Macroscopic Identification Key of 36 Species in Eastern Canada Sphagnum

Total Page:16

File Type:pdf, Size:1020Kb

Macroscopic Identification Key of 36 Species in Eastern Canada Sphagnum 1842 GEOLOGICAL SURVEY OF CANADA MISCELLANEOUS REPORT 61 MACROSCOPIC IDENTIFICATION KEY OF 36SPHAGNUM SPECIES IN EASTERN CANADA D-F. Bastien and M. Garneau 1997 Natural Resources Ressources naturelles Canada Canada GEOLOGICAL SURVEY OF CANADA MISCELLANEOUS REPORT 61 MACROSCOPIC IDENTIFICATION KEY OF 36 SPHAGNUM SPECIES IN EASTERN CANADA Denis-F. Bastien Michelle Garneau 1997 ©Her Majesty the Queen in Right of Canada, 1997 Catalogue No. M41-8/61E ISBN 0-660-16988-6 Available in Canada from Geological Survey of Canada offices: 601 Booth Street Ottawa, Ontario K1A 0E8 3303-33rd Street N.W., Calgary, Alberta T2L 2A7 or from Canadian Government Publishing Public Works and Government Services Canada Ottawa, Ontario K1A 0S9 A deposit coy of this publication is also available for reference in selected public libraries across Canada Cette publication est aussi disponible en français Price subject to change without notice Cover illustration Sphagnum species: Sphagnum russowii Critical reviewers Pierre Buteau Norman Dignard Dennis Gignac Pierre Grondin Inez M. Kettles Authors’ addresses Michelle Garneau Denis-F. Bastien GSC, Quebec 605 Maurice-Sébastien Quebec Geoscience Centre Village Huron, Quebec Institut national de la recherche scientifique G0A 4V0 2535 Laurier Boulevard P.O. Box 7500, Sainte-Foy, Quebec G1V 4C7 Original manuscript submitted: 1996-06 Final version approved for publication: 1996-07 Preface It is not always easy to identify mosses, even with the help of a microscope and identification keys. While certain species can be identified directly in the field, others can easily be misidentified, despite the aid of precision instruments, because of the large number of shared characteristics. In addition, the task is often made more difficult since many specialists disagree about taxonomic criteria. The purpose of this guide is to synthesize published information about the morphological characteristics of Sphagnum species and their habitats (Haavisto, 1974; Vitt et al., 1988; McQueen, 1990; Hill, 1992; Flatberg, 1994; Sims and Baldwin, 1996) in order to provide field scientists with macroscopic identification keys. Marc Denis Everell Assistant Deputy Minister Earth Sciences Sector Natural Resources Canada CONTENTS 1 Abstract/Résumé 2 Introduction 2 Uses of Sphagnum peat moss 2 Target clientele and geographical areas covered by the guide 2 Contents 3 Acknowledgments 3 Methodology 3 Equipment 3 Procedures 3 In the field 3 In the laboratory 3 Using the keys 4 Habitat characteristics 5 Identification keys 5 Multiple access key 8 Dichotomous key 14 Species descriptions 25 Glossary 26 References Figures 28 1. Important morphological features of Sphagnum species. 28 2. Stem leaf positions. 29 3. Details of Sphagnum branches. 29 4. Transverse cuts of the capitulum showing the apical bud. 29 5. Capitulum as seen from above. 30 6. Sizes of Sphagnum species. 30 7. Branch leaf shapes. 31 8. Stem leaf shapes. 31 9. Ericaceous bog. 31 10. Bog with ponds. 32 11. Open bog (sparse trees). 32 12. Patterned fen. 32 13. Herbaceous fen with ponds. 32 14. Sphagnum angermanicum 33 15. Sphagnum angustifolium 33 16. Sphagnum austinii 33 17. Sphagnum balticum 33 18. Sphagnum capillifolium 34 19. Sphagnum compactum 34 20. Sphagnum cuspidatum 34 21. Sphagnum fallax 34 22. Sphagnum fimbriatum 35 23. Sphagnum flavicomans 35 24. Sphagnum fallax and S. flexuosum 35 25. Sphagnum fuscum 35 26. Sphagnum girgensohnii 36 27. Sphagnum lenense 36 28. Sphagnum lindbergii 36 29. Sphagnum magellanicum 36 30. Sphagnum majus 37 31. Sphagnum obtusum 37 32. Sphagnum papillosum 37 33. Sphagnum platyphyllum 37 34. Sphagnum pulchrum 38 35. Sphagnum pylaesii 38 36. Sphagnum quinquefarium 38 37. Sphagnum riparium 38 38. Sphagnum rubellum 39 39. Sphagnum russowii 39 40. Sphagnum squarrosum 39 41. Sphagnum subfulvum 39 42. Sphagnum subsecundum 40 43. Sphagnum tenellum 40 44. Sphagnum teres 40 45. Sphagnum wulfianum 40 46. Sphagnum rubellum and S. capillifolium 41 47. The most frequent biotopes observed in peatlands. MACROSCOPIC IDENTIFICATION KEY OF 36 SPHAGNUM SPECIES IN EASTERN CANADA Abstract Résumé An illustrated guide for the macroscopic identification of 36 Un guide illustré portant sur l'identification macroscopique de 36 Sphagnum