1 Harmful Algal Blooms in Small Lakes

Total Page:16

File Type:pdf, Size:1020Kb

1 Harmful Algal Blooms in Small Lakes Harmful Algal Blooms in Small Lakes: Causes, Health Risks, and Novel Exposure Prevention Strategies Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Igor Mrdjen, B.S. Graduate Program in Public Health The Ohio State University 2018 Dissertation Committee Jiyoung Lee, Advisor Christopher M. Weghorst C.K. Shum Qinghua Sun 1 Copyrighted by Igor Mrdjen 2018 2 Abstract The increasing frequency and severity of harmful algal blooms (HABs) has quickly become an environmental health concern worldwide. As rates of anthropogenic nutrient use rise with growing food demand, and as extreme precipitation events are expected to increase with the changing climate, rates of nutrient influx into watersheds are expected to increase. With increasing nutrient loads and temperatures in watersheds, many of the world’s water bodies and reservoirs are becoming eutrophic, establishing optimal conditions for HAB formation. HABs may change the ecology of water bodies; produce hypoxic zones resulting in fish deaths; and produce cyanotoxin compounds toxic to the liver, nervous system, and reproductive system of most eukaryotic organisms. Human and animal exposure to the most commonly occurring cyanotoxin, microcystin (MC), has been linked with hepatotoxicity, nausea, vomiting, and death in extreme circumstances. Within the MC family of toxins, microcystin-LR (MC-LR) is the most common, possesses the highest toxicity, and is cited as a suspected carcinogen. While HAB mitigation and MC exposure prevention efforts have often focused on large lakes and bodies of water, small lakes and ponds (SLaPs) remain understudied and unmonitored. SLaPs are the most numerous lentic bodies of water worldwide, providing vital ecosystem services and biodiversity support. Due to their location, low volume, and seasonal water level changes, SLaPs are at an increased risk for eutrophication and HAB formation. SLaPs have many uses including recreation, aquaculture, irrigation, and even drinking water sources in ii economically stressed areas of the world. The utility of SLaPs presents a potential exposure pathway to HABs and MC compounds. While our knowledge base of MC-related health outcomes continues to grow, several gaps exist, including: low dose, chronic exposure outcomes; differences in toxicity between pure toxic compounds and crude cyanobacterial extracts; and the cancer promoting role of MCs. Finally, current satellite-based remote sensing methods demonstrate several limitations in the study and monitoring of HAB formation in SLaPs, including: land adjacency effect contamination, prohibitive costs, and inadequate spatial and temporal resolutions. The overall goal of this work is to address the existing knowledge gaps pertaining to HAB appearance in SLaPs, MC toxicity from chronic and acute exposures, and to improve the current monitoring methods. Chapter 1 reviews the current knowledge base of HABs and cyanobacteria, the production of toxins, and the mechanisms of MC toxicity and potential mechanisms of cancer promotion. Various cyanobacterial genera were discussed in terms of different types of cyanotoxin production. Contributions of environmental triggers of cyanotoxin production are described and detailed. Chapter 2 explores the impacts of anthropogenic land use and nutrient runoff on HABs in 24 SLaPs in central Ohio. Statistical analyses showed several relationships connecting anthropogenic land use to increased nutrient concentrations in sampled SLaPs. In one of those 24 lakes, the impact of tile drainage was explored. Changes in prokaryotic and eukaryotic communities, HAB occurrence, and high MC concentrations were noted. Chapter 3 and Chapter 4 focus on the potential health outcomes in acute and chronic exposure scenarios, respectively, using mice. Chapter 3 explores the changes in pathological, iii clinical chemistry, and gap junction intercellular communication (GJIC) attributed to acute MC- LR exposures. Male and female CD-1 mice exposed to MC-LR via oral gavage were evaluated for measures of changes in liver health. Findings show increased MC-LR toxicity in female mice compared to males, and show that GJIC does not play a prominent role in MC-LR toxicity under the experimental condition. Similarly, Chapter 4 explores chronic exposure to 10 µg/L MC-LR and a crude M. aeruginosa Lysate in a two-stage mouse model of cancer promotion. Mice were initiated with a known carcinogen, and administered MC-LR or cyanobacterial Lysate via ad libitum drinking water consumption. Results show increased toxicity of cyanobacterial Lysate and the potential promotion of liver cancer by MC compounds. Chapter 5 summarizes a proof-of-concept of a novel approach to HAB monitoring in near-shore lake environments based on remote sensing technologies. An unmanned aerial vehicle (UAV) equipped with multispectral cameras was deployed for remote sensing of near-shore areas of Lake Erie and Buckeye Lake. Image derived Normalized Difference Vegetation Index (NDVI) values were compared to lab analyzed water samples. The feasibility of UAV-based remote sensing is discussed and solutions to future implementations are proposed. iv Dedication This work is dedicated to my family, friends, and mentors, who