Download File

Total Page:16

File Type:pdf, Size:1020Kb

Download File The Genetic Architecture of Alopecia Areata Lynn Petukhova Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 ©2013 Lynn Petukhova All rights reserved ABSTRACT The Genetic Architecture of Alopecia Areata Lynn Petukhova Alopecia areata (AA) is the most prevalent autoimmune disease in the US. With An estimated lifetime risk of 1.7%, it affects both genders with similar frequencies and people of all ages. AA affects more individuals than most other autoimmune diseases combined, and yet despite its prevalence, there is an enormous unmet medical need, in part due to the dearth of information about the underlying pathogenesis. In AA, autoimmunity arises against the hair follicles in the skin, which causes hair loss associated with an aberrant accumulation of immune-response cells around the affected hair follicles. Evidence supporting a genetic basis for AA stems from multiple lines of research, including increased risk of disease in first degree relatives, twin studies, and more recently, our initial family-based linkage study and genome wide association study (GWAS) in a cohort of unrelated individuals. Importantly, our GWAS identified a set of 16 statistically independent risk haplotypes across 8 loci, implicating specific genes that increase risk of AA, all of which have been validated. Genome wide genetic studies can provide critical insight into disease mechanisms, especially when little is known about the underlying causes of disease. In this study, I use complementary gene mapping methods, performing one study in a cohort of families and a second study in a cohort of unrelated cases and controls. Using these two approaches, I obtain new evidence about the genetic influences on AA. Our family cohort contains statistically significant evidence for linkage at a new locus, on chromosome 2q36.1-q37.3 (LOD=4.17) and family-based tests of association implicate 47 genes. I then conducted a GWAS that expanded our initial cohort with the addition of 800 cases and obtained statistically significant evidence for a new locus at chromosome 16p13.13 (p=4.6x10-7). This region has been implicated in several other autoimmune diseases and contains several genes that are known to be involved with immune processes. Taken together, these two studies demonstrate the presence of both rare and common variants are contributing to AA etiology and support emerging evidence that suggests the genetic architecture of common complex diseases involves both rare and common variants. Table of Contents Page Paper 1 1 Introduction 2 Clinical Manifestations of Alopecia Areata 5 Treatment 7 Epidemiological Studies in Alopecia Areata 9 Etiology 13 Future Directions 23 Figures and Legends 26 References 28 Paper 2 39 Abstract 40 Introduction 41 Materials and Methods 44 Results 46 Discussion 50 Figures and Legends 54 Tables 62 References 157 Paper 3 161 Abstract 162 Introduction 162 Materials and Methods 164 Results 166 Discussion 167 Figures and Legends 170 Tables 173 References 174 Conclusions and Future Directions 176 Introduction 177 Summary of Findings 179 Implications of Findings 180 Future Research 181 References 182 i Lists of Charts, Graphs, Illustrations Page Paper 1 Figure 1. Trajectory of Disease. 26 Figure 2. Trajectory for the discovery of Crohn’s disease risk genes. 27 Paper 2 Figure 1. Pedigrees. 55 Figure 2. Whole genome plot of nonparametric linkage analysis. 56 Figure 3. Whole genome plot of nonparametric linkage analysis for seven 57 families. Figure 4. Pedigree-based association tests identified significant associations 58 within eight linkage intervals. Figure 5. Pseudomarker identified significant associations within three 59 linkage intervals. Figure 6. Pseudomarker Results across all regions tested. 60 Figure 7. A comparison of SNP linkage scan with microsatellite linkage scan. 61 Table 1. Nonparametric linkage results. 62 Table 2. Linkage evidence within families. 63 Table 3. Results of PBAT|Linkage. 63 Table 4. Psuedomarker results. 68 Table 5. Genome-wide PBAT results. 79 Table 6. Integrated association results. 153 Table 7. Summary of genes implicated in this study. 154 Table 8. Distribution of GWAS risk alleles in our family cohort. 156 Paper 3 Figure 1. Manhattan plot for genome-wide tests of association 170 Figure 2. Detailed map of associated SNPs and gene locations for 171 chromosome 16p13.13. Figure 3. Manhattan plot for a case only genome-wide tests of association. 172 Table 1. Case-only results. 