TAAS Monthly Observing Challenge – June 2016 Deep Sky Object

Total Page:16

File Type:pdf, Size:1020Kb

TAAS Monthly Observing Challenge – June 2016 Deep Sky Object TAAS Monthly Observing Challenge – June 2016 Deep Sky Object NGC 6712 (GC) Scutum ra: 18h 53m 04.3s dec: -08° 42’ 22” Magnitude (visual) = 8.1 Size = 9.8’ Concentration class = 9 Distance = approximately 22,500 light years Description: Probably discovered by Le Gentil on July 9, 1749. Discovered by William Herschel on June 16, 1784. This globular was first cataloged by William Herschel as H I.47, as he first classified it as a bright round nebula. John Herschel numbered it h 3762 in his "Cape" catalog on the ground of his observations in the 1830s, and included it in his General Catalogue of 1864 as GC 4441. At its distance of 22,500 light-years, NGC 6712's apparent diameter of 7.4 minutes of arc corresponds to a linear extension of about 50 light-years, and its visual brightness of 8.1 magnitude to an absolute magnitude of -7.50, or an intrinsic luminosity of about 90,000 times that of our Sun. Its overall spectral type has been determined as F9. It is approaching us at 107.5 km/s. Cecilia Payne-Gaposchkin mentions that a dwarf nova had occurred in NGC 6712, which makes it one of three globulars where such stars were observed, the others being M5 and M30. In 1999, ESO astronomers used the 8.2-m VLT Unit Telescope (UT1) to photograph and investigate globular cluster NGC 6712 and found evidence that this cluster is "evaporating," and has already lost its faintest stars to the Milky Way halo. Source: http://spider.seds.org/spider/MWGC/n6712.html Al: Herschel 400, Globular Cluster Challenge Object NGC 6302 (PN) Scorpius – aka Bug Nebula or Butterfly Nebula ra: 17h 13m 44.3s dec: -37° 06’ 13” Magnitude (visual) = 9.6 Size = 89” Distance = 3800 light years Description: The Butterfly Nebula is a bipolar planetary nebula located in Scorpius. It lies at a distance of 3,800 light years from Earth. Named for its resemblance to a butterfly, the nebula has a wingspan that stretches across three light years. It is sometimes also called the Bug Nebula. It has the designation NGC 6302 in the New General Catalogue. The Butterfly Nebula has one of the most complex structures ever seen in a planetary nebula. The dying central star is one of the hottest known stars in the galaxy. It has a surface temperature of around 222,204°C (400,000 F) and is hidden from view by dust clouds, but shines brightly in ultraviolet wavelengths. The dust cloud around the star has an estimated temperature of 18,000°C. The gas in the nebula is moving very quickly across space at over 600,000 miles (965,606 kilometres) per hour. The star at the centre of the nebula is a white dwarf with an estimated mass of about 0.64 solar masses. It has a dense disc of dust and gas surrounding it at the equator, which is believed to have caused the star’s outflow of material to form the bipolar butterfly shape, resembling an hour-glass. Source: http://www.constellation-guide.com/butterfly-nebula AL: Caldwell 69, Planetary Nebula; TAAS 200 Binocular Object M82 / NGC 3034 (GX) Ursa Major –aka Cigar Galaxy ra: 09h 55m 52.2s dec: +69° 40’ 48” Magnitude (visual) = 8.4 Size = 11.2’ x 4.3’ Position angle = 65° Distance = approximately 12 million light years Description: M82 was discovered on December 31, 1774 by Johann Elert Bode together with M81; he described it as a "nebulous patch", about 0.75 deg away from M81, which "is very pale and of elongated shape," and cataloged it as No. 18 in his catalog. Pierre Méchain independently rediscovered both galaxies as nebulous patches in August 1779 and reported them to Charles Messier, who added them to his catalog after his position measurement on February 9, 1781. Messier 82 (M82, NGC 3034) is a remarkable galaxy of peculiar type in constellation Ursa Major. It is usually classified as irregular, though probably a distorted disk galaxy, and famous for its heavy star-forming activity, thus a prototype member of the class of starbursting galaxies. Forming a most conspicuous physical pair with its neighbor, M81 (THE showpiece galaxies for many Northern hemispherers), this galaxy is the prototype of an irregular of the second