have invested a great deal of time and energy to allow me the opportunity to follow my passions. v Acknowledgments This work would not have been possible without the guidance of my advisor and lab- mates, support of my mentors, and the help of my family and friends. I would like to acknowledge the incredible contributions of my advisor Dr. Jiyoung Lee. Her patience, support and guidance were invaluable during my time at The Ohio State University (OSU). Dr. Lee is an incredible advisor and role model who ensured a professional, friendly, and educational environment in lab and in the classroom. Additionally, I would like to thank my past and current peers & lab-mates: Seungjun Lee, Lindsay Collart, Tyler Gorham, Claire Bollinger, Alba Mayta, Manjunath Manubolu, Chenlin Hu, Xuewen Jiang, Alina Yang, Yuehan Ai, Yuanyuan Jia, and Matt McCrink. The training, experience and friendships they provided were essential to my development. I am forever grateful for the support and patience provided to by my committee and various collaborators during my studies at OSU. I would personally like to thank Dr. Christopher M. Weghorst for his wiliness to mentor me and introduce me to areas of research which were previously unknown to me. Special thanks also go out to my collaborators Dr. C.K. Shum, Dr. Jim Gregory, Dr. Kellie Archer, Dr. Michael Pennell, Dr. Mark Morse, and Dr. Randall J. Ruch, for all of their contributions toward my education and the completion of my research. I wish to thank Dr. Michael Bisesi and Dr. Amy Ferketich for mentoring me and supporting me in my development as an instructor. I would also like to acknowledge Dr. Thomas J. Knobloch, who vi was there at every step of the way to offer guidance, advice, friendly conversation, and much- needed coffee breaks. Finally, special thanks go to my parents, who sacrificed everything imaginable to provide me with the opportunity at a great education and the chance to follow my dreams. Their love and support will forever be welcomed. Finally, I would like to thank my brother and friends for always pushing me to succeed and providing an outlet for the stress that comes with ambition. vii Vita 2010................................................................Normandy High School 2014................................................................B.S. Biology Baldwin Wallace University 2014 to present ...............................................Graduate Program in Public Health Specialization: Environmental Health Sciences The Ohio State University Publications Mrdjen, I, Fennessy, S, Schaal, A, Slonchzewski, J, Lee, J. Tile Drainage and Anthropogenic Land Use Contribute to Harmful Algal Blooms and Microbiota Shifts in Inland Water Bodies, Environmental Science and Technology, 2018, in press. Mrdjen, I. & Lee, J. Simple and Practical On-Site Treatment of High Microcystin Levels in Water Using Polypropylene Plastic for Protection of Human, Animal, and Ecosystem Health, Journal of Environmental Science and Health Part A, (2018) in press. Mrdjen, I & Lee, J. High volume hydraulic fracturing operations: potential impacts on surface water and human health, International Journal of Environmental Health Research, 2016: 26:4, 361-380, DOI: 10.1080/09603123.2015.1111314 viii Field of Study Major Field: Public Health ix Table of Contents Abstract ........................................................................................................................................... ii Dedication ....................................................................................................................................... v Acknowledgments.......................................................................................................................... vi Vita ............................................................................................................................................... viii List of Tables ............................................................................................................................... xiv List of Figures ............................................................................................................................... xv Chapter 1. Introduction ..................................................................................................................
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Based on SSU Rdna Sequences
    J. Eukaryot. Microbiol., 48(5), 2001 pp. 604±607 q 2001 by the Society of Protozoologists Phylogenetic Position of Sorogena stoianovitchae and Relationships within the Class Colpodea (Ciliophora) Based on SSU rDNA Sequences ERICA LASEK-NESSELQUISTa and LAURA A. KATZa,b aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts 01063, and bProgram in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA ABSTRACT. The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classi®ed based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda in¯ata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea). Key Words. Bursariomorphida, ciliate phylogeny, Colpodida, Cyrtolophosidida, molecular systematics, Nassophorea, Sorogenida. OROGENA stoianovitchae is a unique ciliate that aggregates partial B. sphagni sequence), provide the ®rst molecular hy- S to produce an aerial fruiting body when cells are starved.