173 ii Acknowledgments This dissertation is the culmination of many hours of academic training and informal mentoring, encouragement and support that that have been generously bestowed upon me by numerous members of the Columbia University Medical Center community. I thank all of the members of my dissertation committee. I am enormously grateful and forever indebted to Professor Angela M. Christiano for the pivotal role that she has played in this process. She has inspired me from the beginning, encouraging me to apply to the doctoral program in Epidemiology, serving as my benefactor, training me as a scientist and an academic, teaching me perseverance, navigating me through the many challenges of graduate school, and showing me how to light the world on fire by blazing trails. I thank Professor Ruth Ottman for serving as my academic advisor and transitioning into my dissertation sponsor. I am greatly appreciative of our weekly meetings, her patience in both listening and responding to my evolving thoughts, and the critical feedback that she gave me on earlier versions of my dissertation. I thank Professor Sharon Schwartz who inspired my love of causal inference and provided invaluable guidance and encouragement as I sought (and continue to seek) to apply this knowledge to the field of human genetics. I thank Professor Susan E. Hodge for teaching me to think and write with precision and clarity, and for her advice on biostatistics, parenting, and finding balance in life. Finally, I thank Professor Neil W. Schluger for serving as the Chair of my dissertation committee. I thank Drs. Karestan C. Koenen and Joseph H. Lee for serving as readers on my dissertation proposal. I additionally thank Dr. Joseph H. Lee, who along with Drs. Joseph Terwilliger, Krzysztof Kiryluk, Prakash Gorroochurn, and William C. Stewart, and Professors Peter K. Gregersen, David Greenberg, and Martina Durner, provided guidance and advice about the design and analysis of human genetic studies. I thank Professors Leslie Davidson iii and Sandro Galea for their wisdom and support. I am grateful to the many students whose comradery was inspirational and in particular to Drs. Ann Madsen and Ettie Lipner. I thank the members of Team Christiano, especially Drs. Yutaka Shimomura, Katherine Fantauzzo, Hyunmi Kim, Alison Barber, Courtney Luke, Claire A. Higgins, and Sivan Harel. Finally, I thank Liliane Zaretsky for always having an open door and a warm smile. I thank Professor Jurg Ott from Rockefeller University and the Chinese Academy of Sciences for encouraging me to pursue academic training and introducing me to the Columbia University Medical Center. There are an army of people who will forever hold my gratitude for helping me to equilibrate parenting with my academic aspirations, including the administration, faculty, and fellow parents at St. Ignatius Loyola School and the Convent of the Sacred Heart, 91st Street. This accomplishment could not have been achieved without the support of my family, including most significantly from my husband, Dr. Sergei A. Petukhov, and my parents, Dr. and Mrs. Lawrence D. Orvieto. iv Dedication My dissertation is dedicated to my children, Kira Petukhova and Aleksandr Petukhov, for several reasons. First, they are the unsung heroes of this endeavor; enduring the ups and downs of graduate school with me, compromising schedules, and chipping in with chores so that we, as a family, could carve out time for my doctoral program. Second, because they were, and continue to be, an eternal source of inspiration; in an obvious way with their loud cheerleading and quiet prayers; and in a subtle way, the way children do, by providing an entirely new perspective on life’s decisions. Finally, because there is an often iterated trepidation in science that children will be an impediment to success in research. While there is clearly a need for improved institutional infrastructure to support women in science, in dedicating this work to my children, I hope to highlight benefits of balancing motherhood with research. Children remind you to be curious and find awe in nature, they train you to be exceptionally organized, and they inspire you to be great. My children are the foundation to the success that I have achieved in my doctoral program. v 1 Paper 1 Towards Defining the Causal Structure of Alopecia Areata 2 Introduction Alopecia areata is an autoimmune disease that targets the hair follicles in the skin, causing disfiguring hair loss marked histologically by an accumulation of immune-response cells around the affected hair follicles. AA is the most prevalent autoimmune disease in the United States.1,2 With a lifetime risk of 1.7%,3 it targets both men and women and affects people of all ages.4-6 AA affects more individuals than most other autoimmune diseases combined, yet despite its prevalence, there is an enormous unmet medical need7 that arises primarily from the dearth of information about its underlying pathogenesis and is compounded by a lack of studies on its natural history, which presents challenges in designing robust and efficient clinical trials. As an autoimmune disease, AA falls within a broader category of related disorders that are characterized by an aberrant targeted immune attack on cells, tissues or organs. Collectively autoimmune diseases carry a tremendous public health burden in the US and globally.8-11 In the US, 5-8% of the population is affected by an autoimmune disease,1 which results in annual direct health care costs of at least $100 billion,2 and additional economic burden due to lost earnings.