type, i.e. a "disk" irregular. Its core seems to have suffered dramatically from a semi-recent close encounter with M81, being in a heavy starburst and displaying conspicuous dark lanes. This turbulent explosive gas flow is also a strong source of radio noise, discovered by Henbury Brown in 1953. The radio source was first called Ursa Major A (strongest radio source in UMa) and cataloged as 3C 231 in the Third Cambridge Catalogue of Radio Sources. Recently, over 100 freshly-formed (young) globular clusters have been discovered with the Hubble Space Telescope. Their formation is probably another effect triggered by the encounter with M81. It was estimated that the most recent tidal encounter occurred between about 50 and several 100 million years ago: Source: http://messier.seds.org/m/m082.html AL: Binocular Messier Double Star Epsilon Lyrae (DS) Lyra – aka Double Double ra: 18h 44m 18.5s dec: +39° 40’ 12.4” Magnitudes (visual) = 5.0,6.1 / 5.3,5.4 Separation = 2.1” / 2.4” (210” between double star pairs) Position angle = 174° Distance = approximately 160 light years Description: There are many multiple star systems in the sky, but Epsilon Lyrae is special because it’s so easy – and so satisfying – to see as multiple. You can easily split the widest two components of the Epsilon Lyrae quadruple system with binoculars. You might even be able to split them with the unaided eye under excellent sky conditions. The two primary star systems of Epsilon Lyrae – the two that you see with binoculars – are thought to be 10,000 times the sun-Earth distance apart. They probably take at least a half a million years to revolve around each other. The component binaries visible through the telescope are much closer together. They’re believed to circle each other in periods of about a thousand years. And there are even more stars in this system. A fifth star orbits one of the primary pairs; it was first detected in 1986, not with the eye but with speckle imaging. Other nearby stars may also be part of the Epsilon Lyrae system, bringing the system to a total of 10 stars. Source: http://earthsky.org/brightest-stars/epsilon-lyrae-the-famous-double-double-star AL: Double Star .
Recommended publications
  • Planetary Nebula
    How Far Away Is It – Planetary Nebula Planetary Nebula {Abstract – In this segment of our “How far away is it” video book, we cover Planetary Nebula. We begin by introducing astrophotography and how it adds to what we can see through a telescope with our eyes. We use NGC 2818 to illustrate how this works. This continues into the modern use of Charge-Coupled Devices and how they work. We use the planetary nebula MyCn18 to illustrate the use of color filters to identify elements in the nebula. We then show a clip illustrating the end-of-life explosion that creates objects like the Helix Planetary Nebula (NGC 7293), and show how it would fill the space between our Sun and our nearest star, Proxima Centauri. Then, we use the Cat’s Eye Nebula (NGC 6543) to illustrate expansion parallax. As a fundamental component for calculating expansion parallax, we also illustrate the Doppler Effect and how we measure it via spectral line red and blue shifts. We continue with a tour of the most beautiful planetary nebula photographed by Hubble. These include: the Dumbbell Nebula, NGC 5189, Ring Nebula, Retina Nebula, Red Rectangle, Ant Nebula, Butterfly Nebula, , Kohoutek 4- 55, Eskimo Nebula, NGC 6751, SuWt 2, Starfish, NGC 5315, NGC 5307, Little Ghost Nebula, NGC 2440, IC 4593, Red Spider, Boomerang, Twin Jet, Calabash, Gomez’s Hamburger and others culminating with a dive into the Necklace Nebula. We conclude by noting that this will be the most likely end for our Sun, but not for billions of years to come, and we update the Cosmic Distance Ladder with the new ‘Expansion Parallax’ rung developed in this segment.} Introduction [Music @00:00 Bizet, Georges: Entracte to Act III from “Carman”; Orchestre National de France / Seiji Ozawa, 1984; from the album “The most relaxing classical album in the world…ever!”] Planetary Nebulae represent some of the most beautiful objects in the Milky Way.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • The Complete ISO Spectrum of NGC 6302?