    [Show full text]
  • Phylogenomic Analysis of Balantidium Ctenopharyngodoni (Ciliophora, Litostomatea) Based on Single-Cell Transcriptome Sequencing
    Parasite 24, 43 (2017) © Z. Sun et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017043 Available online at: www.parasite-journal.org RESEARCH ARTICLE Phylogenomic analysis of Balantidium ctenopharyngodoni (Ciliophora, Litostomatea) based on single-cell transcriptome sequencing Zongyi Sun1, Chuanqi Jiang2, Jinmei Feng3, Wentao Yang2, Ming Li1,2,*, and Wei Miao2,* 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, PR China 3 Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, PR China Received 22 April 2017, Accepted 12 October 2017, Published online 14 November 2017 Abstract- - In this paper, we present transcriptome data for Balantidium ctenopharyngodoni Chen, 1955 collected from the hindgut of grass carp (Ctenopharyngodon idella). We evaluated sequence quality and de novo assembled a preliminary transcriptome, including 43.3 megabits and 119,141 transcripts. Then we obtained a final transcriptome, including 17.7 megabits and 35,560 transcripts, by removing contaminative and redundant sequences. Phylogenomic analysis based on a supermatrix with 132 genes comprising 53,873 amino acid residues and phylogenetic analysis based on SSU rDNA of 27 species were carried out herein to reveal the evolutionary relationships among six ciliate groups: Colpodea, Oligohymenophorea, Litostomatea, Spirotrichea, Hetero- trichea and Protocruziida. The topologies of both phylogenomic and phylogenetic trees are discussed in this paper. In addition, our results suggest that single-cell sequencing is a sound method of obtaining sufficient omics data for phylogenomic analysis, which is a good choice for uncultivable ciliates.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2009 Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Life Sciences Commons Recommended Citation Dunthorn, Micah, "Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers" (2009). Open Access Dissertations. 95. https://doi.org/10.7275/fyvd-rr19 https://scholarworks.umass.edu/open_access_dissertations/95 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented by MICAH DUNTHORN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2009 Organismic and Evolutionary Biology © Copyright by Micah Dunthorn 2009 All Rights Reserved CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented By MICAH DUNTHORN Approved as to style and content by: _______________________________________
    [Show full text]
  • D070p001.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine.
    [Show full text]
  • Cell Biology of the Interaction Between Listeria Monocytogenes and Colpoda Spp
    Cell Biology of the Interaction between Listeria monocytogenes and Colpoda spp. Rethish Raghu Nadhanan, B.Sc. (Hons) (Adelaide) A thesis submitted for the Degree of Doctor of Philosophy School of Molecular and Biomedical Science Faculty of Sciences, The University of Adelaide Adelaide, South Australia, Australia (December, 2012) i Table of Contents Chapter 1: Literature Review .......................................................................................... 1 1.1 Introduction to Listeria monocytogenes ....................................................................... 1 1.2 Listeriosis ..................................................................................................................... 2 1.2.1 Listeriosis in Humans ............................................................................................ 3 1.2.2 Listeriosis in Animals ............................................................................................ 4 1.3 Pathophysiology of L. monocytogenes ........................................................................ 5 1.3.1 Virulence Factors of L. monocytogenes ................................................................ 5 1.3.2 Invasion of Mammalian Cells by L. monocytogenes ............................................ 7 1.4 Is there an Environmental Reservoir for L. monocytogenes? ...................................... 7 1.5 Interactions between Bacteria and Protozoa ................................................................ 8 1.6 Protozoa as Model Organisms for Study of
    [Show full text]
  • Morphology and Systematics of Two Freshwater Frontonia Species (Ciliophora, Peniculida) from Northeastern China, with Comparisons Among the Freshwater Frontonia Spp
    Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 63 (2018) 105–116 Morphology and systematics of two freshwater Frontonia species (Ciliophora, Peniculida) from northeastern China, with comparisons among the freshwater Frontonia spp. Xinglong Caia,1, Chundi Wangb,1, Xuming Pana,1, Hamed A. El-Serehyc, Weijie Mua, Feng Gaob,∗, Zijian Qiua,∗ aCollege of Life Science and Technology, Harbin Normal University, Harbin 150025, China bInstitute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China cZoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia Received 1 July 2017; received in revised form 6 January 2018; accepted 8 January 2018 Available online 12 January 2018 Abstract The morphology and infraciliature of two Frontonia species, F. shii spec. nov. and F. paramagna Chen et al., 2014, isolated from a freshwater pond in northeastern China, were investigated using living observation and silver staining methods Fron- tonia shii spec. nov. is recognized by the combination of the following characters: freshwater Frontonia, size in vivo about 220–350 × 130–250 ␮m, elliptical in outline; 128–142 somatic kineties; three or four vestibular kineties, six or seven postoral kineties; peniculi 1–3 each with four kineties; single contractile vacuole with about 10 collecting canals. The improved diagnosis for F. paramagna is based on the current and previous reports. Comparisons among freshwater Frontonia are also provided. The small subunit ribosomal rRNA gene (SSU rDNA) sequences of the two species are characterized and phylogenetic anal- yses based on these sequences show that both species fall into the core clade of the genus Frontonia, and this genus is not monophyletic.
