Cell Biology of the Interaction Between Listeria Monocytogenes and Colpoda Spp

Total Page:16

File Type:pdf, Size:1020Kb

Cell Biology of the Interaction Between Listeria Monocytogenes and Colpoda Spp Cell Biology of the Interaction between Listeria monocytogenes and Colpoda spp. Rethish Raghu Nadhanan, B.Sc. (Hons) (Adelaide) A thesis submitted for the Degree of Doctor of Philosophy School of Molecular and Biomedical Science Faculty of Sciences, The University of Adelaide Adelaide, South Australia, Australia (December, 2012) i Table of Contents Chapter 1: Literature Review .......................................................................................... 1 1.1 Introduction to Listeria monocytogenes ....................................................................... 1 1.2 Listeriosis ..................................................................................................................... 2 1.2.1 Listeriosis in Humans ............................................................................................ 3 1.2.2 Listeriosis in Animals ............................................................................................ 4 1.3 Pathophysiology of L. monocytogenes ........................................................................ 5 1.3.1 Virulence Factors of L. monocytogenes ................................................................ 5 1.3.2 Invasion of Mammalian Cells by L. monocytogenes ............................................ 7 1.4 Is there an Environmental Reservoir for L. monocytogenes? ...................................... 7 1.5 Interactions between Bacteria and Protozoa ................................................................ 8 1.6 Protozoa as Model Organisms for Study of Pathogenesis ......................................... 10 1.7 Interactions between Pathogenic Bacteria and Protozoa ........................................... 11 1.7.1 Interactions between Gram negative Pathogens and Protozoa ............................ 12 1.7.2 Interactions between Gram positive Pathogens and Protozoa ............................ 19 1.8 Summary .................................................................................................................... 23 1.9 Hypotheses and Aims ................................................................................................ 24 1.9.1 Hypothesis 1 ........................................................................................................ 24 1.9.2 Hypothesis 2 ........................................................................................................ 25 1.9.3 Hypothesis 3 ........................................................................................................ 25 1.10 References ................................................................................................................ 26 Chapter 2: Co-culture of Colpoda spp. with planktonic and biofilm bacteria .......... 44 2.1 Abstract ...................................................................................................................... 44 2.2 Introduction ................................................................................................................ 45 2.3 Materials and Methods ............................................................................................... 48 2.3.1 Ciliates and Culture Conditions .......................................................................... 48 2.3.2 Isolation of Colpoda MLS-5 from a Food processing Environment .................. 48 2.3.3 Bacteria and Culture Conditions ......................................................................... 50 2.3.4 Co-culture of Colpoda and Bacteria in Liquid Medium ..................................... 51 2.3.5 Phagocytosis inhibition assay .............................................................................. 51 ii 2.3.6 Biofilm Grazing Experiments ............................................................................. 52 2.3.7 Haemolysis assay ................................................................................................ 53 2.3.8 Scanning Electron Microscopy (SEM) ............................................................... 53 2.3.9 Transmission Electron Microscopy (TEM) ......................................................... 53 2.3.10 Statistical analysis ............................................................................................. 54 2.4 Results ........................................................................................................................ 54 2.4.1 Isolation and identification of a ciliate isolate from a food processing environment ........................................................................................................ 54 2.4.2 Co-culture of Colpoda RR and MLS-5 with bacteria ......................................... 