Eudragit® RL) Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Eudragit® RL) Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Ecole Doctorale BioSE (Biologie-Santé-Environnement) Thèse Présentée et soutenue publiquement pour l’obtention du titre de DOCTEUR DE l’UNIVERSITE DE LORRAINE Mention : « Sciences de la Vie et de la Santé » par Ramia SAFAR Etude toxicologique de nanoparticules polymériques véhicules de S-nitrosoglutathion Le 4 décembre 2015 Membres du jury : Rapporteurs : Mme Armelle BAEZA Professeur, Université Paris Diderot, Paris Mme Françoise PONS Professeur, Université de Strasbourg, Strasbourg Examinateurs : M. Bertrand RIHN Professeur, Université de Lorraine, Nancy Directeur de thèse M. Olivier JOUBERT Maître de conférences, Université de Lorraine, Nancy Co-directeur de thèse Invités : M. Jean-Claude ANDRE Directeur de Recherche Emérite, INSIS CNRS, Paris M. Alain LE FAOU Professeur Emérite, Université de Lorraine, Nancy EA 3452 CITHEFOR, « Cibles Thérapeutiques, Formulation et Expertise Pré-Clinique du Médicament » Faculté de Pharmacie, 5, rue Albert Lebrun, BP 80403, 54001 Nancy CEDEX 2 3 Je dédie ce manuscrit Aux mânes de mon père A ma mère A mes sœurs et mon frère A ma belle-famille, pour son soutien durant la réalisation de ce travail A ma petite famille, mon mari et mes enfants pour leur soutien et leur patience 4 5 Je voudrais remercier sincèrement, Mesdames les Professeures Françoise PONS et Armelle BAEZA pour avoir accepté de siéger dans mon jury et participé aux comités de suivi de thèse, ainsi pour leurs conseils et observations. Monsieur le Professeur Bertrand RIHN, mon directeur de thèse, pour l’expérience enrichissante et pleine d’intérêt qu’il m’a faite vivre durant ces trois ans. Monsieur le Docteur Olivier JOUBERT, Maître de Conférences, mon co-directeur de thèse, pour le suivi de mon travail, ses conseils, son enseignement. Monsieur le Professeur Emérite Alain LE FAOU, pour son aide à rédiger cette thèse et son soutien dans les moments difficiles. Monsieur le Directeur de Recherche Emérite Jean-Claude ANDRE pour avoir accepté de participer à mon jury. 6 7 Mes remerciements s’adressent aussi à mon pays et à la Faculté de Pharmacie (Université d’ALBAATH), qui m’ont donné l’opportunité et le soutien financier pour venir en France poursuivre mes études. En particulier, je tiens à remercier Madame la Professeure Laila MASSOUH pour son aide à trouver un laboratoire d’accueil pour ma thèse, et Monsieur le Professeur Houssam ALHUSAINI (Doyen de la Faculté de Pharmacie, Université d‘ALBAATH), pour le suivi de mon travail et ses conseils. Je remercie Messieurs les Professeurs Philippe MAINCENT et Pierre LEROY, directeurs de l’EA 3452 CITHEFOR pour m’avoir accueillie au sein de leur équipe. J’exprime également ma gratitude à l’égard de l’ensemble de l’équipe CITHEFOR pour leur gentillesse, leur sympathie qui ont favorisé mon intégration dans l’équipe. Je tiens à remercier tout particulièrement et à témoigner toute ma reconnaissance aux personnes suivantes : Monsieur le Pofesseur Luc FERRARI pour avoir participé au comité de suivi de thèse, ainsi que pour ses conseils. Dr.Anne SAPIN pour sa gentillesse et sa disponibilité. Dr.Housam EIDI pour son aide à mon arrivée en France et dans l’équipe. Dr.Carole RONZANI pour son aide pendant les deux premières années de ma thèse. Nathalie et Pascale, pour leur écoute, leur aide, leurs réponses à mes nombreuses questions. Je voudrais aussi remercier toutes les personnes qui ont participé de près ou de loin à mes travaux : Isabelle, Bouchra, Latifa, Razan, Emilie, Wen, Chloé, Laetitia, …. De plus j’adresse mes remerciements aux personnes qui ont collaboré à mon travail : Monsieur le Professeur Bernard Foliguet, directeur du Service de microscopie électronique, Faculté de médecine de Nancy. Dr Stéphanie GRANDEMANGE, UMR CNRS/UL 7039 CRAN, Nancy. Dr Christophe NEMOS, INSERM U 954, Nancy. Dr Virginie MARCHAND, Biopole, Faculté de médecine de Nancy. Dr Roudayna DIAB, UMR CNRS/UL 7565 SRSMC, Nancy. Dr Hélène DUBOIS-POT-SCHNEIDER, UMR CNRS/UL 7565 SRSMC, Nancy. 