    [Show full text]
  • Persistent Patterns of High Alpha and Low Beta Diversity in Tropical
    bioRxiv preprint doi: https://doi.org/10.1101/166892; this version posted July 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Persistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists Guillaume Lentendua,1, Frédéric Mahéa,b, David Bassc,d, Sonja Rueckerte, Thorsten Stoecka, Micah Dunthorna aDepartment of Ecology, University of Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany bCIRAD, UMR LSTM, 34398 Montpellier, France cDepartment of Life Sciences, The Natural History Museum London, Cromwell Road, London SW7 5BD, UK dCentre for Environment, Fisheries & Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK eSchool of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, Scotland, UK 1Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/166892; this version posted July 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Animal and plant communities in tropical rainforests are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown if the microbial protists inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of soil protists in three lowland Neotropical rainforests using metabarcoding data, we estimated taxa-area and distance-decay relationships for three large protist taxa and their subtaxa, at both the OTU and phylogenetic levels, with presence-absence and abundance based measures, and compared the estimates to null models.
    [Show full text]
  • Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities As Revealed by Metabarcoding and Microscopy
    Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities as Revealed by Metabarcoding and Microscopy Sandra Gran-Stadnicze nko~ a, Elianne Egge a, Vladyslava Hostyeva b, Ramiro Logares c, Wenche Eikrem a,b & Bente Edvardsen a a Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, 0316, Oslo, Norway b Norwegian Institute for Water Research, Gaustadall een 21, 0349, Oslo, Norway c Department of Marine Biology and Oceanography, Institut de Ci encies del Mar (CSIC), 08003, Barcelona, Catalonia, Spain Keywords ABSTRACT Biovolume; high-throughput sequencing; Oslofjorden; richness. Protist community composition and seasonal dynamics are of major impor- tance for the production of higher trophic levels, such as zooplankton and fish. Correspondence Our aim was to reveal how the protist community in the Skagerrak changes B. Edvardsen, Department of Biosciences, through the seasons by combining high-throughput sequencing and micro- University of Oslo, P. O. Box 1066 Blindern, scopy of plankton collected monthly over two years. The V4 region of the 18S 0316 Oslo, Norway rRNA gene was amplified by eukaryote universal primers from the total RNA/ Telephone number: +47-22-85-70-38; cDNA. We found a strong seasonal variation in protist composition and propor- FAX number: +47-22-85-47-26; tional abundances, and a difference between two depths within the euphotic e-mail: [email protected] zone. Highest protist richness was found in late summer-early autumn, and lowest in winter. Temperature was the abiotic factor explaining most of the Received: 30 April 2018; revised 15 October variation in diversity.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Classification of the Phylum Ciliophora (Eukaryota, Alveolata)
    1! The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised 2! Classification of the Phylum Ciliophora (Eukaryota, Alveolata) 3! 4! Feng Gao a, Alan Warren b, Qianqian Zhang c, Jun Gong c, Miao Miao d, Ping Sun e, 5! Dapeng Xu f, Jie Huang g, Zhenzhen Yi h,* & Weibo Song a,* 6! 7! a Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 8! China; b Department of Life Sciences, Natural History Museum, London, UK; c Yantai 9! Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; d 10! College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; 11! e Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, 12! Xiamen University, Xiamen, China; f State Key Laboratory of Marine Environmental 13! Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 14! China; g Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; h 15! School of Life Science, South China Normal University, Guangzhou, China. 16! 17! Running Head: Phylogeny and evolution of Ciliophora 18! *!Address correspondence to Zhenzhen Yi, [email protected]; or Weibo Song, 19! [email protected] 20! ! ! 1! Table S1. List of species for which SSU rDNA, 5.8S rDNA, LSU rDNA, and alpha-tubulin were newly sequenced in the present work. ! ITS1-5.8S- Class Subclass Order Family Speicies Sample sites SSU rDNA LSU rDNA a-tubulin ITS2 A freshwater pond within the campus of 1 COLPODEA Colpodida Colpodidae Colpoda inflata the South China Normal University, KM222106 KM222071 KM222160 Guangzhou (23° 09′N, 113° 22′ E) Climacostomum No.
    [Show full text]