New Secreted Toxins and Immunity Proteins Encoded Within the Type VI Secretion System Gene Cluster of Serratia Marcescens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts. -
Molecular Associations and Clinical Significance of Raps In
ORIGINAL RESEARCH published: 21 June 2021 doi: 10.3389/fmolb.2021.677979 Molecular Associations and Clinical Significance of RAPs in Hepatocellular Carcinoma Sarita Kumari 1†, Mohit Arora 2†, Jay Singh 1, Lokesh K. Kadian 2, Rajni Yadav 3, Shyam S. Chauhan 2* and Anita Chopra 1* 1Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India, 2Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India, 3Department of Pathology, All India Institute of Medical Sciences, New Delhi, India Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a high rate of mortality. Multiple studies have individually recognized members of RAP gene family as critical regulators of tumor progression in several cancers, including hepatocellular carcinoma. These studies suffer numerous limitations including a small sample size and lack of analysis of various clinicopathological and molecular Edited by: Veronica Aran, features. In the current study, we utilized authoritative multi-omics databases to Instituto Estadual do Cérebro Paulo determine the association of RAP gene family expression and detailed molecular and Niemeyer (IECPN), Brazil clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes Reviewed by: were observed to harbor dysregulated expression in HCC compared to normal liver Pooja Panwalkar, Weill Cornell Medicine, United States tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal Jasminka Omerovic, tissues. RAP2A expression was associated with progressive tumor grade, TP53 and University of Split, Croatia CTNNB1 mutation status. Additionally, RAP2A expression was associated with the *Correspondence: Anita Chopra alteration of its copy numbers and DNA methylation. RAP2A also emerged as an [email protected] independent marker for patient prognosis. -
Rap1 Acts Via Multiple Mechanisms to Position Canoe/Afadin and Adherens Junctions and Mediate Apical-Basal Polarity Establishment
bioRxiv preprint doi: https://doi.org/10.1101/170977; this version posted July 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Rap1 acts via multiple mechanisms to position Canoe/Afadin and adherens junctions and mediate apical-basal polarity establishment Teresa T. Bonello1, Kia Z. Perez-Vale2, Kaelyn D. Sumigray3, and Mark Peifer1,2,3* 1 Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA 2 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Running Title Active Rap1 positions Canoe and AJs 6950 words * To whom correspondence should be addressed Email: [email protected] Phone: (919) 962-2272 Abbreviations used: α-cat, alpha-catenin; β-cat, beta-catenin; AJ, adherens junction; Arm, Armadillo; Baz, BazooKa; CA, constitutively active; Cno, Canoe; DE-cad, Drosophila E-cadherin; Dzy, Dizzy; GAP, GTPase activating protein; GDP, guanosine diphosphate; GEF, guanine nucleotide exchange factor; GFP, green fluorescent protein; GTP, guanosine triphosphate; IF, immunofluorescence; MIP, maximum intensity projection; RA, Ras-associated; RFP, red fluorescent protein; SAJ, spot adherens junction; shRNA, short hairpin RNA; TCJ, tricellular junction; WT, wildtype 1 bioRxiv preprint doi: https://doi.org/10.1101/170977; this version posted July 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet
Page 1 of 41 Diabetes DLL1- and DLL4-mediated Notch signaling is essential for adult pancreatic islet homeostasis (running title –Role of Delta ligands in adult pancreas) Marina Rubey1,2,6*, Nirav Florian Chhabra1,2*, Daniel Gradinger1,2,7, Adrián Sanz-Moreno1, Heiko Lickert2,4,5, Gerhard K. H. Przemeck1,2, Martin Hrabě de Angelis1,2,3** 1 Helmholtz Zentrum München, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany 2 German Center for Diabetes Research (DZD), Neuherberg, Germany 3 Chair of Experimental Genetics, Centre of Life and Food Sciences, Weihenstephan, Technische Universität München, Freising, Germany 4 Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research and Institute of Stem Cell Research, Neuherberg, Germany 5 