8 9 Travaux scientifiques Publications Acceptées Human monocyte response to S-nitrosoglutathione-loaded nanoparticles: uptake, viability, and transcriptome. R.SAFAR1, C.RONZANI1, R.DIAB, J.CHEVRIER, D.BENSOUSSAN, S.GRANDEMANGE, A.LE FAOU, B.H.RIHN, O.JOUBERT. Molecular Pharmaceutics, 2015 Jan 14. IF = 4.79 (1 co-premiers auteurs) Comment on: S-nitrosoglutathione (GSNO) is cytotoxic to intracellular amastigotes and promotes healing of topically treated Leishmania major or Leishmania braziliensis skin lesions C.RONZANI, R.SAFAR, A.LE FAOU, B.H.RIHN, O.JOUBERT. Journal of antimicrobial chemotherapy, 2014 Apr 28. IF = 5,33 Viability and gene expression responses to polymeric nanoparticles in human and rat cells C.RONZANI1 , R.SAFAR1 , R.DIAB, J.CHEVRIER, J.PAOLI, M.A.ABDEL-WAHHAB, A.LE FAOU, B.RIHN, O.JOUBERT. Cell Biology and Toxicology, 2014 Apr 21. IF = 2,33 (1 co-premiers auteurs) Uptake of Eudragit® Retard L (Eudragit® RL) Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats. M.A.ABDEL-WAHHAB, K.G.ABDEL-WAHHAB, F.MANNAA, N.HASSAN, R.SAFAR, R.DIAB, B.FOLIGUET, L.FERRARI, B.H.RIHN. Materials, 2014 Fév 18. IF = 2,24 (Annexe 8) Role of the PLGA polymeric matrix composition on the cellular uptake and neuroprotective property of curcumin-loaded nanoparticle G.D.PAKA, S.DOGGUI, A.ZAGMI, R.SAFAR, L.DAO, A.KLYMCHENKO, G.ROULLIN, O.JOUBERT, C.RAMASSAMY. Molecular Pharmaceutics, IF = 4,79 (Annexe 9) Soumises Blood Compatibility of Multilayered Polyelectrolyte Films Containing Immobilized and Stabilized Gold Nanoparticles A.PALLOTTA, M.PARENT, M.LUO, I.CLAROT, R.SAFAR, O.JOUBERT, P.LEROY, A.BOUDIER. Advanced Healthcare Materials, IF = 5,79 10 En préparation Dose- and time- dependent responses of THP-1 cells exposed to free or encapsulated S- nitrosoglutathione. A transcriptomic comparison R.SAFAR, A.LE FAOU, C.NEMOS, H.DUBOIS-POT-SCHNEIDER, B.H.RIHN, O.JOUBERT. Eudragit® polymeric nanoparticles evaluation for the oral delivery of S-nitrosoglutathione 1 1 C.PUISNEY , R.SAFAR , W.WU, A.SAPIN, S.GRANDEMANGE, C.NEMOS, A.LE FAOU, BH. RIHN, O.JOUBERT, L.FERRARI 1 co-premiers auteurs Transcriptomes Transcriptome study of THP-1 human monocytes following exposure for 4 h or 24 h to 50 µM S-Nitrosoglutathione, 50 and 200 µg/ml S-Nitrosoglutathione-loaded polymeric and empty Eudragit® RL nanoparticles. C.RONZANI, R.SAFAR, B.RIHN, O.JOUBERT. GEO NCBI, 2013, accession number GSE51186 THP-1 human monocytes transcriptome following exposure to S-nitrosoglutatione (GSNO) R.SAFAR, C.PUISNEY, B.H.RIHN, O.JOUBERT. GEO NCBI, 2015, accession number GSE69024 Transcriptome study of Caco-2 human intestinal cells following exposure to empty or S- nitrosoglutathione-loaded polymeric nanoparticles C.PUISNEY, R.SAFAR, O.JOUBERT, L.FERRARI. GEO NCBI, 2015, accession number GSE69551 Communications orales* et affichées * Interaction cellules/nanoparticules polymériques : apport de la toxicogénomique R.SAFAR, C.RONZANI, A.LE FAOU, B.RIHN, L.FERRARI, O.JOUBERT 31èmes Journées Pédagogiques Et Scientifiques de l’AE2BM, 17-18 septemnbre 2015, Nancy * Cell / Polymeric Nanoparticle Interactions: Toxicogenomic Input. R.SAFAR, C.RONZANI, R.DIAB, A.LE FAOU, L.FERRARI, BH.RIHN, O.JOUBERT Congrès INRS “Risque chimique”, 8-10 avril 2015, Nancy. Cells / nanoparticles interactions: Toxicogenomics approach C.PUISNEY, R.SAFAR, BH.RIHN, C.NEMOS, O.JOUBERT, L.FERRARI Congrès INRS “Risque chimique”, 8-10 avril 2015, Nancy. In vitro study of cationized poly(caprolactone)-poly(ethylene glycol) nanoparticles C.CHAROONGCHIT, J.SUKSIRIWORAPONG, A.SAPIN, R.SAFAR, O.JOUBERT, B.RIHN, P.MAINCENT. 