Safety Data Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Safety Data Sheet SAFETY DATA SHEET Revision Date 18-Jan-2021 Revision Number 3 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Calcium fluoride Cat No. : 11055 Synonyms Fluorspar; Fluorite; Calcium difluoride CAS-No 7789-75-5 EC-No. 232-188-7 Molecular Formula CaF2 Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met ______________________________________________________________________________________________ ALFAA11055 Page 1 / 10 SAFETY DATA SHEET Calcium fluoride Revision Date 18-Jan-2021 ______________________________________________________________________________________________ Health hazards Based on available data, the classification criteria are not met Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2. Label elements None required 2.3. Other hazards In accordance with Annex XIII of the REACH Regulation, inorganic substances do not require assessment SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.1. Substances Component CAS-No EC-No. Weight % CLP Classification - Regulation (EC) No 1272/2008 Calcium fluoride (CaF2) 7789-75-5 EEC No. 232-188-7 100 - Reach Registration Number - Full text of Hazard Statements: see section 16 SECTION 4: FIRST AID MEASURES 4.1. Description of first aid measures General Advice If symptoms persist, call a physician. Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Get medical attention. Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Get medical attention immediately if symptoms occur. Ingestion Clean mouth with water and drink afterwards plenty of water. Get medical attention if symptoms occur. Inhalation Remove to fresh air. Get medical attention immediately if symptoms occur. Self-Protection of the First Aider No special precautions required. ______________________________________________________________________________________________ ALFAA11055 Page 2 / 10 SAFETY DATA SHEET Calcium fluoride Revision Date 18-Jan-2021 ______________________________________________________________________________________________ 4.2. Most important symptoms and effects, both acute and delayed None reasonably foreseeable. 4.3. Indication of any immediate medical attention and special treatment needed Notes to Physician Treat symptomatically. SECTION 5: FIREFIGHTING MEASURES 5.1. Extinguishing media Suitable Extinguishing Media Use extinguishing measures that are appropriate to local circumstances and the surrounding environment. Water spray, carbon dioxide (CO2), dry chemical, alcohol-resistant foam. Extinguishing media which must not be used for safety reasons No information available. 5.2. Special hazards arising from the substance or mixture Thermal decomposition can lead to release of irritating gases and vapors. Hazardous Combustion Products None under normal use conditions. 5.3. Advice for firefighters As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. SECTION 6: ACCIDENTAL RELEASE MEASURES 6.1. Personal precautions, protective equipment and emergency procedures Ensure adequate ventilation. Use personal protective equipment as required. Avoid dust formation. 6.2. Environmental precautions Should not be released into the environment. See Section 12 for additional Ecological Information. 6.3. Methods and material for containment and cleaning up Sweep up and shovel into suitable containers for disposal. Avoid dust formation. 6.4. Reference to other sections Refer to protective measures listed in Sections 8 and 13. SECTION 7: HANDLING AND STORAGE 7.1. Precautions for safe handling Wear personal protective equipment/face protection. Ensure adequate ventilation. Avoid ingestion and inhalation. Avoid contact with skin, eyes or clothing. Avoid dust formation. ______________________________________________________________________________________________ ALFAA11055 Page 3 / 10 SAFETY DATA SHEET Calcium fluoride Revision Date 18-Jan-2021 ______________________________________________________________________________________________ Hygiene Measures Handle in accordance with good industrial hygiene and safety practice. Keep away from food, drink and animal feeding stuffs. Do not eat, drink or smoke when using this product. Remove and wash contaminated clothing and gloves, including the inside, before re-use. Wash hands before breaks and after work. 7.2. Conditions for safe storage, including any incompatibilities Keep container tightly closed in a dry and well-ventilated place. Technical Rules for Hazardous Substances (TRGS) 510 Storage Class (LGK) Class 13 (Germany) 7.3. Specific end use(s) Use in laboratories SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION 8.1. Control parameters Exposure limits List source(s): Component The United Kingdom European Union Ireland Calcium fluoride (CaF2) STEL: 7.5 mg/m3 15 min TWA: 2.5 mg/m3 8 hr Biological limit values This product, as supplied, does not contain any hazardous materials with biological limits established by the region specific regulatory bodies Monitoring methods BS EN 14042:2003 Title Identifier: Workplace atmospheres. Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents. MDHS14/3 General methods for sampling and gravimetric analysis of respirable and inhalable dust Derived No Effect Level (DNEL) No information available Route of exposure Acute effects (local) Acute effects Chronic effects Chronic effects (systemic) (local) (systemic) Oral Dermal Inhalation Predicted No Effect Concentration No information available. (PNEC) 8.2. Exposure controls Engineering Measures Ensure that eyewash stations and safety showers are close to the workstation location. Wherever possible, engineering control measures such as the isolation or enclosure of the process, the introduction of process or equipment changes to minimise release or contact, and the use of properly designed ventilation systems, should be adopted to control hazardous materials at source Personal protective equipment Eye Protection Goggles (European standard - EN 166) ______________________________________________________________________________________________ ALFAA11055 Page 4 / 10 SAFETY DATA SHEET Calcium fluoride Revision Date 18-Jan-2021 ______________________________________________________________________________________________ Hand Protection Protective gloves Glove material Breakthrough time Glove thickness EU standard Glove comments Natural rubber See manufacturers - EN 374 (minimum requirement) Nitrile rubber recommendations Neoprene PVC Skin and body protection Long sleeved clothing Inspect gloves before use. Please observe the instructions regarding permeability and breakthrough time which are provided by the supplier of the gloves. (Refer to manufacturer/supplier for information) Ensure gloves are suitable for the task: Chemical compatability, Dexterity, Operational conditions, User susceptibility, e.g. sensitisation effects, also take into consideration the specific local conditions under which the product is used, such as the danger of cuts, abrasion. Remove gloves with care avoiding skin contamination. Respiratory Protection When workers are facing concentrations above the exposure limit they must use appropriate certified respirators. To protect the wearer, respiratory protective equipment must be the correct fit and be used and maintained properly Large scale/emergency use Use a NIOSH/MSHA or European Standard EN 136 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced Recommended Filter type: Particulates filter conforming to EN 143 Small scale/Laboratory use Use a NIOSH/MSHA or European Standard EN 149:2001 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced. Recommended half mask:- Particle filtering: EN149:2001 When RPE is used a face piece Fit Test should be conducted Environmental exposure controls No information available. SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES 9.1. Information on basic physical and chemical properties Physical State Solid Appearance White Odor Odorless Odor Threshold No data available Melting Point/Range 1422.8 °C / 2593 °F Softening Point No data available Boiling Point/Range No information available Flammability (liquid) Not applicable Solid Flammability (solid,gas) No information available Explosion Limits No data available Flash Point Not applicable Method - No information available Autoignition Temperature No data available Decomposition Temperature No data available pH No information
Recommended publications
  • The Heat of Combustion of Beryllium in Fluorine*
    JOURNAL OF RESEARCH of the National Bureau of Standards -A. Physics and Chemistry Vol. 73A, No.3, May- June 1969 The Heat of Combustion of Beryllium in Fluorine* K. L. Churney and G. T. Armstrong Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234 (February 11, 1969) An expe rimental dete rmination of the e ne rgies of combustion in Auorine of polyte traAuoroethylene film and Q.o wder and of mixtures of beryllium with polytetraAuoroethyle ne gi ves for reacti on ( 1)f).H ~.or= - 1022.22 kJ 111 0 1- 1 (- 244.32 kcal mol - I) wit h a n ove ra ll precision of 0.96 kJ 111 0 1- 1 (0. 23 kcal 111 0 1- 1 ) at the 95 pe rce nt confid ence limit s. The tota l un cert a int y is estimated not to exceed ±3.2 kJ mol- I (±0.8 kcal mol - I). The measureme nts on polytetraflu oroeth yle ne giv e for reaction (2a) and reacti on (2 b) f).H ~. o c =- 10 369. 7 and - 10392.4 Jg- I, respective ly. Overall precisions e xpressed at the 95 pe rcent confide nce Ijmits are 3.3 and 6.0 Jg- I, respective ly. Be(c)+ F,(g) = BeF2(a morphous) (1) C,F.(polym e r powd er) + 2F2(g) = 2CF.(g) (2a) C2F.(polyme r film ) + 2F2 (g) = 2CF.(g) (2b) Be2C and Be metal were observed in a small carbonaceous residue from the co mbustion of the beryll iul11 -polytetraAuoroethylene mixtures.