Technische Universität München, Medical Faculty, Munich, Germany 6 Present address Marina Rubey: WMC Healthcare GmbH, Munich, Germany 7 Present address Daniel Gradinger: PSI CRO AG, Munich, Germany *These authors contributed equally **Corresponding author: Prof. Dr. Martin Hrabě de Angelis, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Ingolstädter Landstr.1, 85764 Neuherberg, Germany. Phone: +49-89-3187-3502. Fax: +49- 89-3187-3500. E-mail address: [email protected] Word count – 4088 / Figures – 7 Diabetes Publish Ahead of Print, published online February 6, 2020 Diabetes Page 2 of 41 Abstract Genes of the Notch signaling pathway are expressed in different cell types and organs at different time points during embryonic development and adulthood. The Notch ligand Delta- like 1 (DLL1) controls the decision between endocrine and exocrine fates of multipotent progenitors in the developing pancreas, and loss of Dll1 leads to premature endocrine differentiation. -
Development of Novel Drugs Targeting Chaperones of Oncogenic K-Ras
Farid Ahmad Siddiqui Farid Ahmad Siddiqui // Development of Novel Drugs Development of Novel Drugs Targeting Chaperones of Oncogenic K-Ras of Oncogenic Chaperones K-Ras Drugs Targeting of Novel Development Targeting Chaperones of Oncogenic K-Ras // 2021 9 789521 240317 ISBN 978-952-12-4031-7 Development of Novel Drugs Targeting Chaperones of Oncogenic K-Ras Farid Ahmad Siddiqui Cell Biology Faculty of Science and Engineering, Åbo Akademi University Turku Bioscience Centre University of Turku & Åbo Akademi University Turku, Finland, 2021 From the Turku Bioscience Centre, University of Turku and Åbo Akademi University, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland Supervised by Prof. Daniel Abankwa, PhD Department of Life Sciences and Medicine University of Luxembourg, Belval campus Luxembourg Reviewed by Prof. Olli Mikael Carpen, PhD Faculty of Medicine University of Helsinki Helsinki, Finland and Prof. Klaus Elenius, PhD Faculty of Medicine University of Turku Turku, Finland Opponent Prof. Krishnaraj Rajalingam, PhD Head, Cell Biology Unit, UMC-Mainz, Germany Author’s address Turku Bioscience Centre Åbo Akademi University Tykistökatu 6 20520 Turku Finland Email: [email protected] ISBN 978-952-12-4031-7 (printed) ISBN 978-952-12-4032-4 (digital) Painosalama Oy, Turku, Finland 2021 TABLE OF CONTENTS ABSTRACT .......................................................................................................... 6 ABSTRAKT (Swedish Abstract) ......................................................................... -
Gene Section Short Communication
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Short Communication RAP1A (RAP1A, member of RAS oncogene family) Jean de Gunzburg Laboratoire de Signalisation Intracellulaire et Oncogenèse INSERM U-528 Institut Curie Section de Recherche 26, rue d'Ulm, 75248 Paris Cedex 05, France (Jd) Published in Atlas Database: May 2001 Online updated version : http://AtlasGeneticsOncology.org/Genes/RAP1AID272.html DOI: 10.4267/2042/37748 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2001 Atlas of Genetics and Cytogenetics in Oncology and Haematology two isoforms, Rap1A and Rap1B that share 95% Identity identity and are encoded by two different genes. Rap1 HGNC (Hugo): RAP1A proteins share 50% identity with Ras proteins, Location: 1p13.3 including the regions involved in GDP/GTP binding (hence Rap1A has very similar biochemical properties to Ras), C-terminal CAAX domain leading to prenylation (geranylgeranylation in the case of Rap1A), and effector region identical to that of Ras proteins causing Ras and Rap1 to share some potential effectors. Probe(s) - Courtesy Mariano Rocchi, Resources for Molecular Expression Cytogenetics. Ubiquitous ; higher in brain and hemopo•etic tissues. DNA/RNA Localisation Description Rap1 is bound to membranes. In many cell types, it is found in a perinuclear compartment overlapping the 6 coding exons covering 18095 bp on chromosome 1. Golgi. Rap1 proteins (A and B) are phosphorylated near the C-ter by cAMP-dependent protein kinase. This Protein results in translocation of part of the Rap1 pool to the Description cytosol. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing -
RAP1-Mediated MEK/ERK Pathway Defects in Kabuki Syndrome
The Journal of Clinical Investigation RESEARCH ARTICLE RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome Nina Bögershausen,1,2,3 I-Chun Tsai,4 Esther Pohl,1,2,3 Pelin Özlem Simsek Kiper,5 Filippo Beleggia,1,2,3 E. Ferda Percin,6 Katharina Keupp,1,2,3 Angela Matchan,7 Esther Milz,1,2,3 Yasemin Alanay,5,8 Hülya Kayserili,9 Yicheng Liu,1,2,3 Siddharth Banka,10 Andrea Kranz,11 Martin Zenker,12 Dagmar Wieczorek,13 Nursel Elcioglu,14 Paolo Prontera,15 Stanislas Lyonnet,16 Thomas Meitinger,17 A. Francis Stewart,11 Dian Donnai,10 Tim M. Strom,17,18 Koray Boduroglu,5 Gökhan Yigit,1,2,3 Yun Li,1,2,3 Nicholas Katsanis,4 and Bernd Wollnik1,2,3 1Institute of Human Genetics, 2Center for Molecular Medicine Cologne (CMMC), and 3Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. 4Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, North Carolina, USA. 5Pediatric Genetics Unit, Department of Pediatrics, Hacettepe University Medical Faculty, Ankara, Turkey. 6Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, Turkey. 7Oxford Gene Technology (OGT), Begbroke Science Park, Begbroke, Oxfordshire, United Kingdom. 8Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey. 9Medical Genetics Department, Koç University, School of Medicine, Istanbul, Turkey. 10Department of Genetic Medicine, St. Mary’s Hospital, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, United Kingdom. 11Genomics, Bio-Innovationszentrum, Dresden University of Technology, Dresden, Germany. 12Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany. -
Rap1a and Rap1b Ras-Family Proteins Are Prominently Expressed in the Nucleus of Squamous Carcinomas: Nuclear Translocation of GTP-Bound Active Form
Oncogene (2003) 22, 6243–6256 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form Raj S Mitra1,4, Zhaocheng Zhang1,4, Bradley S Henson1, David M Kurnit2, Thomas ECarey 1,3, Nisha J D’Silva*,1 1Department of Oral Medicine, Pathology and Oncology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; 2Departments of Pediatrics and Human Genetics, University of Michigan Medical School, Ann Arbor, MI 481091, USA; 3Department of Otolaryngology, Laboratory of Head and Neck Cancer Biology, The University of Michigan Medical School and the Comprehensive Cancer Center, Ann Arbor, MI 48109-0506, USA We recently showed that rap1 regulates growth and exclusively in eukaryotes (Takai et al., 2001). Those proliferation in normal keratinocytes, which provoked us SMGs that have been identified (currently 4100) have to investigate its expression and regulation in malignant homology to ras, and belong to one of the five cells. Rap1 is variably expressed in whole cell lysates of subfamilies namely ras, rho, rab, sar1/arf and ran squamous cell carcinoma (SCC) cell lines. Immunoblot (Takai et al., 2001). These ras-like proteins shuttle analysis of nuclear and cytosolic fractions and immuno- between inactive GDP- and active GTP-bound states. histochemistry revealed that in addition to cytoplasmic Ras subfamily proteins, including ras and rap1, are key expression, SCC cells also exhibit prominent punctate players in receptor-linked signaling pathways that rap1 expression in the nucleus. -
The Adherens Junction Protein Afadin Is an AKT Substrate That Regulates Breast Cancer Cell Migration
Published OnlineFirst November 22, 2013; DOI: 10.1158/1541-7786.MCR-13-0398 Molecular Cancer Signal Transduction Research The Adherens Junction Protein Afadin Is an AKT Substrate that Regulates Breast Cancer Cell Migration Sivan Elloul, Dmitriy Kedrin, Nicholas W. Knoblauch, Andrew H. Beck, and Alex Toker Abstract The PI3K–AKT signaling pathway regulates all phenotypes that contribute to progression of human cancers, including breast cancer. AKT mediates signal relay by phosphorylating numerous substrates, which are causally implicated in biologic responses such as cell growth, survival, metabolic reprogramming, migration, and invasion. Here a new AKT substrate is identified, the adherens junction protein Afadin, which is phosphorylated by AKT at Ser1718. Importantly, under