Recommended publications
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
    ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Unique Protein Expression Signatures of Survival Time in Kidney Renal Clear
    The Author(s) BMC Genomics 2017, 18(Suppl 6):678 DOI 10.1186/s12864-017-4026-6 RESEARCH Open Access Unique protein expression signatures of survival time in kidney renal clear cell carcinoma through a pan-cancer screening Guangchun Han1, Wei Zhao2, Xiaofeng Song3, Patrick Kwok-Shing Ng4, Jose A. Karam5, Eric Jonasch6, Gordon B. Mills2, Zhongming Zhao1,7*, Zhiyong Ding2* and Peilin Jia1* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2016 Houston, TX, USA. 08-10 December 2016 Abstract Background: In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and 14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease. Accordingly, in this study we systematically investigated KIRC’s prognostic biomarkers for survival using the reverse phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA). Results: With comprehensive data available in TCGA, we systematically screened protein expression based survival biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time. This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers.
    [Show full text]
  • The Landscape of Human Mutually Exclusive Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Transcriptional and Epigenetic Role of Brd4 in the Regulation of the Cellular Stress Response
    THE TRANSCRIPTIONAL AND EPIGENETIC ROLE OF BRD4 IN THE REGULATION OF THE CELLULAR STRESS RESPONSE INAUGURAL-DISSERTATION to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Michelle Hussong from Zweibrücken 2015 Die vorliegende Arbeit wurde im Zeitraum von Juli 2012 bis September 2015 am Max- Planck-Institut für Molekulare Genetik in Berlin sowie an der Universität zu Köln unter der Leitung von Frau Prof. Dr. Dr. Michal-Ruth Schweiger angefertigt. 1. Gutachter: Prof. Dr. Dr. Michal-Ruth Schweiger 2. Gutachter: Prof. Dr. Rupert Mutzel Disputation am 07.12.2015 ACKNOWLEDGMENT ACKNOWLEDGMENT This dissertation would not have been possible without the guidance and the help of many people who in one way or another contributed to the preparation and completion of this study. Firstly, I would like to express my sincere gratitude to my advisor Prof. Dr. Dr. Michal-Ruth Schweiger, for her continuous support throughout my PhD study, for her patience, motivation, and immense knowledge. I am eminently thankful for the multiple possibilities she gave me to work on this interesting and challenging field of research. I also want to thank Professor Dr. Rupert Mutzel for taking the time of being my second supervisor. My sincere thanks also goes to Prof. Dr. Hans Lehrach for having given me the opportunity to do my PhD thesis in the extraordinary and inspiring environment at the Max-Planck- Institute for Molecular Genetics in Berlin. Especially, the multitude of technologies and knowledge in his department made my work successful.