species found in eastern Canada was produced as part of espèces du genre Sphagnum de l'est du Canada a été produit dans le the Geological Survey of Canada project “Surficial Geology and cadre d'un projet portant sur la géologie de surface et les processus Environmental Processes in Peatlands”. environnementaux des tourbières de la Commission géologique du Canada. Sphagnum is a genus of mosses encountered in peatlands of eastern Canada. It is hard to find Sphagnum identification books that Les sphaignes sont des mousses que l'on rencontre dans les do not require the use of sophisticated tools such as a microscope. tourbières de l'est du Canada. Rares sont les ouvrages qui permettent Two identification keys were produced to help the user identify, often de s'initier aux sphaignes sans l'aide d'instruments complexes tels que directly in the field (using a hand lens), most of the species described le microscope. Deux clés d'identification ont été produites afin d'aider in this guide. Descriptions and comments provide additional l'utilisateur à identifier, le plus souvent directement sur le terrain information about each of the species (distinctive characteristics, (avec une loupe simple), la plupart des espèces décrites dans ce guide. distribution, habitat, etc.). So that the user does not have to search Outre ces deux clés d'identification, une description et des through the text each time a species characteristic is mentioned, all commentaires fournissent des renseignements additionnels figures and photographs are presented at the end of the guide. These (caractéristiques, répartition, habitat, etc.) sur chacune des espèces. illustrations will help in the identification process. Les figures facilitent l'identification des espèces. Toutes les figures et photographies sont regroupées à la fin du guide afin que l'utilisateur ne soit pas obligé de chercher inutilement dans le texte les illustrations mentionnées dans la description de chaque espèce. 1 INTRODUCTION Contents The first part of the guide (“Methodology”) contains a brief Uses of Sphagnum peat moss description of the material and methodology used to study Sphagnum in the field or laboratory (Haavisto, 1974). It also explains the use of n recent years, producers of peat moss and people involved in the the keys. Ipharmaceutical industry, research, and other fields have shown a growing interest in Sphagnum mosses. New products utilizing The second part (“Habitat characteristics”) focuses on the undecomposed Sphagnum from peat bogs have recently been description of Sphagnum habitats. Since each species has particular developed. Sanitary napkins, biofilters for heavy industry, and requirements regarding its habitat, it is important to provide as precise inoculated horticultural media are just a few examples of new and details as possible about the location where each was collected. The innovative products that use Sphagnum mosses. In many cases, this peatlands associated with particular Sphagnum species are described recent diversification of Sphagnum-based products requires the and the plants commonly associated with these habitats are listed. harvesting of particular Sphagnum species or groups of species, since Finally, a description of the microtopography (biotope) encountered each species possesses different characteristics such as absorption and completes the elements used in this guide to characterize the different retention capacity, growth rate, plant colour, etc. Thus, by providing a habitats encountered. means of identifying Sphagnum species or groups of species, this key will help guide harvesting for specific industrial uses. The third and most important section of this guide (“Identification keys”) is a description of two identification keys that will allow the user to identify the Sphagnum specimens collected. The final part Target clientele and geographical area (“Species descriptions”) is a more detailed description (distinctive covered by the guide characteristics, distribution, habitat, etc.) of the 36 Sphagnum species given in the two identification keys. In addition to the 36 species described in this guide, 23 additional species are mentioned and an Although the best way of identifying Sphagnum species is with the aid information source is provided. These species are either too rare, too of a microscope, this guide shows that it is possible to recognize localized, or beyond the scope of this