastsincethespeciesevolved. Although markers1,19, gesting thatthealleleatthismarkerislikelytohavebeensta- [Volume 36 cytotype of that thisdoublealloploidisrelatively young.Theallotriploid loid and thatthismostlikelyoccurred in Australasia. allodiploid that interploidalhybridizationbetween allotriploid SYSTEMATIC BOTANY shown thatallodiploid and Shawunpublisheddata).Microsatellites havealso study, recent analyseshaveshownitbeallotriploid(Karlin falcatulum ple of S.falcatulum ribosomal DNA sequence(ITS)from aTasmanian sampleof falcatulum that tulum be thehaploidparent oftheallotriploidcytotype pidatum cytotype. Incontrast,microsatellites conclusivelyshow we conclude to behighlydivergent from allodiploid 30 The minimaldivergence betweenthemultilocusgenotypes Morphological variation,atbothmacroscopic andmicro- Given theirdifference inploidy, thetwocytotypesof The closematchofmicrosatellite allelesbetweenallotrip- Microsatellites show Australian plantsof andgenomeTinallotriploid , three (markers1,19,20)were monomorphicwithinboth S. falcatulum S. falcatulum S. cuspidatum are likelyreproductively isolatedspecies.Theirgenetic , contributinggenomeT. Priorresearch hadsuggested S. cuspidatum genomeinallotriploid (mostlikelyfrom an Australasian plantorplants)to andtosuggestthatmembersofthe Austral-African theyanalyzedwasunknownatthetimeoftheir . Shaw andGoffinet (2000) foundthatanuclear S. falcatulum S. falcatulum S. falcatulum wasclosetoonefrom aNorth American sam- S. cuspidatum S. falcatulum andbothofitstwoparental speciessuggests . Whileallelesatthesefourmarkersappear S. cuspidatum S. falcatulum mightbeoneoftheparental speciesof . Although theploidyofsample gaverisetoallotriploid ( Karlin etal.2009 ). We thusconclude S. falcatulum hasbeendetectedinTasmania, New isnotaparental speciesofthat . Oneofthesemarkers(marker S. falcatulum s.l.isextensive ( Fife 1996 ), wasaparent ofallotriploid S. cuspidatum S. falcatulum wastheotherparent of S. falcatulum . Thusthetwocyto- S. cuspidatum S. falcatulum S. cuspidatum ondifferent con- (Tbe further 7) (Table S. cuspidatum S. cuspidatum S. falcatulum hasbeenin S. cuspida- S. cuspida- S. falca- S. cusp- S. falca- S. cus- , and , , sug- , and S. S. S. ,

allotriploid usually (butnotalways)atorbelowwaterlevel.Incontrast, both primarilyoccuratthewetterendofwatergradient, tions suggestthatallodiploid pidatum Ecological differentiation mayalsohelptodistinguish of branchleafhyalinecells,theseare lackingin lum commissures atcellangles; and3)someplantsof S.cuspidatum present insection eter) inrows alongthecommissures (similartothepattern leaf hyalinecellswithupto12ormore pores (5–7µmdiam- cantly in 2) althoughbranchleafhyalinecellporosity variessignifi- S.cuspidatum cells, septatebranchleafhyalinecellsoccurinfrequently in phologically indistinguishable from some morphologicalvariantsof from oneanother( Karlin etal.2009 ). Thusitispossiblethat allodiploid andallotriploid S.australe between allodiploidandallotriploidplantsofthe Australasian and Shaw2010 ). Nomorphologicalvariationwasdetected having allodiploidgametophytes( Ricca etal.2008 ; with someplantshavinghaploidgametophytesandothers Ricca tic speciescomplexcomposedoftwoco-occurringcytotypes, S.lescurii is closetojustoneofitsparents. TheeasternNorth American alloploids, butinsomecasesthemorphologyofanalloploid of standingbodieswater( Karlin etal.2009 ). microhabitats suchashummock basesandalongthemargins niche, regularly occurring inwaterandalsomore terrestrial leaves of pidatum microscopic characterscanusuallyservetodistinguish of branchleafhyalinecells. At leastoneofthethree following pidatum phological charactersseparating scopic level. morphologically distinctfrom in allotriploid distal portionofthedivergent brancheshavebeendetected and insteadhaveovatetolanceolatebranchleavesinthe variants whichlacklinear-lanceolate tolinearbranchleaves among thethree taxaatthemacroscopic level.Morphological d ). Insuchcasesitisdifficult, ifnotimpossible,todistinguish least thedistalportionofdivergent branches( Fig. 1a , c branch leavesthatare linear-lanceolate toalmostlinear inat , Within Australia, (Australia), andTierra delFuego(Chile)( Karlin etal.2009 ). reported byfrom South Island(NewZealand),Tasmania Island, NewZealand;allotriploid of the morphologicaloverlapthatoccursacross bothcytotypes types are stillbeingexplored. Adding tothiscomplexityis and themorphologicalboundariesbetweentwocyto- particularly inallotriploidplants( Fig. 1d – f ; Karlin et al.2009 ), reported for MacquarieIsland( Seppelt 2004 , South Wales, Victoria, andTasmania ( 2006 Seppelt 2006 ). Itis also ). Scott Aldpod Allodiploid Morphological evidenceofahybridhistoryoftenoccurs in Andrews (1949) foundthatthetwomostdistinctivemor- S. falcatulum s.l.havetinypores (3–4µm)distributedoverthelumen from allotriploid from specimensof were atthemicroscopic level:septationandporosity (section ( Karlin etal.2009 ). Somemorphologicalvariantsof S. falcatulum S. falcatulum S. falcatulum andare limitedtothebasalportionofleaf; haveuptosix(usuallyless)pores alongthe and S. falcatulum S. falcatulum S. falcatulum Subsecunda S. cuspidatum Subsecunda haveafewtoseveralseptatehyaline ( Fife 1996 ), plantsoftenhavebranch appearstohaveaslightlybroader S. falcatulum ( Fig. 1e,f ). Theseplantsare thus S. falcatulum hasbeenreported from South S. falcatulum ) hasbeenshowntobeacryp- s.l.hasbeen reported forNew S. falcatulum ), branchleafhyalinecellsin S. falcatulum S. cuspidatum . All three taxatypicallyhave S. falcatulum S. cuspidatum S. falcatulum . Preliminary observa- are indistinguishable s.l.:1)mostbranch and s.l.maybemor- s.l.from atthemacro- S. cuspidatum S. cuspidatum . hasbeen S. falcatu- S. cus- S. cus- S. cus- .

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 Hne, 91. Shgaee. n In . 1961. B. Hansen, Fish R. 19 ne t bypye hoooe ons. counts . chromosome bryophyte to Index 1991. R. Fritsch, Ades A L. 11 oe o Nrh mrcn American North on Notes 1919. L. A. Andrews, Fabr, . 98. 1988. I. K. Flatberg, Ades A L. 14 tde i te antr Warnstorf the in Studies 1949. L. A. Andrews, southeast- the of Peat 2009. Shaw . B. and Shaw , J. E., L. Anderson, Ramapo College. in partbyaNSFgrantno.DEB-0515749-002toJonShawand Director, DukeUniversity).Fundingforgeneticanalyseswasprovided the paper. We alsothankLisaBukovnik(BiologicalSciencesSequencing thank thetwoanonymousreviewers whosecommentshelpedstrengthen 31 Brown LakeandRossPattersonforthecollectionsfrom Marcus Beach.We KARLINET AL.: SPHAGNUMCUSPIDATUM IN AUSTRALIA falcatulum catulum Australasia. From anecologicalperspective,allotriploid (Australia) anditislikelythattheplantoccurselsewhere in This studyestablishesthat Seppelt (2006) hadnotseenanyspecimensfrom thatstate. and Stone(1976) reported thespeciesfrom Queensland,but 2011] Ff, . 