Hiking Trail Guide
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Final Biological Assessment
REVISED BIOLOGICAL ASSESSMENT Effects of the Modified Idaho Roadless Rule on Federally Listed Threatened, Endangered, Candidate, and Proposed Species for Terrestrial Wildlife, Aquatics, and Plants September 12, 2008 FINAL BIOLOGICAL ASSESSMENT Effects of the Modified Idaho Roadless Rule on Federally Listed Threatened, Endangered, Candidate, and Proposed Species for Terrestrial Wildlife, Aquatics, and Plants Table of Contents I. INTRODUCTION.......................................................................................................................................... 1 II. DESCRIPTION OF THE FEDERAL ACTION .................................................................................................... 3 Purpose and Need..................................................................................................................................3 Description of the Project Area...............................................................................................................4 Modified Idaho Roadless Rule................................................................................................................6 Wild Land Recreation (WLR)...............................................................................................................6 Primitive (PRIM) and Special Areas of Historic and Tribal Significance (SAHTS)..............................7 Backcountry/ Restoration (Backcountry) (BCR)................................................................................10 General Forest, Rangeland, -
Geology of the Northern Part of Wellsville Mountain, Northern Wasatch Range, Utah
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1958 Geology of the Northern Part of Wellsville Mountain, Northern Wasatch Range, Utah Stanley S. Beus Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Beus, Stanley S., "Geology of the Northern Part of Wellsville Mountain, Northern Wasatch Range, Utah" (1958). All Graduate Theses and Dissertations. 4430. https://digitalcommons.usu.edu/etd/4430 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. GEOWGY OF THE NORTHERN PART OF WELLSVILLE MJUNTAIN, NORTHERN WASATCH RANGE, UTAH - by Stanley S. Beus A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Geology UTAH STATE UNIVERSITY Logan, Utah 1958 ACKNO I\ LEDGMENT I am grateful to Dr . J. Stewa rt Ni lli ama, Dr. Clyde T. Hardy , and Professor Dona ld R. Olsen for the as sista nce in field work and for their suggestions concerning the wr iting of this manuscript. Stanley S . Be us II TABLE OF CONTENTS Pa ge Introduction 1 Purpose a nd s cope 1 Location a nd extent of area 1 Physiography 2 Field work 11 5 Previous i nvestigati ons 6 Str a tigr aphy 8 Pr e - Ca mbrian r ocks 8 Cambri an system 9 Bri gham quart zi te 10 La ngs ton forma tion 11 Ute f orma tion 13 Bla cksmith for mation 14 Bloomington f or ma t ion 16 Nounan f orma tion 17 St. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Cache Valley
C a c h e V a l l e y V i s i t o r s B u r e a u Cache Valley HERITAGE DRIVING TOUR CACHE VALLEY driving tour Cache Valley extends more than 50 miles into the states of Utah and Idaho. Beautifully nestled among the steep slopes of the Bear River and Wellsville mountain ranges, the valley averages 4500 feet in elevation and is four to twelve miles in width. The surrounding high mountains, clear streams and productive soil all combine to make it a valley rich in the blessings of nature. Cache Valley was the scene of many events important in the settling of the American West. It was here that mountain Indian tribes found ample hunting ground for game, that rugged mountain men splashed through streams in search of beaver, and where Mormon pioneers built new homes in the wilderness of the American frontier. For centuries before the mountain men and the Mormons came to Cache Valley, Native Americans hunted, fished and gathered seeds from the grass that was plentiful upon the valley floor. These Native Americans, the Northwestern Shoshone, named the valley Seuhubeogoi, “Willow River,” and established both winter and summer camps along the major rivers. As nomadic hunters and gatherers they followed centuries-old migratory patterns in search of food. Famous Northwestern Shoshone leaders were Sagwitch, Bear Hunter, Pocatello, Pahvants, and Sanpitch. Mountain men in search of beaver were the first white visitors to Cache Valley. During the years of the Rocky Mountain fur General Merchandise Store, built 1879 Cover photo: American West Heritage Center All photos: USU Special Collections 2 trade, the valley was a crossroad and campground for almost every mountain man who ever fought, trapped or traded in the region. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Landforms & Bodies of Water