11 SFNano, 9-12 decembre 2014, Nancy Action of polymeric nanoparticles on cell viability, gene expression and internalization as a function of cell line R.SAFAR, C.RONZANI, R.DIAB, A.LE FAOU, BH.RIHN, O.JOUBERT The 50th Congress of the European Societies of Toxicology, Eurotox 2014, 7-10 sep 2014, Edimburg, Ecosse. (Bourses de congrès Eurotox et de la Société Française de Toxicologie) *Interaction cellules / Nanoparticules polymériques: apport de la toxicogénomique. C.RONZANI, R.SAFAR, R.DIAB, J.CHEVRIER, S.GRANDEMANGE, D.BENSOUSSAN, A.LE FAOU, BH.RIHN, O.JOUBERT Communication orale et affichée au congrès conjoint ARET/SFTG, 3 et 4 juin 2014, Paris. *Etude toxicologique de nanoparticules, véhicules de principe actif R.SAFAR, C.RONZANI, R.DIAB, S.GRANDEMANGE, B.FOLIGUET, A.LE FAOU, BH.RIHN, O.JOUBERT Journée scientifique de l’école doctorale BIOse, 6 novembre 2013, Nancy. *What about polymeric nanoparticles and mitochondria? BH.RIHN, R.SAFAR, C.RONZANI, R.HUSSIEN, G.A.BROOKS, A.LE FAOU, O.JOUBERT 5th International Symposium “Nutrition, Oxygen Biology and Medicine”, 5-7 juin 2013, Paris. Action of polymeric nanoparticles on cell viability, gene expression and internalization as a function of cell line R.SAFAR, C.RONZANI, S.GRANDEMANGE, B.FOLIGUET, BH.RIHN, O.JOUBERT 5th International
Recommended publications
  • The Chemical Defensome of Fish: Conservation and Divergence of Genes Involved in Sensing and Responding to Pollutants Among Five Model Teleosts
    The Chemical Defensome of Fish: Conservation and Divergence of Genes Involved in Sensing and Responding to Pollutants Among Five Model Teleosts Marta Eide University of Bergen Xiaokang Zhang Oslo University Hospital Odd André Karlsen University of Bergen Jared V. Goldstone Woods Hole Oceanographic Institution John Stegeman Woods Hole Oceanographic Institution Inge Jonassen University of Bergen Anders Goksøyr ( [email protected] ) University of Bergen Research Article Keywords: Chemical defensome, environmental contaminants, detoxication, nuclear receptors, biotransformation, antioxidant proteins, heat shock proteins, model species, toxicology Posted Date: February 9th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-175531/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 The chemical defensome of fish: conservation and divergence of genes 2 involved in sensing and responding to pollutants among five model 3 teleosts. 4 5 Marta Eide1*, Xiaokang Zhang2,3*, Odd André Karlsen1, Jared V. Goldstone4, John Stegeman4, 6 Inge Jonassen2, Anders Goksøyr1§ 7 8 1. Department of Biological Sciences, University of Bergen, Norway 9 2. Computational Biology Unit, Department of Informatics, University of Bergen, Norway 10 3. Department of Molecular Oncology, Institute for Cancer Research, Oslo University 11 Hospital-Radiumhospitalet, Norway 12 4. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA 13 14 * The authors contributed equally to the study 15 § Corresponding author: [email protected] 16 17 18 Abstract 19 20 How an organism copes with chemicals is largely determined by the genes and proteins that 21 collectively function to defend against, detoxify and eliminate chemical stressors. This 22 integrative network includes receptors and transcription factors, biotransformation enzymes, 23 transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known 24 as the chemical defensome.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Examination of the Transcription Factors Acting in Bone Marrow