96. A yoss f e Zaad pan, ih dsrpin of description a with Sphagna, Zealand New of synopsis A 1996. J. A. Fife, Bee, . K W Alsn ad . hl 92. 1992. Child. J. and Allison, W. K. J., Beever, Cthsd, . 90. 1980. G. D. Catcheside, plant in variability genetic Measuring 1983. Weir . S. B. and D. H. A. Brown, and Kidd, R. J. Minch , E. Tomfohrde , J. Ruíz-Linares , A. M., A. Bowcock, State. York New of family) moss (peat Sphagnaceae 1980. E. R. Andrus, Flesen J. 18 HLP Pyoey neec Pcae Vrin 3.2). (Version Package Inference Phylogeny - PHYLIP 1989. J. Felsenstein, tion andabundanceof analyses are required todeterminethe Australasian distribu- Australasia. Furtherecological,genetic,andmorphological successful thaneitherofitsimmediateparental speciesin gests thatallotriploid pidatum Cu, 94. Shgosd (Sphagnaceae). 1984. H. Crum, Ed, 95. A eiin f fia Shgae. . African of revision A 1985. A. Eddy, 1985. Asia. tropical Eddy of . Sphagnales 1977. A. A. Eddy, and E. R. Daniels, in 5–24 Pp. Sphagnaceae. 1994. H. Crum, Ecfir L, . . mue ad . . utr 92. Aayi o molecu- of Analysis 1992. Quattro . M. J. and Smouse, E. P. L., Excoffier, 1988. A. Eddy, cal boundariesamongthesethree taxa. falcatulum Acknowledgments. Bibliotheca New York BotanicalGarden Press . tum Lre Larsen. (Continued) . ern UnitedStates. S.simplex Publ . A in 219–239 Pp. populations , trees evolutionary human resolution with polymorphicmicrosatellites High . 1994. Cavalli-Sforza. L. L. Press. Otago of University Dunedin: 2. ed. Bulletin-NewYork StateMuseum group Cladistics 479–491. 131: oenet Printer . Government (Natural History. Botany) Ecology. Terrestrial of Institute Huntingdon: Systematic Botanyfrom the MissouriBotanicalGarden 49 . 1. Sphagnaceae–Calymperaceae Garden. Botanical York New York : New 11 . part Application tohumanmitochondrialDNA restriction sites . lar varianceinferred from metricdistancesamongDNA haplotypes: History). (Natural Museum British London: Dicranales . Museum NaturalHistory) , d. S D Tnse ad . . ro mtra leir Science Elsevier Amsterdam : Orton. J. T. and Tanksley D. S. eds. , . wasfoundtobemore abundantthanallodiploid wasnotdetectedthere ( Karlin etal.2009 ). Thissug- Det KongeligeNorskeVidenskabers Selskab Cuspidata ontheSouthIslandofNewZealandand aswelltoestablishthemorphologicalandecologi- Dansk BotansikArkiv : 164–166. 5: sp.nov . 0 1–352. 40: A HandbookofMalesianMosses, The Bryologist Sphagnum viridum inSouth America . MemoirsoftheNewYork BotanicalGarden New ZealandJournalofBotany Mosses ofSouthAustralia We thankHarryHinesforthecollectionsfrom S. falcatulum ieaue Cited Literature S. cuspidatum : 359–445. 5: . Botany 2 45–49. 22: S. cuspidatum Isozymes inplantgeneticsandbreeding, part 0 89–108. 20: , d . le t Lus: Mngah in Monographs Louis: St. Allen. B. ed. , Studies intheflora ofThailand 2 77–162. 12: 4: 1–89. 442: sp.nov. anditsrelation to Nature The Bryologist Handbook ofEuropean Sphagna Moss floraofCentralAmerica,Part maybemore ecologically andbothcytotypesof The mossfloraofNewZealand Bulletin oftheBritishMuseum NorthAmericanFlora, Sphagnum 6: 455–457. 368: occursinQueensland . Aead . . Woolman, J. D. Adelaide: . : 1–63. 1: vol. 1,Sphagnalesto 4 309–328. 34: Bulletin oftheBritish 2 124–130. 52: herbariumV. The Sphagnum Bryophytorum e York : New S. cuspida- S. cus- Genetics , d K. ed. , S. fal- . VIII . ser. II, S. S. , .