56 2.4.3 Inhibition of Colpoda Phagocytosis prevents Uptake of Bacterial Cells ............ 58 2.4.4 TEM of Co-cultures of Colpoda RR and MLS-5 with Bacteria. ........................ 59 2.4.5 Co-culture of Colpoda RR and activated charcoal-cultured L. monocytogenes DRDC8 ................................................................................................................ 61 2.4.6 Survival of L. monocytogenes DRDC8 within Colpoda RR Cysts ..................... 62 2.4.7 Biofilm grazing by Colpoda RR and MLS-5 ...................................................... 63 2.5 Discussion .................................................................................................................. 66 2.5.1 Colpoda kill Intra-ciliate L. monocytogenes ....................................................... 68 2.5.2 Differential processing of Gram positive and Gram negative Cells ................... 73 2.5.3 L. monocytogenes Cells associated with Colpoda Cysts ..................................... 74 2.5.4 Interaction of Colpoda with Biofilm Cultures of L. monocytogenes .................. 75 2.5.5 Conclusions ......................................................................................................... 76 2.6 Acknowledgements .................................................................................................... 77 2.7 References .................................................................................................................. 78 Chapter 3: Host Cell Processes Required for Inactivation of L. monocytogenes .... 113 3.1 Abstract .................................................................................................................... 113 3.2 Introduction .............................................................................................................. 114 3.3 Experimental Procedures ......................................................................................... 115 3.3.1 Organisms and Culture Conditions ................................................................... 115 3.3.2 Co-culture Assays ............................................................................................. 116 3.3.3 Enumeration of Intracellular Bacteria ............................................................... 116 iii 3.3.4 Inhibitors of Vacuolar Acidification, Phagosome-lysosome Fusion and Proteases ..................................................................................................... 116 3.3.5 Fluorescence microscopy .................................................................................. 118 3.3.6 Transmission electron microscopy (TEM) ........................................................ 118 3.3.7 Statistical Analysis ............................................................................................ 118 3.4 Results ...................................................................................................................... 119 3.4.1 Co-cultures of L. monocytogenes DRDC8 and Colpoda RR ............................ 119 3.4.2 Fluorescence Microscopy of Phagosome-lysosome Fusion and Vacuolar Acidification within Colpoda RR ..................................................................... 119 3.4.3 Inhibition of Phagosome-Lysosome Fusion inhibits killing of DRDC8 ........... 120 3.4.4 Bafilomycin and Monensin inhibit Vacuole Acidification in Colpoda RR ...... 121 3.4.5 Protease Inhibitors limit killing of DRDC8 within Phagolysosomes ............... 122 3.4.6 L-NMMA-induced inhibition of Ciliate Nitric Oxide Production .................... 123 3.4.7 Superoxide Production by Colpoda RR ............................................................ 123 3.5 Discussion ................................................................................................................ 124 3.5.1 Phagosome-lysosome Fusion mediates killing of L. monocytogenes ............... 124 3.5.2 Proteases assist killing of L. monocytogenes .................................................... 127 3.5.3 L. monocytogenes is insensitive to Nitric Oxide ............................................... 128 3.5.4 Superoxides ....................................................................................................... 129 3.5.5 Inhibitor mediated uptake of L. monocytogenes by Colpoda ............................ 130 3.5.6 Conclusions ....................................................................................................... 131 3.6 References ................................................................................................................ 133 Chapter 4: Secretion of L. monocytogenes within Ciliate-derived Faecal Pellets ... 151 4.1 Abstract .................................................................................................................... 151 4.2 Introduction .............................................................................................................