guide to be included in the guide. several common species, sometimes directly in the field, using much less sophisticated tools. This identification guide is intended for A glossary and list of cited and relevant publications are also various stakeholders in the peat sector. It is based mainly on included. All figures have been grouped thematically and are macroscopic characteristics, and will help the user to become presented at the end of the guide. Figures 1, 2, and 3 show general acquainted with 36 species of Sphagnum found in eastern Canada. The Sphagnum organization (plant morphology, branch leaf arrangement, area covered extends from Ontario to Newfoundland, and includes etc.). Figures 4, 5, and 6 show detailed views of capitula and plant Quebec, New Brunswick, Prince Edward Island, and Nova Scotia. sizes. Figure 7 illustrates branch leaf morphology while Figure 8 shows variations
Recommended publications
  • Northern Fen Communitynorthern Abstract Fen, Page 1
    Northern Fen CommunityNorthern Abstract Fen, Page 1 Community Range Prevalent or likely prevalent Infrequent or likely infrequent Absent or likely absent Photo by Joshua G. Cohen Overview: Northern fen is a sedge- and rush-dominated 8,000 years. Expansion of peatlands likely occurred wetland occurring on neutral to moderately alkaline following climatic cooling, approximately 5,000 years saturated peat and/or marl influenced by groundwater ago (Heinselman 1970, Boelter and Verry 1977, Riley rich in calcium and magnesium carbonates. The 1989). community occurs north of the climatic tension zone and is found primarily where calcareous bedrock Several other natural peatland communities also underlies a thin mantle of glacial drift on flat areas or occur in Michigan and can be distinguished from shallow depressions of glacial outwash and glacial minerotrophic (nutrient-rich) northern fens, based on lakeplains and also in kettle depressions on pitted comparisons of nutrient levels, flora, canopy closure, outwash and moraines. distribution, landscape context, and groundwater influence (Kost et al. 2007). Northern fen is dominated Global and State Rank: G3G5/S3 by sedges, rushes, and grasses (Mitsch and Gosselink 2000). Additional open wetlands occurring on organic Range: Northern fen is a peatland type of glaciated soils include coastal fen, poor fen, prairie fen, bog, landscapes of the northern Great Lakes region, ranging intermittent wetland, and northern wet meadow. Bogs, from Michigan west to Minnesota and northward peat-covered wetlands raised above the surrounding into central Canada (Ontario, Manitoba, and Quebec) groundwater by an accumulation of peat, receive inputs (Gignac et al. 2000, Faber-Langendoen 2001, Amon of nutrients and water primarily from precipitation et al.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Spore Dispersal Vectors
    Glime, J. M. 2017. Adaptive Strategies: Spore Dispersal Vectors. Chapt. 4-9. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-9-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 3 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-9 ADAPTIVE STRATEGIES: SPORE DISPERSAL VECTORS TABLE OF CONTENTS Dispersal Types ............................................................................................................................................ 4-9-2 Wind Dispersal ............................................................................................................................................. 4-9-2 Splachnaceae ......................................................................................................................................... 4-9-4 Liverworts ............................................................................................................................................. 4-9-5 Invasive Species .................................................................................................................................... 4-9-5 Decay Dispersal............................................................................................................................................ 4-9-6 Animal Dispersal .......................................................................................................................................... 4-9-9 Earthworms ..........................................................................................................................................