    [Show full text]
  • Calcium Fluoride Scale Prevention
    Tech Manual Excerpt Water Chemistry and Pretreatment Calcium Fluoride Scale Prevention Calcium Fluoride Fluoride levels in the feedwater of as low as 0.1 mg/L can create a scaling potential if Scale Prevention the calcium concentration is high. The calculation of the scaling potential is analogous to the procedure described in Calcium Sulfate Scale Prevention (Form No. 45-D01553-en) for CaSO4. Calculation 1. Calculate the ionic strength of the concentrate stream (Ic) following the procedure described in Scaling Calculations (Form No. 45-D01551-en): Eq. 1 2. Calculate the ion product (IPc) for CaF2 in the concentrate stream: Eq. 2 where: m 2+ 2+ ( Ca )f = M Ca in feed, mol/L m – – ( F )f = M F in feed, mol/L 3. Compare IPc for CaF2 with the solubility product (Ksp) of CaF2 at the ionic strength of the concentrate stream, Figure 2 /11/. If IPc ≥ Ksp, CaF2 scaling can occur, and adjustment is required. Adjustments for CaF2 Scale Control The adjustments discussed in Calcium Sulfate Scale Prevention (Form No. 45-D01553-en) for CaSO4 scale control apply as well for CaF2 scale control. Page 1 of 3 Form No. 45-D01556-en, Rev. 4 April 2020 Figure 1: Ksp for SrSO4 versus ionic strength /10/ Page 2 of 3 Form No. 45-D01556-en, Rev. 4 April 2020 Figure 2: Ksp for CaF2 versus ionic strength /11/ Excerpt from FilmTec™ Reverse Osmosis Membranes Technical Manual (Form No. 45-D01504-en), Chapter 2, "Water Chemistry and Pretreatment." Have a question? Contact us at: All information set forth herein is for informational purposes only.
    [Show full text]
  • Environmental Impact Assessment and Due Diligence Report (DRAFT)
    Environmental Impact Assessment and Due Diligence Report (DRAFT) Project Number: 47051-002 May 2015 PRC: Chemical Industry Energy Efficiency and Emissions Reduction Project Prepared by ChemChina and CHC for the Asian Development Bank. This is a version of the draft posted in May 2015 available on http://www.adb.org/Documents/RRPs/?id=47051-002-3. CURRENCY EQUIVALENTS (as of 11 May 2015) Currency unit – yuan (CNY) CNY1.00 = $ 0.1633 $1.00 = CNY 6.1254 ABBREVIATIONS ADB – Asian Development Bank AP – Affected Person API – American Petroleum Institute ASL – Above Sea Level CCPS – Center for Chemical Process Safety CEMS – Continuous Emissions Monitoring System ChemChina – China National Chemical Corporation CHC – China Haohua Company CHP – Combined Heat and Power CNY – Chinese Yuan CSEMP – Construction Site Environmental Management Plan DCS – Distributed Control System EA – Executing Agency EHS – Environment, Health and Safety EHSS – Environment, Health and Safety Specialist EHSU – Environment, Health and Safety Unit EIA – Environmental Impact Assessment EMoP – Environmental Monitoring Plan EMP – Environmental Management Plan EMS – Environmental Monitoring Station EPB – Environmental Protection Bureau FSR – Feasibility Study Report Flor – Calcium fluoride (CaF2) or “fluorite” GDP – Gross Domestic Product GHG – Greenhouse Gas GIP – Good International Practice GRM – Grievance Redress Mechanism HDP – High Density Polyethylene IA – Implementing Agency IEE – Initial Environmental Examination IT – Interim Target LIC – Loan Implementation Consultant
    [Show full text]
  • Cleaning Optics
    GUIDE TO CLEANING OPTICS Crystal optics are more delicate than glass and should be treated carefully if they have to be cleaned. Some materials are very delicate, and should be treated with extra care. We describe the method, but the technique comes with practice. Handle optics by the edge and use lint-free nylon gloves. Use plastic protective gloves when cleaning with solvent but check that the solvent does not attack the glove. Clean optics as little as possible and only if absolutely necessary. Cleaning may create fine scratches which you cannot see easily but which may contribute to scattering, particularly in the UV. If the optic is mounted, try never to let solvent creep into the mounting ring. Use an air jet and no solvent at all for removal of dust. Very Delicate Materials: CsI, KRS5, Germanium, Zinc Selenide, Zinc Sulphide. These materials are soft, or are inclined to take marks (sleeks) or show up marks easily. They should be washed in a solvent such as methanol or propanol for light marking. Use an environmental friendly solvent such as NuSol Rapide (a replacement for trichloroethylene which is available in the UK) or otherwise acetone, for greasy or waxy contaminants. Soak the optic and wipe while wet with cotton wool (known as absorbent cotton in the USA) dipped in the solvent and let the optic dry by evaporation or assist it with airflow as it is wiped. Delicate Materials: Calcium Fluoride, Coated Materials, Magnesium Fluoride, Other fluorides, Silicon. These should be treated as above where practical, but it is often preferable to clean them carefully with a damp tissue.