Name Date Landforms & Bodies of Water - Vocab Cards hill noun a raised area of land smaller than a mountain. We rode our bikes up and down the grassy hill. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: island noun a piece of land surrounded by water on all sides. Marissa's family took a vacation on an island in the middle of the Pacific Ocean. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 1 lake noun a large body of fresh or salt water that has land all around it. The lake freezes in the wintertime and we go ice skating on it. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: landform noun any of the earth's physical features, such as a hill or valley, that have been formed by natural forces of movement or erosion. I love canyons and plains, but glaciers are my favorite landform. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 2 mountain noun a land mass with great height and steep sides. It is much higher than a hill. Someday I'm going to hike and climb that tall, steep mountain. Synonyms: peak Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: ocean noun a part of the large body of salt water that covers most of the earth's surface. -
Dayton Valley Development Guidelines Final Draft
FINAL DRAFT Dayton Valley Development Guidelines Supplement to the Dayton Valley Area Drainage Master Plan prepared for August Lyon County | Storey County | 2019 Carson Water Subconservancy District i FINAL DRAFT Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Background and Rationale ............................................................................................................ 3 1.1.1 More Frequent Flooding ....................................................................................................... 3 1.1.2 Larger Flood Peaks ................................................................................................................ 3 1.1.3 Scour and Erosion ................................................................................................................. 3 1.1.4 Flow Diversion ....................................................................................................................... 3 1.1.5 Flow Concentration ............................................................................................................... 3 1.1.6 Expanded Floodplains ........................................................................................................... 3 1.1.7 Reduced Surface Storage ...................................................................................................... 3 1.1.8 Decreased Ground Water Recharge .................................................................................... -
TWIN VALLEY TRAIL MILEAGE One of the Best Fossil Collecting Spots in Ohio, Including Species Dating Back 450 Million Years
Overnight Parking at Sled Hill Parking Lot for Twin Valley Backpack Trail Users 0.45 1.81 Map design provided by Great Miami Outfitters. Downtown Miamisburg greatmiamioutfitters.com 0.69 0.6 0.1 0.11 0.13 1.5 0.07 0.11 Twin Valley Overnight Parking 0.13 at Spillway Parking Lot for 0.06 Welcome Center Twin Valley Backpack Trail Users TWINVALLEY 0.1 0.16 Dam Old Mill Spillway Frontcountry Camp 0.38 TRAIL Bob Siebenthaler Natural Area 0.26 0.92 1.1 Limestone 0.07 0.27 Outcrops GERMANTOWN& 0.1 0.1 0.84 TWINCREEKMETROPARKS 0.49 0.7 0.39 1.6 0.7 POINTS OF INTEREST Shimps Hollow Frontcountry Camp 1 TWIN VALLEY WELCOME CENTER In late summer 2015, Five Rivers MetroParks will begin 0.1 transitioning the Germantown Nature Center to Water Availability Cedar Ridge is a dry camp a new welcome center. Hikers will be able to get Cedar Ridge Nearest Water Backcountry Natural Source water, use restrooms and take shelter from inclement Campsites · South on the main trail (Twin Creek) weather 24/7 at the center. Visit metroparks.org/ tvwelcomecenter for more info and dates. .6 2 OLD FOREST The largest tract of old woods in Montgomery County, it provides habitat to many species, including orchids, brown creepers and summer taningers. Water Availability Oak Ridge has a seasonal stream and pond Nearest Water 3 VALLEY OVERLOOK Seasonal potable water · Nature Center/Picnic This platform offers spectacular views of Twin 0.58 Creek Valley and Germantown MetroPark. 4 DAM SPILLWAY 1.03 The spillway provides crucial water storage depth in case of extreme flooding. -
Wolverines in Idaho 2014–2019