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Examination of the transcription factors acting in bone marrow derived macrophages by Gergely Nagy Supervisor: Dr. Endre Barta UNIVERSITY OF DEBRECEN DOCTORAL SCHOOL OF MOLECULAR CELL AND IMMUNE BIOLOGY DEBRECEN, 2016 Table of contents Table of contents ........................................................................................................................ 2 1. Introduction ............................................................................................................................ 5 1.1. Transcriptional regulation ................................................................................................... 5 1.1.1. Transcriptional initiation .................................................................................................. 5 1.1.2. Co-regulators and histone modifications .......................................................................... 8 1.2. Promoter and enhancer sequences guiding transcription factors ...................................... 11 1.2.1. General transcription factors .......................................................................................... 11 1.2.2. The ETS superfamily ..................................................................................................... 17 1.2.3. The AP-1 and CREB proteins ........................................................................................ 20 1.2.4. Other promoter specific transcription factor families ...................................................
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials For
    www.sciencemag.org/cgi/content/full/science.1230422/DC1 Supplementary Materials for Genomic Diversity and Evolution of the Head Crest in the Rock Pigeon Michael D. Shapiro,* Zev Kronenberg, Cai Li, Eric T. Domyan, Hailin Pan, Michael Campbell, Hao Tan, Chad D. Huff, Haofu Hu, Anna I. Vickrey, Sandra C. A. Nielsen, Sydney A. Stringham, Hao Hu, Eske Willerslev, M. Thomas P. Gilbert, Mark Yandell, Guojie Zhang, Jun Wang* *To whom correspondence should be addressed. E-mail: [email protected] (M.D.S.); [email protected] (J.W.) Published 31 January 2013 on Science Express DOI: 10.1126/science.1230422 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S27 Tables S1 to S28 References (26–72) Materials and Methods Genome assembly The DNA sample for sequencing of the reference genome was extracted from blood obtained from a single, male Danish Tumbler, bred by Anders and Hans Ove Christiansen (Danmarks Racedueforeninger, Næstved, Denmark). This breed was chosen because it is an old breed that is believed to have changed little in recent history. Seven paired-end sequencing libraries were constructed, with insert sizes of 170 bp, 500 bp, 800 bp, 2 kb, 5 kb, 10 kb and 20 kb. The libraries were sequenced using Illumina HiSeq2000 platform, yielding a total of 127.17 Gb raw data (Table S1). The raw sequences were filtered for low quality, adapter sequence, paired-end read overlap, and PCR duplicates. We also performed an error correction step on the raw reads before assembling. Filtering and error correction resulted in 81.57 Gb of clean data for genome assembly with the genome with SOAPdenovo (26).