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Drosera Intermedia in a Northern Michigan Bog
    Assessment of microhabitat differences between Drosera rotundifolia and Drosera intermedia in a northern Michigan bog Andrew David University of Michigan Biological Station EEB 381, General Ecology August 19, 2010 Professor Cathy Bach Abstract The purpose of this study was to investigate microhabitat differences between two species of sundews, Drosera rotundifolia and Drosera intermedia. I tested several hypotheses: D. rotundifolia density increases with increasing height above a fixed low point, while D. intermedia density decreases with height; D. rotundifolia grows primarily on red Sphagnum moss, while D. intermedia grows primarily on green Sphagnum; the densities of both Drosera species increase with decreasing pH; the density of neither Drosera species is affected by water conductivity or dissolved oxygen content. At Mud Lake Bog in Cheboygan County, Michigan, I recorded the species of Drosera plants, as well as the height of the plants above a fixed low point and the color of Sphagnum moss on which they were growing. I also measured the pH, conductivity, and dissolved oxygen content of the water in which the plants were growing. Densities of both Drosera species decreased with increasing height, though the trend was stronger for D. intermedia. D. rotundifolia grew significantly more on red Sphagnum than did D. intermedia, while D. intermedia grew significantly more on green Sphagnum than did D. rotundifolia. D. rotundifolia density varied significantly with neither pH, conductivity, nor dissolved oxygen. D. intermedia density increased significantly with decreasing pH and increasing conductivity, but not with dissolved oxygen. My results were consistent with past research, and conclusively illustrated the differences in microhabitat preferences between the two Drosera species.
    [Show full text]
  • Appendix 2: Plant Lists
    Appendix 2: Plant Lists Master List and Section Lists Mahlon Dickerson Reservation Botanical Survey and Stewardship Assessment Wild Ridge Plants, LLC 2015 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Acalypha rhomboidea Native 1 Forb 9 Acer palmatum Invasive 0 Tree 1 Acer pensylvanicum Native 7 Tree 2 Acer platanoides Invasive 0 Tree 4 Acer rubrum Native 3 Tree 27 Acer saccharum Native 5 Tree 24 Achillea millefolium Native 0 Forb 18 Acorus calamus Alien 0 Forb 1 Actaea pachypoda Native 5 Forb 10 Adiantum pedatum Native 7 Fern 7 Ageratina altissima v. altissima Native 3 Forb 23 Agrimonia gryposepala Native 4 Forb 4 Agrostis canina Alien 0 Graminoid 2 Agrostis gigantea Alien 0 Graminoid 8 Agrostis hyemalis Native 2 Graminoid 3 Agrostis perennans Native 5 Graminoid 18 Agrostis stolonifera Invasive 0 Graminoid 3 Ailanthus altissima Invasive 0 Tree 8 Ajuga reptans Invasive 0 Forb 3 Alisma subcordatum Native 3 Forb 3 Alliaria petiolata Invasive 0 Forb 17 Allium tricoccum Native 8 Forb 3 Allium vineale Alien 0 Forb 2 Alnus incana ssp rugosa Native 6 Shrub 5 Alnus serrulata Native 4 Shrub 3 Ambrosia artemisiifolia Native 0 Forb 14 Amelanchier arborea Native 7 Tree 26 Amphicarpaea bracteata Native 4 Vine, herbaceous 18 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Anagallis arvensis Alien 0 Forb 4 Anaphalis margaritacea Native 2 Forb 3 Andropogon gerardii Native 4 Graminoid 1 Andropogon virginicus Native 2 Graminoid 1 Anemone americana Native 9 Forb 6 Anemone quinquefolia Native 7 Forb 13 Anemone virginiana Native 4 Forb 5 Antennaria neglecta Native 2 Forb 2 Antennaria neodioica ssp.