    A&A 372, 165–172 (2001) Astronomy DOI: 10.1051/0004-6361:20010465 & c ESO 2001 Astrophysics The complete ISO spectrum of NGC 6302? F. J. Molster1,2,T.L.Lim3,R.J.Sylvester4,L.B.F.M.Waters1,5,M.J.Barlow4,D.A.Beintema6, M. Cohen7,P.Cox8, and B. Schmitt9 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 2 School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332-0245, USA 3 Space Science Department, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK 4 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 5 Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium 6 SRON Space Research Laboratory, PO Box 800, 9700 AV Groningen, The Netherlands 7 Radio Astronomy Laboratory, 601 Campbell Hall, University of California, Berkeley, CA 94720, USA 8 Institut d’Astrophysique Spatiale, Bˆat. 121, Universit´e de Paris XI, 91405 Orsay Cedex, France 9 Laboratoire de Planetologie de Grenoble, Universite J. Fourier – CNRS, Bˆat. D de Physique, BP 53, 38041 Grenoble Cedex 9, France Received 12 October 1999 / Accepted 22 March 2001 Abstract. We present the combined Infrared Space Observatory Short-Wavelength Spectrometer and Long- Wavelength Spectrometer 2.4–197 µm spectrum of the Planetary Nebula NGC 6302 which contains in addition to strong atomic lines, a series of emission features due to solid state components. The broad wavelength coverage enables us to more accurately identify and determine the properties of both oxygen- and carbon-rich circumstellar dust. A simple model fit was made to determine the abundance and typical temperature of the amorphous silicates, enstatite and forsterite.
    [Show full text]
  • OBSERVING BASICS by GUY MACKIE
    OBSERVING BASICS by GUY MACKIE Observing Reports The colorful and detailed photographs we see of celestial objects are not at all like the ubiquitous "fuzzy blobs" we see at the eyepiece. Nevertheless, you are freezing your buns off and loosing much needed sleep for work, the next day so why not make a description of your observations that will make the hunt worthwhile. Here are some suggestions to fill the empty spaces in your logbook and to imprint the observing experience more deeply in your memory. The Basics Your website www.m51.ca has a downloadable log sheet template that is just super, but you can also make up one for yourself or customize the website version to your own needs. The main things to start your report should be the circumstances under which you observed: Observing Location Time (of observing session and of the observation of each object) Optics (type of instrument, eyepiece, filters, power of magnification) Transparency (page 56 of the Observers Handbook) Seeing (for me this is a subjective rating of the atmospheric stability based on Planet features and double star observations) It is good to know the field of view (FOV) of each of your eyepieces in minutes of degree, then you can estimate the approximate size of the object. The sketchpad I use has the FOV for every eyepiece I use taped to the back, a handy reference. To calculate your field of view there are websites that will punch out the both the magnification and the FOV for most eyepieces. You can do it yourself: With any motor drives turned off, place a star near the celestial equator just outside the field of view in the eyepiece so that it will drift across the middle of the field of view.
    [Show full text]
  • The Hubble-Type Outflows from the High-Excitation, Polypolar Planetary Nebula Ngc 6302 J
    The Astronomical Journal, 130:2303–2311, 2005 November # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE HUBBLE-TYPE OUTFLOWS FROM THE HIGH-EXCITATION, POLYPOLAR PLANETARY NEBULA NGC 6302 J. Meaburn, J. A. Lo´pez, and W. Steffen Instituto de Astrono´mia, Universidad Nacional Auto´noma de Me´xico, Campus Ensenada, Apartado Postal 877, 22800 Ensenada, Mexico and M. F. Graham and A. J. Holloway Jodrell Bank Observatory, University of Manchester, Macclesfield SK11 9DL, UK Received 2005 July 8; accepted 2005 July 26 ABSTRACT Spatially resolved profiles of the H and [N ii] lines have been obtained at unprecedented signal-to-noise ratios over the outflowing lobes of the high-excitation, polypolar planetary nebula NGC 6302. A deep image in the light of [N ii] k6584 was also obtained of the extremities of the prominent northwestern lobe. The Manchester Echelle Spectrometer combined with the 2.1 m San Pedro Martir telescope (Mexico) was used for these observations. First, À1 an accurate value of the systemic heliocentric radial velocity of Vsys ¼29:8 Æ 1kms has been established. Also, from ‘‘velocity ellipses’’ across its diameter from previous observations, the parallel-sided northwestern lobe is shown to have a circular section with a tilt of its axis to the plane of the sky of 12N8. With this starting point the position-velocity arrays of profiles have been very closely simulated, using the SHAPE code, with Hubble-type outflows. The faint extremities of the northwestern outflow are shown to be expanding at 600 km sÀ1. The prominent lobes of NGC 6302 have then been generated in an eruptive event with a dynamical age of 1900 yr for an expansion proper-motion distance of 1:04 Æ 0:16 kpc, as measured here by comparing a 1956 image with one taken in 2002.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Astrophotography a Beginner’S Guide