    [Show full text]
  • Low Temperature Aqueous Solubility of Fluorite at Temperatures of 5, 25, and 50 Oc and Ionic Strengths up to 0.72M
    LOW TEMPERATURE AQUEOUS SOLUBILITY OF FLUORITE AT TEMPERATURES OF 5, 25, AND 50 OC AND IONIC STRENGTHS UP TO 0.72M by Richard L. Henry A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Geochemistry) Golden, Colorado Date __________________________ Signed: ______________________________ Richard L. Henry Signed: ______________________________ Dr. Wendy J. Harrison Thesis Advisor Golden, Colorado Date __________________________ Signed: ______________________________ Dr. M. Stephen Enders Professor and Head Department of Geology and Geological Engineering ii ABSTRACT Historical fluorite solubility research found that fluorite solubilities varied over three orders-of-magnitude and appear to be inconsistent with several recently determined fluorite solubilities. This research involved a comprehensive series of solubility experiments run over a period of three years using nine natural fluorites and one synthetic fluorite to determine their solubility in low temperature (5, 25, and 50oC) aqueous solutions and ionic strengths ranging from near zero to 0.72M. Equilibrium was approached from both undersaturated and supersaturated initial conditions. The fluorites were chemically and physically characterized using laboratory analyses, thin section petrography, UV fluorescence, and x-ray diffraction. The fluorite samples were generally found to have similar chemical and physical properties. The chemical composition was approximately stoichiometric, with a mean calcium concentration of 51.6 ± 0.6 wt % and mean fluorine concentration of 50.2 ± 0.7 wt %. Fluorite unit cell edge lengths, volumes, and densities averaged 5.4630 ± 0.0007 Å, 163.04 ± 0.06 Å3, and 3.181 ± 0.009 g/cm3, respectively.
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide FIRST EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 1st Edition © 2019 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • Calcium Fluoride Caf2 Physical and Chemical Properties
    Calcium Fluoride CaF2 Physical and Chemical Properties Semiconductor Optics Calcium Fluoride (CaF2) Physical & Chemical Properties Environmental Effects: Exposure to 100% relative humidity at room temperature does not fog polished surfaces even after one month. In normal working conditions, polished surfaces will not degrade. For temperatures exceeding 600°C, calcium fluoride surfaces will degrade in the presence of moisture. In dry environments, calcium fluoride can be used up to 1000°C, but it does not begin to soften at 800°C. Calcium fluoride is inert to organic chemicals and many acids, including HF. It will slowly dissolve in nitric acid. Fabrication: Calcium fluoride can be machined with standard diamond tools and water-based coolants. The material takes a good polish using either aluminum oxide, chromic oxide or diamond-based polishing powders using either pitch or cloth laps. Size: Corning Semiconductor Optics grows a range of diameters up to 14.5” [368 mm] from which optical components are custom fabricated. Molecular Weight: 78.06 Structure: Cubic, fluorite type, space group Fm3m, a = 5.462 Angstroms, z = 4. Density: 3.18 g. cc -1 at 25°C. Melting Point: 1423°C Boiling Point: 2500°C Solubility: 0.015 g. per 100g H20 at room temperature. Mechanical & Elastic Properties: Young’s Modulus: 75.8 GPa Fracture Strength: Measurements by Raytheon on Corning Semiconductor Optics single crystals and Raytheon fusion cast material show that fracture strength is very dependent on surface finish. Fracture strengths varied from 34.1 +/- 15.1 MPa for rough finish pieces to 157.2 +/- 13.7 MPa for well-annealed, optically polished material.