    [Show full text]
  • Tag Der Artenvielfalt 2018 in Weißbrunn, Ulten (Gemeinde Ulten, Südtirol, Italien)
    Thomas Wilhalm Tag der Artenvielfalt 2018 in Weißbrunn, Ulten (Gemeinde Ulten, Südtirol, Italien) Keywords: species diversity, Abstract new records, Ulten, Val d’Ultimo, South Tyrol, Italy Biodiversity Day 2018 in Weißbrunn, Ulten Valley (municipality of Ultimo, South Tyrol, Italy) The 19 th Biodiversity Day in South Tyrol was held in the municipality of Ulten/Ultimo. A total of 886 taxa were found. Einleitung Der 19. Südtiroler Tag der Artenvielfalt wurde am 30. Juni 2018 im Talschluss von Ulten abgehalten. Wie in den Jahren zuvor oblag dem Naturmuseum Südtirol sowohl die Organisation im Vorfeld als auch die Koordination vor Ort. Begleitend zu den Felderhebungen der zahlreichen Fachleute (siehe einzelne Beiträge) war ein didakti- sches Rahmenprogramm vorgesehen, das eine vogelkundliche und eine naturkundliche Wanderung im Untersuchungsgebiet (Organisation: Nationalpark Stilfserjoch unter der Koordination von Ronald Oberhofer) sowie ein Kinder- und Familienprogramm im Nationalparkhaus Lahnersäge in St. Gertraud umfasste (Organisation und Durchführung durch die Mitarbeiterinnen des Naturmuseums Südtirol Johanna Platzgummer, Elisabeth Waldner und Verena Preyer). Für allgemeine Informationen (Konzept und Organisation) zum Tag der Artenvielfalt und insbesondere zur Südtiroler Ausgabe siehe HILPOLD & KRANEBITTER (2005) und SCHATZ (2016). Adresse der Autors: Thomas Wilhalm Naturmuseum Südtirol Bindergasse 1 I-39100 Bozen thomas.wilhalm@ naturmuseum.it DOI: 10.5281/ zenodo.3565390 Gredleriana | vol. 19/2019 247 | Untersuchungsgebiet Das Untersuchungsgebiet umfasste in seinem Kern die Flur „Weißbrunn“ im Talschluss von Ulten westlich der Ortschaft St. Gertraud, d.h. den Bereich zwischen dem Weißbrunnsee (Stausee) und der Mittleren Weißbrunnalm. Im Süden war das Gebiet begrenzt durch die Linie Fischersee-Fiechtalm-Lovesboden, im Nordwesten durch den Steig Nr. 12 östlich bis zur Hinteren Pilsbergalm.
    [Show full text]
  • Ferns Robert H
    Southern Illinois University Carbondale OpenSIUC Illustrated Flora of Illinois Southern Illinois University Press 10-1999 Ferns Robert H. Mohlenbrock Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/siupress_flora_of_illinois Part of the Botany Commons Recommended Citation Mohlenbrock, Robert H., "Ferns" (1999). Illustrated Flora of Illinois. 3. http://opensiuc.lib.siu.edu/siupress_flora_of_illinois/3 This Book is brought to you for free and open access by the Southern Illinois University Press at OpenSIUC. It has been accepted for inclusion in Illustrated Flora of Illinois by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. THE ILLUSTRATED FLORA OF ILLINOIS ROBERT H. MOHLENBROCK, General Editor THE ILLUSTRATED FLORA OF ILLINOIS s Second Edition Robert H. Mohlenbrock SOUTHERN ILLINOIS UNIVERSITY PRESS Carbondale and Edwardsville COPYRIGHT© 1967 by Southern Illinois University Press SECOND EDITION COPYRIGHT © 1999 by the Board of Trustees, Southern Illinois University All rights reserved Printed in the United States of America 02 01 00 99 4 3 2 1 Library of Congress Cataloging-in-Publication Data Mohlenbrock, Robert H., 1931- Ferns I Robert H. Mohlenbrock. - 2nd ed. p. em.- (The illustrated flora of Illinois) Includes bibliographical references and index. 1. Ferns-Illinois-Identification. 2. Ferns-Illinois-Pictorial works. 3. Ferns-Illinois-Geographical distribution-Maps. 4. Botanical illustration. I. Title. II. Series. QK525.5.I4M6 1999 587'.3'09773-dc21 99-17308 ISBN 0-8093-2255-2 (cloth: alk. paper) CIP The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.§ This book is dedicated to Miss E.