Management Plan for the Conservation of Wolverines in Idaho 2014–2019 Prepared by IDAHO DEPARTMENT OF FISH AND GAME July 2014 2 Idaho Department of Fish & Game Recommended Citation: Idaho Department of Fish and Game. 2014. Management plan for the conservation of wolverines in Idaho. Idaho Department of Fish and Game, Boise, USA. Idaho Department of Fish and Game – Wolverine Planning Team: Becky Abel – Regional Wildlife Diversity Biologist, Southeast Region Bryan Aber – Regional Wildlife Biologist, Upper Snake Region Scott Bergen PhD – Senior Wildlife Research Biologist, Statewide, Pocatello William Bosworth – Regional Wildlife Biologist, Southwest Region Rob Cavallaro – Regional Wildlife Diversity Biologist, Upper Snake Region Rita D Dixon PhD – State Wildlife Action Plan Coordinator, Headquarters Diane Evans Mack – Regional Wildlife Diversity Biologist, McCall Subregion Sonya J Knetter – Wildlife Diversity Program GIS Analyst, Headquarters Zach Lockyer – Regional Wildlife Biologist, Southeast Region Michael Lucid – Regional Wildlife Diversity Biologist, Panhandle Region Joel Sauder PhD – Regional Wildlife Diversity Biologist, Clearwater Region Ben Studer – Web and Digital Communications Lead, Headquarters Leona K Svancara PhD – Spatial Ecology Program Lead, Headquarters Beth Waterbury – Team Leader & Regional Wildlife Diversity Biologist, Salmon Region Craig White PhD – Regional Wildlife Manager, Southwest Region Ross Winton – Regional Wildlife Diversity Biologist, Magic Valley Region Additional copies: Additional copies can be downloaded from the Idaho Department of Fish and Game website at fishandgame.idaho.gov/wolverine-conservation-plan Front Cover Photo: Composite photo: Wolverine photo by AYImages; background photo of the Beaverhead Mountains, Lemhi County, Idaho by Rob Spence, Greater Yellowstone Wolverine Program, Wildlife conservation Society. Back Cover Photo: Release of Wolverine F4, a study animal from the Central Idaho Winter Recreation/Wolverine Project, from a live trap north of McCall, 2011. -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
Cache County Regional Transportation Plan
CacheRegional County, Transportation Utah Regional Transportation Plan 2040 June 2015 Mobility Economic Vitality Quality of Life CMPO Executive Council Chair: Todd Beutler, CVTD Transit Manager Vice Chair: Lloyd Berentzen, North Logan Mayor Don Calderwood, Providence County Executive Craig Buttars, Cache County Mayor Shaun Dustin, Nibley Mayor Bryan Cox, Hyde Park Wayne Barlow, Utah Transportation Commissioner Holly Daines, Logan City Council Mayor Craig Petersen, Logan Mayor Thomas Bailey, Wellsville Mayor Darrell Simmons, Smithfield Mayor Stephanie Miller, Hyrum Mayor Mike Johnson, Millville Mayor James Brackner, River Heights Cache Technical Advisory Committee Jim Gass, Smithfield Bill Young, Logan Randy Parks, Transit Josh Runhaar, Cache County Scarlet Bankhead, Providence David Zook, Nibley Ron Salvesen, Hyrum Cordell Batt, North Logan Reed Elder, Hyde Park Don Hartle, Wellsville Elden Bingham, UDOT Dave Adamson, UDOT Steve Call, FHWA Executive Director: James P. Gass Staff: Jeff Gilbert, Transportation Planner DRAFT TABLE OF CONTENTS chapter 1 – Overview & Introduction .................................................................................................................................... 5 2040 Background and regional information.............. 5 Cache Metropolitan Planning Organization .......... 5 Planning process .................................................... 5 Regional characteristics ......................................... 6 Transportation and Land Use ................................ 9 Development intensity -
Geology and Mineral Resources of the Randolph Quadrangle, Utah -Wyoming
UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 923 GEOLOGY AND MINERAL RESOURCES OF THE RANDOLPH QUADRANGLE, UTAH -WYOMING BY G. B. RICHARDSON UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1941 For sale by the Superintendent of Documents, Washington, D. O. ......... Price 55 cents HALL LIBRARY CONTENTS Pag* Abstract.____________--__-_-_-___-___-_---------------__----_____- 1 Introduction- ____________-__-___---__-_-_---_-_-----_----- -_______ 1 Topography. _____________________________________________________ 3 Bear River Range._.___---_-_---_-.---.---___-___-_-__________ 3 Bear River-Plateau___-_-----_-___-------_-_-____---___________ 5 Bear Lake-Valley..-_--_-._-_-__----__----_-_-__-_----____-____- 5 Bear River Valley.___---------_---____----_-_-__--_______'_____ 5 Crawford Mountains .________-_-___---____:.______-____________ 6 Descriptive geology.______-_____-___--__----- _-______--_-_-________ 6 Stratigraphy _ _________________________________________________ 7 Cambrian system.__________________________________________ 7 Brigham quartzite.____________________________________ 7 Langston limestone.___________________________________ 8 Ute limestone.__----_--____-----_-___-__--___________. 9 Blacksmith limestone._________________________________ 10 Bloomington formation..... _-_-_--___-____-_-_____-____ 11 Nounan limestone. _______-________ ____________________ 12 St. Charles limestone.. ---_------------------_--_-.-._ 13 Ordovician system._'_____________.___.__________________^__