conditions of physiologic IGF-1 signaling and oncogenic PI3K and AKT, Afadin is phosphorylated by all AKT isoforms, and this phosphorylation elicits a relocalization of Afadin from adherens junctions to the nucleus. Also, phosphorylation of Afadin increased breast cancer cell migration that was dependent on Ser1718 phosphorylation. Finally, nuclear localization of Afadin was observed in clinical breast cancer specimens, indicating that regulation of Afadin by the PI3K–AKT pathway has pathophysiologic significance. Implications: Phosphorylation of the adhesion protein Afadin by AKT downstream of the PI3K pathway, leads to redistribution of Afadin and controls cancer cell migration. Mol Cancer Res; 12(3); 464–76. Ó2013 AACR. Introduction of the proteins that function to transduce PI3K and Akt The phosphoinositide 3-kinase (PI3K) and Akt signaling signaling are enzymes with catalytic pockets, this pathway is pathway orchestrates virtually all aspects of epithelial and highly druggable and numerous phase I and II clinical trials tumor cell behavior, from initial transformation to dysplasia are underway with small-molecule inhibitors targeting PI3K and ultimately the dissemination of cancer cells to distant or Akt isoforms for single agent or combination therapy, metastatic sites (1). -
Elucidating the Role of EPAC-Rap1 Signaling Pathway in the Blood
Elucidating the Role of EPAC-Rap1 Signaling Pathway in the Blood-Retinal Barrier By Carla Jhoana Ramos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2017 Doctoral Committee: Professor David A. Antonetti, Chair Professor Christin Carter-Su Associate Professor Philip J. Gage Professor Ben Margolis Assistant Professor Ann L. Miller Image of exchange factor directly activated by cAMP (EPAC), Ras-related protein (Rap1) and Zonula occludens-1 (ZO-1) immunofluorescent staining in bovine retinal endothelial cells, obtained by confocal microscopy. Carla Jhoana Ramos [email protected] ORCID iD: 0000-0001-5041-6758 © Carla Jhoana Ramos 2017 DEDICATION This dissertation is dedicated to my mother Victoria de Jesus Larios de Ramos, my father Jose Carlos Ramos, and my younger brother Hilmar Ramos. My parents migrated from El Salvador to the USA in search of better opportunities and dedicated their lives to providing us with a good education. They have instilled in me determination, perseverance and strength. Finally, my experience observing my mother cope with more than 26 years of diabetes and 10 years of mild diabetic retinopathy led me into diabetes research at the University of Michigan. ii ACKNOWLEDGEMENTS The completion of this dissertation has been made possible by the support from my community of mentors, friends and family. I would like to first thank my mentor David Antonetti, who gave me the opportunity to train in his laboratory under his guidance during these last 6 years. Additionally, I would like to thank my thesis committee: Ben Margolis, Christin Carter-Su, Philip Gage, and Ann Miller whose suggestions, questions, and scientific discussions helped improve the quality of this thesis and for their constant support and encouragement. -
Genome-Wide Association Study of Brain Amyloid Deposition As Measured by Pittsburgh Compound-B (Pib)-PET Imaging
Molecular Psychiatry (2021) 26:309–321 https://doi.org/10.1038/s41380-018-0246-7 ARTICLE Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging 1,2 3,4 5 1 3,4 1 Qi Yan ● Kwangsik Nho ● Jorge L. Del-Aguila ● Xingbin Wang ● Shannon L. Risacher ● Kang-Hsien Fan ● 6,7 8 7,9 6,7,8 1 Beth E. Snitz ● Howard J. Aizenstein ● Chester A. Mathis ● Oscar L. Lopez ● F. Yesim Demirci ● 1 6,7,8 3,4 Eleanor Feingold ● William E. Klunk ● Andrew J. Saykin ● for the Alzheimer’s Disease Neuroimaging 5 1,7,8 Initiative (ADNI) ● Carlos Cruchaga ● M. Ilyas Kamboh Received: 1 December 2017 / Accepted: 31 July 2018 / Published online: 25 October 2018 © The Author(s) 2018. This article is published with open access Abstract Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer’s disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI 11 1234567890();,: 1234567890();,: using C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; β = 0.18).