A Systems Chemical Biology Approach for Dissecting Differential

Total Page:16

File Type:pdf, Size:1020Kb

A Systems Chemical Biology Approach for Dissecting Differential University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School June 2018 A Systems Chemical Biology Approach for Dissecting Differential Molecular Mechanisms of Action of Clinical Kinase Inhibitors in Lung Cancer Natalia Junqueira Sumi University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Molecular Biology Commons Scholar Commons Citation Junqueira Sumi, Natalia, "A Systems Chemical Biology Approach for Dissecting Differential Molecular Mechanisms of Action of Clinical Kinase Inhibitors in Lung Cancer" (2018). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7685 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Systems Chemical Biology Approach for Dissecting Differential Molecular Mechanisms of Action of Clinical Kinase Inhibitors in Lung Cancer by Natalia Junqueira Sumi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a concentration in Cancer Biology Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Uwe Rix, Ph.D. Nicholas J. Lawrence, Ph.D. Keiran S. Smalley, Ph.D. W. Douglas Cress, Ph.D. Eric B. Haura, MD. Forest White, PhD. Date of Approval: March 31, 2018 Keywords: Proteomics, lung cancer, RNA-seq, network, bioinformatics, drug combination Copyright © 2018, Natalia Junqueira Sumi DEDICATION This dissertation is primarily dedicated to me. It is the result of much perseverance and hard work, and a commitment to achieving better quality of life and financial security for my family. Secondly, I dedicate this work to my family: knowing that at the end of this project we would be together and happy inspired me to push forward, especially when times were tough. I am lucky that my husband is working in the same field and understands that all this work is necessary for our future. He has always believed that I could succeed as a researcher and he reminded me of my strength when I had forgotten. Finally, I dedicate this work to my lovely son, God’s great gift in my life. He inspired me to finish this thesis and to always give the best of myself in my work. I hope one day he will be proud of me and understand how important higher education can be in a person’s life. ACKNOWLEDGMENT First, I would like to thank Dr. Uwe Rix for the opportunity to do my PhD work in his lab, exploring a question I have been interested in since my undergraduate studies: What are the complete target profiles of drugs and what are their mechanisms of action in cells? I am grateful for his guidance throughout these last four years and I am leaving the program with confidence in my abilities to work independently as a scientist. Most importantly, I am grateful for his support during the most significant time of my life, welcoming and caring for my amazing baby boy. I also want to extend a huge thank you to the members of the Rix lab for all their support, input during lab meetings and company during afternoon coffee breaks: To Brent Kuenzi for his help with the chemistry and data analyses for the CDK project. To Lily Rix for all her help and support, for organizing both the laboratory and girls’ nights, and especially for her smile, even after I had asked so many questions. To Claire Knezevic for her wonderful example of professionalism and organization, and being an overall amazing person. To Gabriela Wright for not only being an incredible laboratory technician and manager, but for inspiring in me the perseverance to always grow professionally. To Annamarie Bryant for her kindness and enthusiasm, especially at times when my own fervor waned. To Claudia Ctortecka for contributing not only to this project, but to the well-being of myself and my son. She is an angel sent to me from the other side of the world and I would not have made it through this project, or my pregnancy, without her. To Grace Ward for her friendship and companionship during coffee breaks and lunches. I would like to thank my thesis committee for their time and guidance during this project. It was a complex mechanism of action to solve and their input was fundamental in determining the answer. I would like to thank Dr. White in particular for taking the time to travel to Florida and participate as an external chair. I am grateful to my funding sources, especially Circle of Hope for Cancer Research Inc. for enabling me to expand my research, and the University of South Florida for granting me a travel award to Italy for a bioinformatics course and presentation of my research. I would also like to extend my gratitude to the Cancer Biology PhD Program for providing such high quality lectures and support to its students. A special thanks to Cathy, Kim, and Janet for making the entire graduate student experience, from registration to graduation, less stressful. I would like to thank Moffitt Cancer Center and the Research Cores in proteomics, molecular genetics, flow cytometry, and microscopy. Thank you for your time and patience in training me and answering all my questions. Finally, I would like to thank my mother for putting her life on pause to come and help me. Mama, thank you for driving the long distances, grocery shopping, cooking, cleaning, keeping us company in the NICU, loving us unconditionally, and being a lovely grandma to my baby boy. Thank you for taking such great care of our baby boy and encouraging me to finish my degree. Thank you for being on my side one more time. I could not have done this without you and I will try my best to be as wonderful a mother to my son as you have been to me. Thank you also to my brother, whose kind heart has been such a blessing at this very special time in my life. TABLE OF CONTENTS List of Tables ............................................................................................................................. iii List of Figures ............................................................................................................................ iv Abstract vii Chapter One: Introduction ........................................................................................................... 1 Lung cancer .................................................................................................................... 