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Effects of Chlorophyllin on Encystment Suppression and Excystment Induction in Colpoda Cucullus Nag-1: an Implication of Chlorophyllin Receptor
    Asian Jr. of Microbiol. Biotech. Env. Sc. Vol. 22 (4) : 2020 : 573-578 © Global Science Publications ISSN-0972-3005 EFFECTS OF CHLOROPHYLLIN ON ENCYSTMENT SUPPRESSION AND EXCYSTMENT INDUCTION IN COLPODA CUCULLUS NAG-1: AN IMPLICATION OF CHLOROPHYLLIN RECEPTOR MASAYA MORISHITA1, FUTOSHI SUIZU2, MIKIHIKO ARIKAWA3 AND TATSUOMI MATSUOKA3 1Department of Biological Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan 2Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; 3Department of Biological Science, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan (Received 22 March, 2020; accepted 4 August, 2020) Key words: Chlorophyllin, Chlorophyllin receptors, Resting cyst, Cyst wall, Trypsin Abstract–Among the molecules suppressing encystment and inducing excystment of Colpoda cucullus Nag- 1, sodium copper chlorophyllin is the only molecule whose molecular structure is known. The present study showed that sodium iron chlorophyllin also had marked effects. When the encysting cells (2-day-aged immature cysts) of C. cucullus Nag-1 were treated with trypsin (1 mg/mL), excystment was suppressed. In this case, most of the cysts that failed to excyst were alive, because the selective permeability of the plasma membrane of these cysts functioned normally. These results suggest that presumed chlorophyllin receptors which are involved in the induction of excystment may occur on the plasma membranes of the resting cysts. Two-day-aged cysts (immature cysts) are surrounded by thick cyst walls. We assessed whether chlorophyllin and trypsin (23 kDa) penetrate across the cyst wall. When the cysts were immersed in the fluorescent molecule phycocyanin (40 kDa), a vivid phycocyanin fluorescence was observed inside or on the cyst wall, indicating that phycocyanin penetrates across the cyst wall.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Based on SSU Rdna Sequences
    J. Eukaryot. Microbiol., 48(5), 2001 pp. 604±607 q 2001 by the Society of Protozoologists Phylogenetic Position of Sorogena stoianovitchae and Relationships within the Class Colpodea (Ciliophora) Based on SSU rDNA Sequences ERICA LASEK-NESSELQUISTa and LAURA A. KATZa,b aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts 01063, and bProgram in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA ABSTRACT. The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classi®ed based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda in¯ata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea). Key Words. Bursariomorphida, ciliate phylogeny, Colpodida, Cyrtolophosidida, molecular systematics, Nassophorea, Sorogenida. OROGENA stoianovitchae is a unique ciliate that aggregates partial B. sphagni sequence), provide the ®rst molecular hy- S to produce an aerial fruiting body when cells are starved.
    [Show full text]
  • Molecular Events During Resting Cyst Formation in Unicellular Eukaryote Colpoda
    Mini Review ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.23.003916 Molecular Events During Resting Cyst Formation in Unicellular Eukaryote Colpoda Tatsuomi Matsuoka* Department of Biological Science, Faculty of Science & Technology, Kochi University, Japan *Corresponding author: T Matsuoka, Department of Biological Science, Faculty of Science & Technology, Kochi University 780-8520, Japan ARTICLE INFO Abstract Received: November 20, 2019 An understanding of intracellular signaling pathways leading to resting cyst formation (encystment) is essential for the development of clinical drugs to prevent Published: December 04, 2019 the life cycle of pathogenic unicellular eukaryotes. Recent studies imply that there are common signaling pathways among pathogenic and nonpathogenic unicellular Citation: Tatsuomi Matsuoka. Molecu- eukaryotes. This paper describes molecular events, including signaling pathways, in lar Events During Resting Cyst Formation the encystment of the nonpathogenic unicellular eukaryote Colpoda, based on results obtained mainly in our laboratory in the past 20 years. in Unicellular Eukaryote Colpoda. Bi- 2+ 2+ omed J Sci & Tech Res 23(3)-2019. BJSTR. Abbreviations: Ca /CaM: Ca /calmodulin; UV: Ultraviolet rays; PKA: Protein kinase A; Phos-tag/ECL: Phosphate-binding tag/enhanced chemiluminescence; LC-MS/MS: MS.ID.003916. Liquid chromatography-tandem mass spectrometry; 2-D PAGE: Two-dimensional Keywords: Colpoda; Resting Cysts; polyacrylamide gel electrophoresis; SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide Encystment; Ca2+/Calmodulin; cAMP; Phosphorylation eEF2K : Eukaryotic Elongation Factor-2 Kinase gel electrophoresis: EF-1α: Elongation factor 1α; AMPK: AMP-activated protein kinase; Introduction temperature, acid, and UV light [4-7]. In the case of Colpoda cucullus One strategy of some pathogenic unicellular eukaryotes is to Nag-1 [8], encystment can be induced by suspending vegetative form resting cysts that are resistant to the environmental stresses Colpoda cells at a high cell density in the presence of Ca2+ [3].