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • Epigenetics Page 1
    Epigenetics esiRNA ID Gene Name Gene Description Ensembl ID HU-13237-1 ACTL6A actin-like 6A ENSG00000136518 HU-13925-1 ACTL6B actin-like 6B ENSG00000077080 HU-14457-1 ACTR1A ARP1 actin-related protein 1 homolog A, centractin alpha (yeast) ENSG00000138107 HU-10579-1 ACTR2 ARP2 actin-related protein 2 homolog (yeast) ENSG00000138071 HU-10837-1 ACTR3 ARP3 actin-related protein 3 homolog (yeast) ENSG00000115091 HU-09776-1 ACTR5 ARP5 actin-related protein 5 homolog (yeast) ENSG00000101442 HU-00773-1 ACTR6 ARP6 actin-related protein 6 homolog (yeast) ENSG00000075089 HU-07176-1 ACTR8 ARP8 actin-related protein 8 homolog (yeast) ENSG00000113812 HU-09411-1 AHCTF1 AT hook containing transcription factor 1 ENSG00000153207 HU-15150-1 AIRE autoimmune regulator ENSG00000160224 HU-12332-1 AKAP1 A kinase (PRKA) anchor protein 1 ENSG00000121057 HU-04065-1 ALG13 asparagine-linked glycosylation 13 homolog (S. cerevisiae) ENSG00000101901 HU-13552-1 ALKBH1 alkB, alkylation repair homolog 1 (E. coli) ENSG00000100601 HU-06662-1 ARID1A AT rich interactive domain 1A (SWI-like) ENSG00000117713 HU-12790-1 ARID1B AT rich interactive domain 1B (SWI1-like) ENSG00000049618 HU-09415-1 ARID2 AT rich interactive domain 2 (ARID, RFX-like) ENSG00000189079 HU-03890-1 ARID3A AT rich interactive domain 3A (BRIGHT-like) ENSG00000116017 HU-14677-1 ARID3B AT rich interactive domain 3B (BRIGHT-like) ENSG00000179361 HU-14203-1 ARID3C AT rich interactive domain 3C (BRIGHT-like) ENSG00000205143 HU-09104-1 ARID4A AT rich interactive domain 4A (RBP1-like) ENSG00000032219 HU-12512-1 ARID4B AT rich interactive domain 4B (RBP1-like) ENSG00000054267 HU-12520-1 ARID5A AT rich interactive domain 5A (MRF1-like) ENSG00000196843 HU-06595-1 ARID5B AT rich interactive domain 5B (MRF1-like) ENSG00000150347 HU-00556-1 ASF1A ASF1 anti-silencing function 1 homolog A (S.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Comparison of Orthologs Across Multiple Species by Various Strategies
    COMPARISON OF ORTHOLOGS ACROSS MULTIPLE SPECIES BY VARIOUS STRATEGIES BY HUI LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biophysics and Computational Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Eric Jakobsson, Chair, Director of Research Professor Gene E. Robinson Associate Professor Saurabh Sinha Assistant Professor Jian Ma Abstract Thanks to the improvement of genome sequencing technology, abundant multi-species genomic data now became available and comparative genomics continues to be a fast prospering filed of biological research. Through the comparison of genomes of different organisms, we can understand what, at the molecular level, distinguishes different life forms from each other. It shed light on revealing the evolution of biology. And it also helps to refine the annotations and functions of individual genomes. For example, through comparisons across mammalian genomes, we can give an estimate of the conserved set of genes across mammals and correspondingly, find the species-specific sets of genes or functions. However, comparative genomics can be feasible only if a meaningful classification of genes exists. A natural way to do so is to delineate sets of orthologous genes. However, debates exist about the appropriate way to define orthologs. It is originally defined as genes in different species which derive from speciation events. But such definition is not sufficient to derive orthologous genes due to the complexity of evolutionary events such as gene duplication and gene loss. While it is possible to correctly figure out all the evolutionary events with the true phylogenetic tree, the true phylogenetic tree itself is impractical to be inferred.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • A Comprehensive Network and Pathway Analysis of Human Deafness Genes
    Otology & Neurotology 34:961Y970 Ó 2013, Otology & Neurotology, Inc. A Comprehensive Network and Pathway Analysis of Human Deafness Genes *Georgios A. Stamatiou and †Konstantina M. Stankovic *Department of Otolaryngology, Hippokration General Hospital, University of Athens, Athens, Greece; and ÞDepartment of Otology and Laryngology, Harvard Medical School and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A. Objective: To perform comprehensive network and pathway factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase analyses of the genes known to cause genetic hearing loss. (ERK 1/2) and the G protein coupled receptors (GPCR) for Study Design: In silico analysis of deafness genes using inge- Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) nuity pathway analysis (IPA). for Group 3. The nodal molecules included not only those known Methods: Genes relevant for hearing and deafness were iden- to be associated with deafness (GPCR), or with predisposition to tified through PubMed literature searches and the Hereditary otosclerosis (TGFB1), but also novel genes that have not been Hearing Loss Homepage. The genes were assembled into 3 groups: described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). 63 genes that cause nonsyndromic deafness, 107 genes that cause Conclusion: A number of molecules that are likely to be key nonsyndromic or syndromic sensorineural deafness, and 112 genes mediators of genetic hearing loss were identified through three associated with otic capsule development and malformations. Each different network and pathway analyses. The molecules included group of genes was analyzed using IPA to discover the most new candidate genes for deafness.
    [Show full text]