1 Statistics for 2017 ................................................................................................ 1 Types of Lung Cancer .......................................................................................... 2 Treatment ........................................................................................................................ 4 Treatment for NSCLC .......................................................................................... 4 Treatment for SCLC ............................................................................................. 8 Immunotherapy .................................................................................................. 10 Medical need ................................................................................................................. 12 Drug off-targets ............................................................................................................. 13 Integrated analysis for identification of off-targets .......................................................... 18 Mass-spectrometry-based proteomics approaches ............................................ 18 Peptide identification and quantification ............................................................. 24 Protein identification and quantification .............................................................. 25 RNA-sequencing ........................................................................................................... 27 Systems biology ............................................................................................................ 28 Chapter Two: Chemoproteomics reveals novel protein and lipid protein targets of clinical CDK4/6 inhibitors in lung cancer .................................................................. 33 CDK4/6 inhibitors in lung cancer.................................................................................... 33 Experimental design ...................................................................................................... 38 Materials and methods .................................................................................................. 39 Cell culture and reagents ................................................................................... 39 Viability assays .................................................................................................. 40 Immunoblotting .................................................................................................. 40 Kinase assays .................................................................................................... 40 Chemical synthesis ............................................................................................ 41 c-Palbociclib ........................................................................................... 41 c-Ribociclib ............................................................................................
Recommended publications
  • Aurora Kinase a in Gastrointestinal Cancers: Time to Target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4*
    Katsha et al. Molecular Cancer (2015) 14:106 DOI 10.1186/s12943-015-0375-4 REVIEW Open Access Aurora kinase A in gastrointestinal cancers: time to target Ahmed Katsha1, Abbes Belkhiri1, Laura Goff3 and Wael El-Rifai1,2,4* Abstract Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. During the last two decades, several studies have shown amplification and overexpression of Aurora kinase A (AURKA) in several GI malignancies. These studies demonstrated that AURKA not only plays a role in regulating cell cycle and mitosis, but also regulates a number of key oncogenic signaling pathways. Although AURKA inhibitors have moved to phase III clinical trials in lymphomas, there has been slower progress in GI cancers and solid tumors. Ongoing clinical trials testing AURKA inhibitors as a single agent or in combination with conventional chemotherapies are expected to provide important clinical information for targeting AURKA in GI cancers. It is, therefore, imperative to consider investigations of molecular determinants of response and resistance to this class of inhibitors. This will improve evaluation of the efficacy of these drugs and establish biomarker based strategies for enrollment into clinical trials, which hold the future direction for personalized cancer therapy. In this review, we will discuss the available data on AURKA in GI cancers. We will also summarize the major AURKA inhibitors that have been developed and tested in pre-clinical and clinical settings. Keywords: Aurora kinases, Therapy, AURKA inhibitors, MNL8237, Alisertib, Gastrointestinal, Cancer, Signaling pathways Introduction stage [9-11]. Furthermore, AURKA is critical for Mitotic kinases are the main proteins that coordinate ac- bipolar-spindle assembly where it interacts with Ran- curate mitotic processing [1].
    [Show full text]
  • Deficiency of Macrophage PHACTR1 Impairs Efferocytosis and Promotes Atherosclerotic Plaque Necrosis
    Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis Canan Kasikara, … , Muredach P Reilly, Ira Tabas J Clin Invest. 2021. https://doi.org/10.1172/JCI145275. Research In-Press Preview Cardiology Cell biology Graphical abstract Find the latest version: https://jci.me/145275/pdf Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis Canan Kasikara,1 Maaike Schilperoort,1 Brennan Gerlach,1 Chenyi Xue,1 Xiaobo Wang1, Ze Zheng,2 George Kuriakose,1 Bernhard Dorweiler,3 Hanrui Zhang,1 Gabrielle Fredman4, Danish Saleheen,1 Muredach P. Reilly1,5, and Ira Tabas1,6,7 1Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA. 2Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA. 3Department of Vascular Surgery, University of Cologne, Cologne, Germany.4Deparment of Molecular and Cellular Physiology, Albany Medical Center, Albany, New York, USA. 5Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA. 6Department of Physiology and Cellular Biophysics and 7Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA. Address correspondence to: Ira Tabas, Depart of Medicine, Columbia University Irving Medical Center, 630 W. 168th Street, New York, New York 10032, USA. Phone: 212.305.9430; E-mail: [email protected]. 1 Abstract Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains a common variant rs9349379 (A > G) associated with CAD.