    [Show full text]
  • Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
    Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018
    [Show full text]
  • Mutations in Genes Encoding Sorting Nexins Alter Production of Intracellular And
    Genetics: Published Articles Ahead of Print, published on February 9, 2009 as 10.1534/genetics.108.095315 Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans Margaret E. Katz*, Cara J. Evans*, Emma E. Heagney*1, Patricia A. vanKuyk*2, Joan M. Kelly†, and Brian F. Cheetham* *Molecular and Cellular Biology, University of New England, Armidale, N.S.W. 2351, Australia. † Molecular and Biomedical Science, University of Adelaide, S.A. 5005, Australia 1Current address for E. E. Heagney: Forensic DNA, Division of Analytical Laboratories, ICPMR, Lidcombe, NSW 2141, Australia. 2Current address for P. A. vanKuyk: Molecular Microbiology, IBL, Leiden University, NL-2300 RA Leiden, The Netherlands 1 Running title: Sorting nexins in Aspergillus nidulans Key words: xprG, gene regulation, VPS5, VPS17, NDT80 Corresponding author: Assoc. Prof. Margaret E. Katz, Molecular and Cellular Biology, University of New England, Armidale, N.S.W. 2351, AUSTRALIA. Tel: +61-2-6773-3016 Fax: +61-2-6773-3267 email: [email protected] 2 ABSTRACT XprG, a putative p53-like transcriptional activator, regulates production of extracellular proteases in response to nutrient limitation and may also have a role in programmed cell death. To identify genes which may be involved in the XprG regulatory pathway, xprG2 revertants were isolated and shown to carry mutations in genes which we have named sogA-C (suppressors of xprG). The translocation breakpoint in the sogA1 mutant was localized to a homologue of S. cerevisiae VPS5 and mapping data indicated that sogB was tightly linked to a VPS17 homologue. Complementation of the sogA1 and sogB1 mutations and identification of nonsense mutations in the sogA2 and sogB1 alleles confirmed the identification.
    [Show full text]
  • Analyses of Circrna Profiling During the Development from Pre-Receptive
    Song et al. Journal of Animal Science and Biotechnology (2019) 10:34 https://doi.org/10.1186/s40104-019-0339-4 RESEARCH Open Access Analyses of circRNA profiling during the development from pre-receptive to receptive phases in the goat endometrium Yuxuan Song*†, Lei Zhang†, Xiaorui Liu†, Mengxiao Niu†, Jiuzeng Cui, Sicheng Che, Yuexia Liu, Xiaopeng An and Binyun Cao Abstract Background: Recent studies have revealed that noncoding RNAs play important regulatory roles in the formation of endometrial receptivity. Circular RNAs (circRNAs) are a universally expressed noncoding RNA species that have been recently proposed to act as miRNA sponges that directly regulate expression of target genes or parental genes. Results: We used Illumina Solexa technology to analyze the expression profiles of circRNAs in the endometrium from three goats at gestational day 5 (pre-receptive endometrium, PE) and three goats at gestational day 15 (receptive endometrium, RE). Overall, 21,813 circRNAs were identified, of which 5,925 circRNAs were specific to the RE and 9,078 were specific to the PE, which suggested high stage-specificity. Further analysis found 334 differentially expressed circRNAs in the RE compared with PE (P < 0.05). The analysis of the circRNA-miRNA interaction network further supported the idea that circRNAs act as miRNA sponges to regulate gene expression. Moreover, some circRNAs were regulated by estrogen (E2)/progesterone (P4) in endometrial epithelium cell lines (EECs) and endometrial stromal cell line (ESCs), and each circRNA molecule exhibited unique regulation characteristics with respect to E2 and P4. Conclusions: These data provide an endometrium circRNA expression atlas corresponding to the biology of the goat receptive endometrium during embryo implantation.