HinesNSI-02, 01, Sot G A M ad . . tn 96. 1976. 2004. Stone. D. R. G. Seppelt, I. and M. A. G. Scott, Mosses, Zealand New of handbook A 1955. K. O. G. Sainsbury, 9a, EK681, S.cuspidatum, tor, collectionnumberandherbariumofspecimensusedinthisstudy. universalis) (Sphagnologia Sphagnales–Sphagnaceae 1911 . C. Warnstorf, Karlin, F. E. Greilhuber , J. Temsch , E. Boles, B. S. Beecher , W. F. M., Ricca, S. cuspidatum, Australia /Queensland, Queensland, Sphagnaceae. 2006. D. R. Seppelt, Kri, . . S B Bls ad . . hw . 20 eovn boundaries Resolving 2008. Shaw . J. A. and Boles, B. S. F., Population E. 2000. Karlin, Flatberg . I. K. and Såstad, M. Sigurd , M. L., Hanssen, Tmc, . . J Gelue , n R Kia 98. Gnm sz i in size Genome 1998. Krisai. R. and Greilhuber , J. M., E. Temsch, hybrid- homoploid and Allopolyploidy 2010. Shaw . J. A. and M. Ricca, Sa, . . n B Gfie 00. Mlclr vdne f eiuae evolu- reticulate of evidence Molecular 2000. Goffinet . B. and J. A. Shaw, Söéy, . S Tracao M Rca S Godn , n A J Sa 2008. Shaw . J. A. and Giordano , S. Ricca, M. Terracciano of , S. analysis P., Szövényi, autocorrelation Spatial 1999. Peakall. R. and E. P. Smouse, ( peatmoss of Polarity 2003. Boles. B. S. and Cox , J. C. J., A. Shaw, Zhou, P. Shaw , B. Flatberg , B. Flatberg , I. K. Wang , S. L. Cao, T. J., A. Shaw, implications Evolutionary 1995. Huff . R. D. and Smouse, E. P. R., Peakall, 1978. L. Orloci, 1987. M. Nei, in 45–101 Pp. Sphagnaceae. 2007. Andrus . E. R. and B. C. McQueen, Shaw . J. A. and Greilhuber , J. Temsch , E. Ricca, M. Boles, B. S. F., E. Karlin, Paal R ad . . mue . 20 EAE 6 gntc nlss n Excel. in analysis genetic 6: GENALEX 2006. Smouse. E. P. and R. Peakall, distance genetic and heterozygosity average of Estimation 1978. M. Nei, populations. between distance Genetic 1972. M. Nei, DUKE;EK682, E61 EK651, Appendix DUKE;EK652, Shgaee (Sphagnaceae) . Lno cdmc Press. Academic London: Zealand. the RoyalSocietyofNewZealand,5 roht). Bryophyta) . d . nlr . n in Engler . A. ed. in allopolyploidy and variation Cytotype 2008. Shaw . North American speciesofthe J. A. and utai utain naci Division. Antarctic Australian Australia : between speciesin Bryologist structure andtaxonomyof (peat moss) . ization inthe TheBryologist tion inthepeatmosses( akr markers . ouain populations . phism are shapingthegenetic structure ofamphi-Atlanticpeatmoss Recent divergence, intercontinental dispersalandshared polymor- 561–573. individual multialleleandmultilocusgeneticstructure . 1777–1787. 90: tion andanalysisofascertainmentbias . Chinese three in variation peat mossesbasedonmicrosatellite markers,withprimerinforma- Genetic 2008. Terracciano . S. and Boles, B. S. buffalograss of allozymeandRAPDvariationindiploidpopulationsdioecious York. New 1439–1454. gins fortriploidgametophytesin 2009 . Three-genome mosses:complexdoubleallopolyploidori- evolution: whosaysmosseshavenoroots? Ecology Notes Population geneticsoftware forteachingandresearch . W. JunkB.V. from asmallnumberofindividuals . 283–292. 106: Press . University Oxford Flora ofNorth America EditorialCommittee . New York andOxford : of NorthAmericanorthMexico, S. cuspidatum S. cuspidatum 1 DNA code,morphologicalid,geneticlocation,collec- 1. Hines NSI-04, DUKE;EK653, Taxon 0: 93–103. 103: Molecular evolutionarygenetics Australia /Queensland, Multivariate analysisinvegetationresearch Biological JournaloftheLinneanSociety Botanica Acta Buchloe dactyloides : 288–295. 6: Molecular Ecology 0: 357–374. 103: S. cuspidatum S. cuspidatum 7 1189 –1200. 57: The mossfloraofMacquarieIsland American JournalofBotany Das Pflanzenreich. RegniVegetabilis Conspectus , , Sphagnum subsecundum S. cuspidatum , , Sphagnum S. cuspidatum Hines NSI-05, DUKE;EK654, Australia / Queensland, Sphagnum 1: 325–330. 111: S. cuspidatum, , , , , Sphagnum cuspidatum S. cuspidatum S. cuspidatum Flora ofAustralia section 7 5364–5377. 17: . vol. 27, , Australia / Queensland, Molecular Ecology , Australia /Queensland, . Wellington : Royal SocietyofNew ), including Sphagnum subsecundum Sphagnum The mossesofsouthernAustralia DUKE;EK655, Genetics Subsecunda Hines NS-I06, Bryophyta:Mosses,Part1, . Clmi Uiest Press , University Colombia . S. cuspidatum, The Bryologist 5 1606–1620. 95: complex(Sphagnaceae: , Australia / Queensland, , Australia /Queensland, American JournalofBotany 9 583–590. 89: 1 89–104. 51: . Molecular Ecology S. ehyalinum Hines NSI-08, . Knso Tasmania Kingston . usingmicrosatellite : 135–147. 4: American Naturalist 9 135–151. 99: and . Te au Dr. Hague: The . DUKE;EK656, 1: 271–281. 111: S. cuspidatum, S. viride Asrla / Australia Heredity Sphagnum Hines NSI- Bulletinof Sphagnum complex 51: 1 – 546 . 1–546. 51: Molecular Patterson sp.nov . DUKE; . Flora eds., 18: 82: The ) .

