Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function Peter R Maycox1, Fiona Kelly1, Adam Taylor1, Stewart Bates1, Juliet Reid1, Ramya Logendra1, Michael R. Barnes1, Chris Larminie1, Neil Jones1, Mark Lennon1, Ceri Davies1, Jim J Hagan1, Carol A Scorer1, Claire Angelinetta2, Tariq Akbar2, Steven Hirsch2, Ann M. Mortimer2,3, Thomas R. E. Barnes2 Jackie de Belleroche2* Author affiliation: 1Computational Biology, Genetic and Proteomic Sciences, Statistical Sciences, Psychiatry CEDD, GlaxoSmithKline, New Frontiers Science Park, GlaxoSmithKline, Harlow, Essex, CM19 5AW, UK 2Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK 3Academic Unit of Psychiatry, University of Hull, Hull HU6 7RX, UK *Corresponding author: Professor Jackie de Belleroche, Neurogenetics Group, Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK Telephone: +44 207 5946649 Fax: +44 207 5946548 Email_
[email protected] Key words: schizophrenia, gene expression, microarrays, synaptic vesicle recycling, synaptic transmission Running title: Schizophrenia microarrays identify synaptic markers ABSTRACT Schizophrenia is a severe psychiatric disorder with a world wide prevalence of 1%. The pathophysiology of the illness is not understood, but is thought to have a strong genetic component with some environmental influences on aetiology. To gain further insight into disease mechanism, we used microarray technology to determine the expression of over 30,000 mRNA transcripts in post-mortem tissue from a brain region associated with the pathophysiology of the disease (Brodmann Area 10: anterior prefrontal cortex) in 28 schizophrenic and 23 control patients.