    [Show full text]
  • Determination of Carbon and Sulfur in Fluorspar Lecocorporation; Saint Joseph, Michigan USA Instrument: CS844 Series Introduction
    Determination of Carbon and Sulfur in Fluorspar LECOCorporation; Saint Joseph, Michigan USA Instrument: CS844 Series Introduction Fluorspar, a mineral composed of calcium fluoride (CaF2 ), is an important material in many industrial processes. It is used as a fluxing agent for steelmaking, a raw material for Method Parameters making aluminum fluoride and hydrofluoric acid, and in General Parameters the production of enamels, glasses, and cement. As with Purge Time 15 s any pure or graded processing material, the purity of the Analysis Delay 30 s material must be tightly characterized in order to control Sample Cool Time 0 s the downstream effects of the impurities on the final Furnace Mode Constant product. Carbon is one of the impurities in fluorspar that Furnace Power 100% must be determined, and can be in the form of carbonates or organic carbon. The LECO CS844, when equipped with Element Parameters Carbon Sulfur the optional halogen trap, provides a fast and accurate Integration Delay 0 s 0 s means of determining the amount of total carbon in Starting Baseline 2 s 2 s fluorspar, and can be set to automatically calculate the Use Comparator No No approximate carbon as CaCO in the sample. The 3 Integration Time 50 s 55 s following application note outlines the sample preparation Use End line Yes Yes steps, analytical procedure, and provides examples of typical results from the CS844 on known certified Ending Baseline 2 s 2 s reference materials. Range Select Auto Auto Range Low 800 800 Sample Preparation Range High 950 1200 Surface contamination on the sample can cause significant errors in the analytical data; therefore, care must be taken Procedure to ensure a clean, representative sample is analyzed.
    [Show full text]
  • WS Element of Month Fluorine Final V2
    All About Elements: Fluorine 1 Ward’s All About Elements Series Building Real-World Connections to the Building Blocks of Chemistry PERIODIC TABLE OF THE ELEMENTS GROUP 1/IA 18/VIIIA 1 2 H KEY He Atomic Number 1.01 2/IIA 35 13/IIIA 14/IVA 15/VA 16/VIA 17/VIIA 4.00 3 4 5 6 7 8 9 10 Li Be Symbol Br B C N O F Ne 6.94 9.01 79.90 Atomic Weight 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 8 9 10 22.99 24.31 3/IIIB 4/IVB 5/VB 6/VIB 7/VIIB VIIIBVIII 11/IB 12/IIB 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.87 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.41 69.72 72.64 74.92 78.9678.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (97.91)(98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 131.29 55 56 57–71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn ´ 132.91 137.33 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.20207.2 208.98 (208.98)(209) (209.99)(210) (222.02)(222) 87 88 89–103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra AcAc-Lr - Lr Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo ´´ (223.02)(223) (226.03)(226) (261.11)(261) (262.11)(262) (266.12)(266) (264.12)(264) (277.00)(277) (268.14)(268) (247.07)(269) (280.00)(272) (285.00)(285) (284.00)(284) (289.00)(289) (288.00)(288) (293.00)(289) (294.00) (294.00)(294) ´ 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 138.91 140.12 140.91 144.24 (144.91)(145) 150.36 151.97151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97 US: www.wardsci.com Canada: www.wardsci.ca ´´ 800-962-2660 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 © 2010 Rev.
    [Show full text]
  • 2. the Investigated Material: Calcium Fluoride
    2. The investigated material: Calcium fluoride The aim of this chapter is to make the reader familiar with the ionic crystal Calcium fluoride, and to emphasize some specific features of this material that are important in the context of this work. In the first part, the geometrical and electronic structure of the pure material is introduced. This section is followed by a survey of irradiation induced defects in CaF2 and a description of the development of these defects into colloids. Then, some effects are described which are related to electron and photon irradiation that are not specific to CaF2. The issues here are the penetration depth of primary electrons and the mean free path of photoelectrons. 2.1. Structure of the CaF2 crystal CaF2 is an ionic crystal with the fluorite structure. The lattice is a face centered cubic (fcc) structure with three sublattices. The unit cell of the material is most easily described as a simple cubic lattice formed by the F- ions where a Ca2+ ion is contained in every second cube. The remaining empty cubes (called interstitial or hollow sites) are important for defect formation and diffusion, but also for the accommodation of unwanted impurities like rare earth ions and dopants. The lattice constant is a=5.451 Å [JCh83] (Fig. 2.1). The natural cleavage plane of the crystal is the (111) surface. It is build up from F--Ca2+-F- triple layers of 3.14 Å distance and is terminated by fluorine ions. In Fig. 2.1, the four possible (111) planes are defined by F--Ion Ca2+-Ion a Fig.