Copyright (c) American Society for Plant Taxonomists. All rights reserved. Delivered by Ingenta to IP: 192.168.39.211 on: Fri, 24 Sep 2021 11:45:24 datum, S.cuspidatum, N. America /Canada /NovaScotia, Nova Scotia, Australia /Queensland, datum, Scotland /MonadhMor, Midlothian, 12166, 97191, torreyanum, S.cuspidatum, N. America /Canada /Newfoundland, Newfoundland, 454, cuspidatum, S. N. America /Canada /Newfoundland, Newfoundland, DUKE; SB2291, tum, S.cuspidatum, S.cuspidatum, Norway /Sør-Trøndelag Trondelag, 98, cuspidatum, S. pidatum, S. cuspidatum, cuspidatum, Toamasina, 5931, S.cuspidatum, pidatum, S.cuspidatum, Queensland, 2 YTMTCBTN [Volume 36 SYSTEMATIC BOTANY pidatum, Belgium /Liege, Vanderpoorten 131, DUKE; ST16, pidatum, S.cuspidatum, Patterson9b, 32 cuspidatum, Europe /Ireland /Galway Kirkkonummi, 8197, cuspidatum, S. DUKE;ST19, DUKE;SB2291, DUKE;ST51, DUKE;ST21, DUKE;ST20, DUKE;SB1512, Europe /SwedenUppsala, Europe /NorwaySør-Trøndelag Europe /DenmarkFensmark, Shaw 12133, Asia /JapanHonshu, Europe /Ireland /Galway Crosby &Crosby 26X1972, Long 26681, DUKE;EK683, Schofield 97183, Australia /Queensland, Patterson 9c, S. cuspidatum, Shaw 9771, Bshaw 446, Bshaw 446, S. cuspidatum, S. cuspidatum, DUKE;ST15, Vanderpoorten 75, N. America /CanadaNewfoundland, S. cuspidatum, S. cuspidatum, N. America /U.S. A. /Florida, S. cuspidatum, S. cuspidatum, S. torreyanum, S.cuspidatum, Australia /Queensland, DUKE;ST14, Asia /PhilippinesMindanao, DUKE;ST30, 2 N. America /CanadaNewfoundland, Europe /EnglandNorthumberland, Vitt 34634, , , N. America /CanadaNovaScotia, Europe /NorwayHordaland, DUKE;EK684, Africa /EquatorialGuineaRioMuni, Shaw 9734, DUKE;ST24, 1, Patterson 9d, DUKE;SB2292, DUKE;SB2292, DUKE;SB1515,

Andrus 8145a, Europe /NorwaySør-Trøndelag, S. cuspidatum, S. cuspidatum, DUKE;ST26, DUKE;ST27, S. cuspidatum, Andrus 8030, S. cuspidatum, Higuchi 40863, Belland 17431, DUKE;ST28, Patterson 9e, DUKE;SB1340, 1, DUKE; EK685,

Andrus 8139, DUKE;ST29, Europe /Belgium Anvers, Bshaw 422, Bshaw 422, Andrus 7464, S. cuspidatum, S. cuspidatum, 2 S. cuspidatum, S. cuspidatum, S. torreyanum, S.cuspidatum, , , Europe /NorwayNord- Andrus 7469, N. America /Canada Patterson 9f, N. America /Canada Africa /Madagascar DUKE;ST33, N. America /Canada Europe /Scotland S. cuspidatum,cuspi- Europe /Finland DUKE;ST43, DUKE;EK686, DUKE;SB859, S. cuspidatum,cus- S. cuspidatum,cus- Shaw 13358, DUKE;SB1510, DUKE;SB2293, DUKE;SB1231, DUKE;ST25, S. cuspidatum, S. cuspidatum, Schwartz 3771, S. cuspidatum, DUKE;ST22, DUKE;ST50, Asrla / Australia Flatberg 255- Shaw 12768, Europe / S. cuspida- Europe / Europe / Carvalho Schofield S. cuspi- DUKE; Andrus S. cus- S. cus- Bshaw Shaw S. S. S. S.