    [Show full text]
  • Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas Pontica, a Close Relative of Chromerids and Apicomplexan Parasites
    Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas pontica, a Close Relative of Chromerids and Apicomplexan Parasites Gillian H. Gile*, Claudio H. Slamovits Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Abstract Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid- bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 59 end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity’s most deadly parasite. Citation: Gile GH, Slamovits CH (2014) Transcriptomic Analysis Reveals Evidence for a Cryptic Plastid in the Colpodellid Voromonas pontica, a Close Relative of Chromerids and Apicomplexan Parasites.
    [Show full text]
  • Phylogenomic Analysis of Balantidium Ctenopharyngodoni (Ciliophora, Litostomatea) Based on Single-Cell Transcriptome Sequencing
    Parasite 24, 43 (2017) © Z. Sun et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017043 Available online at: www.parasite-journal.org RESEARCH ARTICLE Phylogenomic analysis of Balantidium ctenopharyngodoni (Ciliophora, Litostomatea) based on single-cell transcriptome sequencing Zongyi Sun1, Chuanqi Jiang2, Jinmei Feng3, Wentao Yang2, Ming Li1,2,*, and Wei Miao2,* 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, PR China 3 Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, PR China Received 22 April 2017, Accepted 12 October 2017, Published online 14 November 2017 Abstract- - In this paper, we present transcriptome data for Balantidium ctenopharyngodoni Chen, 1955 collected from the hindgut of grass carp (Ctenopharyngodon idella). We evaluated sequence quality and de novo assembled a preliminary transcriptome, including 43.3 megabits and 119,141 transcripts. Then we obtained a final transcriptome, including 17.7 megabits and 35,560 transcripts, by removing contaminative and redundant sequences. Phylogenomic analysis based on a supermatrix with 132 genes comprising 53,873 amino acid residues and phylogenetic analysis based on SSU rDNA of 27 species were carried out herein to reveal the evolutionary relationships among six ciliate groups: Colpodea, Oligohymenophorea, Litostomatea, Spirotrichea, Hetero- trichea and Protocruziida. The topologies of both phylogenomic and phylogenetic trees are discussed in this paper. In addition, our results suggest that single-cell sequencing is a sound method of obtaining sufficient omics data for phylogenomic analysis, which is a good choice for uncultivable ciliates.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • Transcriptome Analysis Reveals the Encystment-Related Lncrna
    www.nature.com/scientificreports OPEN Transcriptome analysis reveals the encystment‑related lncRNA expression profle and coexpressed mRNAs in Pseudourostyla cristata Nan Pan1,4, Muhammad Zeeshan Bhatti2,3,4, Wen Zhang1, Bing Ni1, Xinpeng Fan1* & Jiwu Chen1* Ciliated protozoans form dormant cysts for survival under adverse conditions. The molecular mechanisms regulating this process are critical for understanding how single‑celled eukaryotes adapt to the environment. Despite the accumulated data on morphology and gene coding sequences, the molecular mechanism by which lncRNAs regulate ciliate encystment remains unknown. Here, we frst detected and analyzed the lncRNA expression profle and coexpressed mRNAs in dormant cysts versus vegetative cells in the hypotrich ciliate Pseudourostyla cristata by high‑throughput sequencing and qRT‑PCR. A total of 853 diferentially expressed lncRNAs were identifed. Compared to vegetative cells, 439 and 414 lncRNAs were upregulated and downregulated, respectively, while 47 lncRNAs were specifcally expressed in dormant cysts. A lncRNA‑mRNA coexpression network was constructed, and the possible roles of lncRNAs were screened. Three of the identifed lncRNAs, DN12058, DN20924 and DN30855, were found to play roles in fostering encystment via their coexpressed mRNAs. These lncRNAs can regulate a variety of physiological activities that are essential for encystment, including autophagy, protein degradation, the intracellular calcium concentration, microtubule‑associated dynein and microtubule interactions, and cell proliferation inhibition. These fndings provide the frst insight into the potentially functional lncRNAs and their coexpressed mRNAs involved in the dormancy of ciliated protozoa and contribute new evidence for understanding the molecular mechanisms regulating encystment. Ciliated protozoa are a diverse group of eukaryotes that are commonly found in diferent ecosystems in Earth’s biosphere1.