    [Show full text]
  • Structure-Based Discovery and Bioactivity Evaluation of Novel
    molecules Article Structure-Based Discovery and Bioactivity Evaluation of Novel Aurora-A Kinase Inhibitors as Anticancer Agents via Docking-Based Comparative Intermolecular Contacts Analysis (dbCICA) Majd S. Hijjawi 1 , Reem Fawaz Abutayeh 2 and Mutasem O. Taha 3,* 1 Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; [email protected] 2 Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan; [email protected] 3 Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan * Correspondence: [email protected]; Tel.: +962-6-535-5000 Academic Editors: Helen Osborn, Mohammad Najlah, Jean Jacques Vanden Eynde, Annie Mayence and Tien L. Huang Received: 15 October 2020; Accepted: 11 December 2020; Published: 18 December 2020 Abstract: Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PHACTR1 Genetic Variability Is Not Critical in Small Vessel Ischemic
    www.nature.com/scientificreports OPEN PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice Clemens Messerschmidt2, Marco Foddis1, Sonja Blumenau1, Susanne Müller1, Kajetan Bentele2, Manuel Holtgrewe2, Celia Kun‑Rodrigues3, Isabel Alonso4, Maria do Carmo Macario5, Ana Sofa Morgadinho5, Ana Graça Velon6, Gustavo Santo5,8, Isabel Santana5,7,8, Saana Mönkäre9,10, Liina Kuuluvainen9,11, Johanna Schleutker10, Minna Pöyhönen9,11, Liisa Myllykangas12, Assunta Senatore13, Daniel Berchtold1, Katarzyna Winek1, Andreas Meisel1, Aleksandra Pavlovic14, Vladimir Kostic14, Valerija Dobricic14,15, Ebba Lohmann16,17,18, Hasmet Hanagasi16, Gamze Guven19, Basar Bilgic16, Jose Bras3, Rita Guerreiro3, Dieter Beule2, Ulrich Dirnagl1 & Celeste Sassi1,20* Recently, several genome‑wide association studies identifed PHACTR1 as key locus for fve diverse vascular disorders: coronary artery disease, migraine, fbromuscular dysplasia, cervical artery dissection and hypertension. Although these represent signifcant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi‑ethnic cohort of 180 early‑onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL‑like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by diferent degrees of PcomAs 1Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
    [Show full text]
  • CSNK2B Monoclonal Antibody Catalog Number:67866-1-Ig
    For Research Use Only CSNK2B Monoclonal antibody www.ptgcn.com Catalog Number:67866-1-Ig Catalog Number: GenBank Accession Number: CloneNo.: Basic Information 67866-1-Ig BC112017 1B5A6 Size: GeneID (NCBI): Recommended Dilutions: 1000 μg/ml 1460 WB 1:5000-1:20000 Source: Full Name: IF 1:200-1:800 Mouse casein kinase 2, beta polypeptide Isotype: Calculated MW: IgG1 215 aa, 25 kDa Purification Method: Observed MW: Protein G purification 27 kDa Immunogen Catalog Number: AG19180 Applications Tested Applications: Positive Controls: IF, WB,ELISA WB : A549 cells; LNCaP cells, HeLa cells, Jurkat cells, Species Specificity: pig brain tissue, rat brain tissue, mouse brain tissue Human, mouse, rat, pig IF : HeLa cells; CSNK2B is a ubiquitous protein kinase which regulates metabolic pathways, signal transduction, transcription, Background Information translation, and replication. The enzyme is composed of three subunits, alpha, alpha prime and beta, which form a tetrameric holoenzyme. The alpha and alpha prime subunits are catalytic, while the beta subunit serves regulatory functions. The enzyme localizes to the endoplasmic reticulum and the Golgi apparatus. It participates in Wnt signaling, and plays a complex role in regulating the basal catalytic activity of the alpha subunit. Storage: Storage Store at -20ºC. Stable for one year after shipment. Storage Buffer: PBS with 0.02% sodium azide and 50% glycerol pH 7.3. Aliquoting is unnecessary for -20ºC storage For technical support and original validation data for this product please contact: This product is exclusively available under Proteintech T: 4006900926 E: [email protected] W: ptgcn.com Group brand and is not available to purchase from any other manufacturer.