    [Show full text]
  • FACILE FABRICATION of CALCIUM FLUORIDE IR-TRANSPARENT MICROFLUIDIC DEVICES Brynson J
    FACILE FABRICATION OF CALCIUM FLUORIDE IR-TRANSPARENT MICROFLUIDIC DEVICES Brynson J. Lehmkuhl, Scott D. Noblitt, Amber T. Krummel, and Charles S. Henry Colorado State University, USA ABSTRACT Infrared spectroscopy (IR) provides a wealth of chemical information. Ideally, IR could be combined with microfluidics to provide monitoring of chemical and biochemical reactions with both spatial and temporal resolution. However, few IR-compatible microfluidic devices have been produced, primarily due to the IR-absorbing characteristics of most microfluidic substrates. Here, we demonstrate IR- compatible devices composed of CaF2 substrates bonded using either poly(dimethylsiloxane) (PDMS) or polymer membranes. The PDMS-bonded devices use chemical etching to create channels in the CaF2, whereas the membrane-bonded microchips have laser-cut channels. The fabrication techniques employed and IR results are discussed. KEYWORDS: Infrared, Spectroscopy, Detection, Calcium Flouride INTRODUCTION Infrared spectroscopy (IR) is a well established technique for probing molecular-level chemical bonding environments. With the advent of Fourier transform infrared spectroscopy (FTIR), modern spectrometers can rapidly collect data over large wavelength ranges. Some applications for IR include monitoring chemical reactions, analyzing solvation effects, and probing protein structures. Current instruments are capable of providing chemical information with either high temporal or spatial resolution; however, combinations of temporal and spatial resolution are limited. The coupling of microfluidics to FTIR spectroscopy would permit simultaneous spatial and temporal resolution with the added benefits of small sample sizes and rigorous fluid control. To date, however, there has been limited incorporation of IR with microfluidics. The main obstacle for IR transparent microfluidics is the material employed, as all common microfluidic substrates strongly absorb IR radiation and are typically present at thicknesses of ≥1 mm.
    [Show full text]
  • The History of Fluorine-From Discovery to Commodity
    Educator Indian Journal of Chemical Technology Vol. 9. July 2002. pp. 363-372 The History of Fluorine-From discovery to commodity Jaime Wisniak* Department of Chemical Engineering. Ben-Gurian University of the Negev. Beer-Sheva. Israel 84105 Fluorine was the last of the halogens to be isolated. The extreme difficulties and dangers of handling it retarded substantial commercial applications until World War II when it became essential for the development of nuclear devices. Development of industrial processes for the manufacture of hydrogen Duoride and chloroDuorinated hydrocarbons turned Duorine and its derivatives into a major chemical commodity. The end use pattern of Duorine has reDected the changes in social appreciation of environmental protection and safety. Discovery offluorine An interesting aspect of the history of fluorine is The first historical reference regarding the use of that Andre-Marie Ampere (1775-1831) coined its fluorine compounds seems to be in the books of name before it was isolated. Ampere's interest in George Agricola (1494-1555), particularly in De Re chemistry led him to deduce that hydrogen fluoride l Metallica • When describing the manufacturing of was analogous to hydrogen chloride. He believed that metals, particularly iron, he wrote: Finally there now "silicated fluoric acid"(hydrofluoric acid) contained a remains those stones which I call stones which easiLy peculiar principle, analogous to chlorine and oxygen, meLt in the fire, because when thrown into hot united to the basis or silica, or silicum; the fluoboric furnaces they flow. According to Hoover and Hooverl acid of the same principle united to boron; and the there is little doubt that some of these stones included pure liquid fluoric acid as this principle united to fluorspar.
    [Show full text]