    [Show full text]
  • Cryo-Preservation of the Parasitic Protozoa
    Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 161-200 161 CRYO-PRESERVATION OF THE PARASITIC PROTOZOA AKIRA MIYATA Received for publication 1 September 1975 Abstract: In the present paper, about 200 literatures on the cryo-preservation of the parasitic protozoa have been surveyed, and the following problems have been discussed : cooling rate, storage periods at various temperatures, effects of cryo-protective substances in relation to equilibration time or temperatures, and biological properties before and after freezing. This paper is composed of three main chapters, and at first, the history of cryo-preservation is reviewed in details. In the second chapter, other literatures, which were not cited in the first chapter, are introduced under each genera or species of the protozoa. In the last chapter, various factors on cryo-preservation mentioned above are discussed by using the author's data and other papers in which various interesting prob- lems were described. The following conclusions have been obtained in this study: Before preservation at the lowest storage temperature, it appears preferable that samples are pre-cooled slowly at the rate of 1 C per minute until the temperature falls to -25 to -30C. The cooling rate might be obtained by the cooling samples for 60 to 90 minutes at -25 to -30 C freezer. For storage, however, lower temperatures as low as possible are better for prolonged storage of the samples. Many workers recommended preservation of the samples in liquid nitrogen or in its vapor, but the storage in a dry ice cabinet or a mechanical freezer is also adequate, if the samples are used within several weeks or at least several months.
    [Show full text]
  • Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2009 Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Life Sciences Commons Recommended Citation Dunthorn, Micah, "Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers" (2009). Open Access Dissertations. 95. https://doi.org/10.7275/fyvd-rr19 https://scholarworks.umass.edu/open_access_dissertations/95 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented by MICAH DUNTHORN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2009 Organismic and Evolutionary Biology © Copyright by Micah Dunthorn 2009 All Rights Reserved CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented By MICAH DUNTHORN Approved as to style and content by: _______________________________________
    [Show full text]
  • Molecular Phylogeny and Surface Morphology of Colpodella Edax (Alveolata): Insights Into the Phagotrophic Ancestry of Apicomplexans
    J. Eukaryot. Microbiol., 50(5), 2003 pp. 334±340 q 2003 by the Society of Protozoologists Molecular Phylogeny and Surface Morphology of Colpodella edax (Alveolata): Insights into the Phagotrophic Ancestry of Apicomplexans BRIAN S. LEANDER,a OLGA N. KUVARDINA,b VLADIMIR V. ALESHIN,b ALEXANDER P. MYLNIKOVc and PATRICK J. KEELINGa aCanadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and bDepartments of Evolutionary Biochemistry and Invertebrate Zoology, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119 992, Russian Federation, and cInstitute for the Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavskaya oblast, 152742, Russian Federation ABSTRACT. The molecular phylogeny of colpodellids provides a framework for inferences about the earliest stages in apicomplexan evolution and the characteristics of the last common ancestor of apicomplexans and dino¯agellates. We extended this research by presenting phylogenetic analyses of small subunit rRNA gene sequences from Colpodella edax and three unidenti®ed eukaryotes published from molecular phylogenetic surveys of anoxic environments. Phylogenetic analyses consistently showed C. edax and the environmental sequences nested within a colpodellid clade, which formed the sister group to (eu)apicomplexans. We also presented surface details of C. edax using scanning electron microscopy in order to supplement previous ultrastructural investigations of this species using transmission electron microscopy and to provide morphological context for interpreting environmental sequences. The microscopical data con®rmed a sparse distribution of micropores, an amphiesma consisting of small polygonal alveoli, ¯agellar hairs on the anterior ¯agellum, and a rostrum molded by the underlying (open-sided) conoid.
    [Show full text]