    [Show full text]
  • Spatiotemporal Dynamics of Aurora B-PLK1-MCAK Signaling Axis
    www.nature.com/scientificreports OPEN Spatiotemporal dynamics of Aurora B-PLK1-MCAK signaling axis orchestrates kinetochore Received: 21 October 2014 Accepted: 13 May 2015 bi-orientation and faithful Published: 24 July 2015 chromosome segregation Hengyi Shao1, Yuejia Huang2,3, Liangyu Zhang1,3, Kai Yuan1, Youjun Chu1,3, Zhen Dou1,2, Changjiang Jin1, Minerva Garcia-Barrio3, Xing Liu1,2,3 & Xuebiao Yao1 Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. The microtubule depolymerase mitotic centromere-associated kinesin (MCAK) is a key regulator for an accurate kinetochore-microtubule attachment. However, the regulatory mechanism underlying precise MCAK depolymerase activity control during mitosis remains elusive. Here, we describe a novel pathway involving an Aurora B-PLK1 axis for regulation of MCAK activity in mitosis. Aurora B phosphorylates PLK1 on Thr210 to activate its kinase activity at the kinetochores during mitosis. Aurora B-orchestrated PLK1 kinase activity was examined in real- time mitosis using a fluorescence resonance energy transfer-based reporter and quantitative analysis of native PLK1 substrate phosphorylation. Active PLK1, in turn, phosphorylates MCAK at Ser715 which promotes its microtubule depolymerase activity essential for faithful chromosome segregation. Importantly, inhibition of PLK1 kinase activity or expression of a non-phosphorylatable MCAK mutant prevents correct kinetochore-microtubule attachment, resulting in abnormal anaphase with chromosome bridges. We reason that the Aurora B-PLK1 signaling at the kinetochore orchestrates MCAK activity, which is essential for timely correction of aberrant kinetochore attachment to ensure accurate chromosome segregation during mitosis. During cell division, accurate chromosome segregation requires dynamic interactions between kineto- chores and spindle microtubules (MTs), which results in accurate chromosome bi-orientation1–4.
    [Show full text]
  • A Wheel of Time: the Circadian Clock, Nuclear Receptors, and Physiology
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE A wheel of time: the circadian clock, nuclear receptors, and physiology Xiaoyong Yang1 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA It is a long-standing view that the circadian clock func- The rhythmic production and circulation of many tions to proactively align internal physiology with the hormones and metabolites within the endocrine system 24-h rotation of the earth. Recent studies, including one is instrumental in regulating regular physiological pro- by Schmutz and colleagues (pp. 345–357) in the February cesses such as reproduction, blood pressure, and metabo- 15, 2010, issue of Genes & Development, delineate strik- lism. Levels of circulating estrogen and progesterone ingly complex connections between molecular clocks and fluctuate with the menstrual cycle, which in turn affect nuclear receptor signaling pathways, implying the exis- circadian rhythms in women (Shechter and Boivin 2010). tence of a large-scale circadian regulatory network co- In parallel with a diurnal rhythm in circulating adrenocor- ordinating a diverse array of physiological processes to ticotropic hormone, secretion of glucocorticoids and aldo- maintain dynamic homeostasis. sterone from the adrenal gland rises before awakening (Weitzman 1976). Glucocorticoids boost energy produc- tion, and aldosterone increases blood pressure, together gearing up the body for the activity phase. Similarly, Light from the sun sustains life on earth. The 24-h plasma levels of thyroid-stimulating hormone and triiodo- rotation of the earth exposes a vast number of plants thyronine have a synchronous diurnal rhythm (Russell and animals to the light/dark cycle.
    [Show full text]
  • Melatonin Synthesis and Clock Gene Regulation in the Pineal Organ Of
    General and Comparative Endocrinology 279 (2019) 27–34 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences T ⁎ Saurav Saha, Kshetrimayum Manisana Singh, Braj Bansh Prasad Gupta Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India ARTICLE INFO ABSTRACT Keywords: The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian Aanat gene rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) – the rate-limiting enzyme in melatonin Circadian rhythm synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased ex- Clock genes pression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In Melatonin synthesis mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, Pineal organ and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the Photoperiod fi Temperature nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the sh pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland.
    [Show full text]
  • Palmitic Acid Effects on Hypothalamic Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Running title: Oleic and palmitic acid effects on hypothalamic neurons Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids Fabiola Pacheco Valencia1^, Amanda F. Marino1^, Christos Noutsos1, Kinning Poon1* 1Department of Biological Sciences, SUNY Old Westbury, Old Westbury NY, United States ^Authors contributed equally to this work *Corresponding Author: Kinning Poon 223 Store Hill Rd Old Westbury, NY 11568, USA 1-516-876-2735 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454666; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Prenatal high-fat diet exposure increases hypothalamic neurogenesis events in embryos and programs offspring to be obesity-prone. The molecular mechanism involved in these dietary effects of neurogenesis are unknown. This study investigated the effects of oleic and palmitic acids, which are abundant in a high-fat diet, on the hypothalamic neuronal transcriptome and how these changes impact neurogenesis events. The results show differential effects of low and high concentrations of oleic or palmitic acid treatment on differential gene transcription.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
    ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China.
    [Show full text]