    [Show full text]
  • C6cc08797c1.Pdf
    Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017 Supplementary Information for Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane James A. Clulow,a,‡ Elisabeth M. Storck,a,‡ Thomas Lanyon-Hogg,a,‡ Karunakaran A. Kalesh,a Lyn Jonesb and Edward W. Tatea,* a Department of Chemistry, Imperial College London, London, UK, SW7 2AZ b Worldwide Medicinal Chemistry, Pfizer, 200 Cambridge Park Drive, MA 02140, USA ‡ Authors share equal contribution * corresponding author, email: [email protected] Table of Contents 1 Supporting Figures..........................................................................................................................3 2 Supporting Tables.........................................................................................................................17 2.1 Supporting Table S1. Incorporation validation for the R10K8 label in the 'spike-in' SILAC proteome of the MCF7 cell line........................................................................................................17 2.2 Supporting Table S2. Incorporation validation for the R10K8 label in the 'spike-in' SILAC proteome of the MDA-MB-231 cell line ...........................................................................................17 2.3 Supporting Table S3. High- and medium- confidence targets of sulforaphane in the MCF7 cell line..............................................................................................................................................17
    [Show full text]
  • Bioinformatics Analysis of Hereditary Disease Gene Set to Identify Key Modulators of Myocardial Remodeling During Heart Regeneration in Zebrafish
    EPiC Series in Computing Volume 70, 2020, Pages 226{237 Proceedings of the 12th International Conference on Bioinformatics and Computational Biology Bioinformatics analysis of hereditary disease gene set to identify key modulators of myocardial remodeling during heart regeneration in zebrafish Lawrence Yu-Min Liu1,2, Zih-Yin Lai1, Min-Hsuan Lin1, Yu Shih3 and Yung-Jen Chuang1 1 Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan 2 Division of Cardiology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, 30071, Taiwan 3 Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan [email protected], [email protected], [email protected], [email protected], [email protected] Abstract Unlike mammals, adult zebrafish hearts retain a remarkable capacity to regenerate after injury. Since regeneration shares many common molecular pathways with embryonic development, we investigated myocardial remodeling genes and pathways by performing a comparative transcriptomic analysis of zebrafish heart regeneration using a set of known human hereditary heart disease genes related to myocardial hypertrophy during development. We cross-matched human hypertrophic cardiomyopathy-associated genes with a time-course microarray dataset of adult zebrafish heart regeneration. Genes in the expression profiles that were highly elevated in the early phases of myocardial repair and remodeling after injury in zebrafish were identified. These genes were further analyzed with web-based bioinformatics tools to construct a regulatory network revealing potential transcription factors and their upstream receptors. In silico functional analysis of these genes showed that they are involved in cardiomyocyte proliferation and differentiation, angiogenesis, and inflammation-related pathways.
    [Show full text]
  • Characterization of the Regulation of the Er Stress Response by the Dna Repair Enzyme Aag
    DECIPHERING THE CROSSTALK: CHARACTERIZATION OF THE REGULATION OF THE ER STRESS RESPONSE BY THE DNA REPAIR ENZYME AAG Clara Forrer Charlier Faculty of Health and Medical Sciences Department of Biochemistry and Physiology This thesis is submitted for the degree of Doctor of Philosophy June 2018 DECIPHERING THE CROSSTALK: CHARACTERIZATION OF THE REGULATION OF THE ER STRESS RESPONSE BY THE DNA REPAIR ENZYME AAG- Clara Forrer Charlier – June 2018 SUMMARY The genome is a very dynamic store of genetic information and constantly threatened by endogenous and exogenous damaging agents. To maintain fidelity of the information stored, several robust and overlapping repair pathways, such as the Base Excision Repair (BER) pathway, have evolved. The main BER glycosylase responsible for repairing alkylation DNA damage is the alkyladenine DNA glycosylase (AAG). Repair initiated by AAG can lead to accumulation of cytotoxic intermediates. Here, we report the involvement of AAG in the elicitation of the unfolded protein response (UPR), a mechanism triggered to restore proteostasis in the cell whose dysfunction is implicated in diseases like diabetes, Alzheimer’s disease and cancer. Firstly, we determined that not only human ARPE-19 cells were capable of eliciting the UPR, but that an alkylating agent, methyl methanesulfonate (MMS), also triggers the response, and that in the absence of AAG the response is greatly diminished. Our luciferase reporter assay indicates that the response is activated on multiple branches (IRE1 and ATF6) on both AAG-proficient and deficient cells. Although no transcriptional induction of UPR markers was detected by RT-qPCR at 6 hours post MMS treatment, preliminary western-blot data at 6 and 24h, show activation of key UPR markers (p-eIF2α, BiP and XBP-1) upon MMS treatment in wild-type cells and little or no activation on AAG -/-.
    [Show full text]