Louisiana, 27519, ST44, cuspidatum, America /U.S. A. /Maine, DUKE; ST35, Hampshire, America /U.S. A. /Maine, / Virginia, Shaw9196, BING; SB83, S.falcatulum, S. falcatulum, Australasia /N.Z.SouthIsland, South Island, 11546, Johnson11, SB2254, tum, S.cuspidatum, N. America /U.S. A. /NewJersey, SB2259, S. recurvum, N. Z./SouthIsland, Franco &Parra19005, SB1150, S. America /Colombia Antioquia, U. S. A. /N.Carolina, N. Z./SouthIsland, Karlin0511-1747, EK122, falcatulum, N. Z./SouthIsland, Karlin0511-1746, EK142, falcatulum, N. Z./SouthIsland, Karlin0511-1737, EK204, falcatulum, Fife9788, EK226, falcatulum, S. cuspidatum, DUKE. DUKE;ST40, S. falcatulum, S. falcatulum, S. falcatulum, S. falcatulum, S. flexuosum,recurvum, S. cuspidatum, S. cuspidatum, DUKE;EK331, Australasia /N.Z.SouthIsland, Australasia /N.Z.SouthIsland, Australasia /N.Z.SouthIsland, Australasia /N.Z.SouthIsland, DUKE;SB2251, DUKE;SB2254, N. America /U.S. A. /Missouri, van Alstine4244, Reese 18185, N. America /U. S. A. /N.Carolina, S. recurvum, S.recurvum, Australasia /N.Z.SouthIsland, Allen 13024, Karlin 0511-1734c, S. cuspidatum, DUKE;EK125, DUKE;EK143, DUKE;EK219, N. America /U.S. A. /N.Carolina, MICH;EK53, S. cuspidatum, Johnson 11, Karlin 0511-2001, Karlin 0511-2002, Karlin 0511-1736, Karlin 0511-2010, DUKE;ST39, S. falcatulum, DUKE;SB2255, Australasia /N.Z.SouthIsland, S. recurvum, S.recurvum, DUKE;SB2252, S. cuspidatum, Allen 19979, Allen 25882, DUKE;EK506, DUKE;ST45, S. falcatulum, S. falcatulum, S. falcatulum, N. America /U.S. A. /New York, N. America /U.S. A. /Georgia, S. falcatulum, Andrus 43, Australasia /N.Z.SouthIsland, Australasia /N.Z.SouthIsland, Australasia /N.Z.SouthIsland, Australasia /N.Z.SouthIsland, N. America /U.S. A. /N.Carolina, Shaw 10205, N. America /U.S. A. /N.Carolina, S. America /Colombia, Churchill &Arbelaez15565, S. cuspidatum, DUKE;EK121, DUKE;EK136, DUKE;EK202, DUKE;EK220, DUKE;ST37, N. America /U.S. A. /New DUKE;SB2253, S. cuspidatum, S. recurvum, S.recurvum, BING;EK507, S. cuspidatum, S. falcatulum, Karlin 0511-1751, Karlin 0511-2013, Karlin 0511-1735, Karlin 0511-2011, Andrus 47, DUKE;ST31, N. America /U.S. A. / Timme &Bowers22607, N. America /U.S. A. Australasia /N.Z. Shaw 12209, Shaw 8516, S. cuspidatum, S. falcatulum, S. falcatulum, S. falcatulum, S. falcatulum, N. America / BING;EK508, Asrlsa / Australasia Asrlsa / Australasia Asrlsa / Australasia utaai / Australasia S. falcatulum, S. recurvum, Andrus 50, S. cuspida- Churchill, DUKE; DUKE; DUKE; DUKE; DUKE; DUKE; DUKE; Davis Shaw N. N.