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • <I>Sphagnum</I> Peat Mosses
    ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested
    [Show full text]
  • Irish Wildlife Manuals No. 128, the Habitats of Cutover Raised
    ISSN 1393 – 6670 N A T I O N A L P A R K S A N D W I L D L I F E S ERVICE THE HABITATS OF CUTOVER RAISED BOG George F. Smith & William Crowley I R I S H W I L D L I F E M ANUAL S 128 National Parks and Wildlife Service (NPWS) commissions a range of reports from external contractors to provide scientific evidence and advice to assist it in its duties. The Irish Wildlife Manuals series serves as a record of work carried out or commissioned by NPWS, and is one means by which it disseminates scientific information. Others include scientific publications in peer reviewed journals. The views and recommendations presented in this report are not necessarily those of NPWS and should, therefore, not be attributed to NPWS. Front cover, small photographs from top row: Limestone pavement, Bricklieve Mountains, Co. Sligo, Andy Bleasdale; Meadow Saffron Colchicum autumnale, Lorcan Scott; Garden Tiger Arctia caja, Brian Nelson; Fulmar Fulmarus glacialis, David Tierney; Common Newt Lissotriton vulgaris, Brian Nelson; Scots Pine Pinus sylvestris, Jenni Roche; Raised bog pool, Derrinea Bog, Co. Roscommon, Fernando Fernandez Valverde; Coastal heath, Howth Head, Co. Dublin, Maurice Eakin; A deep water fly trap anemone Phelliactis sp., Yvonne Leahy; Violet Crystalwort Riccia huebeneriana, Robert Thompson Main photograph: Round-leaved Sundew Drosera rotundifolia, Tina Claffey The habitats of cutover raised bog George F. Smith1 & William Crowley2 1Blackthorn Ecology, Moate, Co. Westmeath; 2The Living Bog LIFE Restoration Project, Mullingar, Co. Westmeath Keywords: raised bog, cutover bog, conservation, classification scheme, Sphagnum, cutover habitat, key, Special Area of Conservation, Habitats Directive Citation: Smith, G.F.
    [Show full text]
  • Sphagnum Capillifolium Subsp
    Sphagnales Sphagnum capillifolium subsp. capillifolium/subsp. rubellum Acute-leaved/Red Bog-moss Section Acutifolia Stem leaf (subsp. capillifolium) 1 mm 1 cm 2 mm S. capillifolium subsp. capillifolium Identification S. capillifolium is split into two subspecies, though elsewhere in Europe and North America, these are interpreted as full species. Intermediate forms occur, so not all specimens will be identifiable to sub-species. However, typical examples of the two subspecies differ in several characters, and can be identified in the field. Shoots of both sub-species are small to medium in size. The plants are all or mostly red, except if shaded, when they are green. S. capillifolium Occurs in dense, firm, sometimes large hummocks. Individual shoots are often subsp. capillifolium very slender, but packed tightly together, with convex to hemispherical capitula; hence the surface of the hummock is bumpy, like cauliflower florets, not smooth. Hummocks are so dense that it is difficult to extract single shoots with your fingers. Branch leaves are not (or scarcely) in straight lines and are straight (not turned to one side). On moist shoots, most branch stems cannot be seen through the branch leaves. Spreading branches are long, with a tapering, down-turned, white tip, consisting of elongated leaves without any pigmentation. Stem leaves are triangular at the tip, more than 1.2 mm long. Capsules are frequent. S. capillifolium Grows in extensive, loose carpets or in soft hummocks from which it is easy to subsp. rubellum extract single shoots by hand. Capitula are almost to markedly flat-topped and (S. rubellum) stellate. Some upper spreading branches are curved near the tip, as viewed from above, with leaves in straight lines, and turned to one side, especially towards the branch tip.
    [Show full text]