    Astrophotography A Beginner’s Guide By James Seaman Copyright © James Seaman 2018 Contents Astrophotography ................................................................................................................................... 5 Equipment ........................................................................................................................................... 6 DSLR Cameras ..................................................................................................................................... 7 Sensors ............................................................................................................................................ 7 Focal Length .................................................................................................................................... 8 Exposure .......................................................................................................................................... 9 Aperture ........................................................................................................................................ 10 ISO ................................................................................................................................................. 11 White Balance ............................................................................................................................... 12 File Formats ..................................................................................................................................
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • Caldwell Catalogue - Wikipedia, the Free Encyclopedia
    Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers.
    [Show full text]
  • X-Ray Emission from Planetary Nebulae: a Decade of Insight from Chandra
    X-Ray Emission from Planetary Nebulae: A Decade of Insight from Chandra Joel Kastner Center for Imaging Science and Astrophysical Sciences & Technology Rochester Institute of Technology Planetary Nebulae • Near-endpoints of stellar evolution for 1-8 Msun stars • PN: ejected red giant (AGB) envelope ionized by newly unveiled stellar core (emerging white dwarf) • Dazzling variety of shapes – Shaping process(es) are presently subject of intense NGC 7027: interest in PN community planetary nebula poster child Planetary Nebulae: Favorite subjects for HST HST/WFPC2 “last light”: K 4-55 HST/WFC3 “first light”: NGC 6302 X-rays and the Structure of PNs: A Decade of Insight • Two classes of source detected in Chandra (& XMM) CCD X-ray imaging spectroscopy observations – Diffuse X-ray sources • Morphology traces wind interaction regions – “Hot bubbles” vs. collimated outflows • Abundance patterns should point to the source of the shocked (X- ray-emitting) gas – Present “fast wind” from PN core, AGB “slow wind”, or both? 2. Central X-ray point sources w/ kTX ~ 1 keV (or more) • Not the photosphere of the newly exposed white dwarf…so origin uncertain Diffuse X-ray regions within PNe: “hot bubbles” and collimated outflows NGC 40: a hot bubble left: Chandra X-ray right: X-ray superimposed on optical (WIYN) image (Montez et al. 2005) NGC 7027: fast, collimated flows left: Chandra X-ray right: HST (Kastner et al. 2001) Chandra & XMM-Newton: New light on “hot bubbles” in PNe • Common traits of diffuse X-ray PN: – “Closed” bubble morphologies • Confinement of superheated plasma – Central stars have large wind kinetic energies • Most are [WC], [WO], or WR(H) types – X-ray luminosity correlated w/ wind luminosity X-ray images (blue): XMM & Chandra X-ray/visual image overlays: M.
    [Show full text]
  • Smoking Galaxy Revealed 17 March 2006
    Smoking galaxy revealed 17 March 2006 The smelly material, called polycyclic aromatic hydrocarbon, can be found on Earth in tailpipes, barbecue pits and other places where combustion reactions have occurred. In galaxies, the stuff is created by stars, whose winds and radiation blow the material out into space. "Usually you see smoke before a fire, but we knew about the fire in this galaxy before Spitzer's infrared eyes saw the smoke," said Dr. David Leisawitz, Spitzer program scientist at NASA Headquarters in Washington. These hazy clouds are some of the biggest ever The visible-light picture of the Cigar galaxy shows only a seen around a galaxy. They stretch out 20,000 light- bar of light against a dark patch of space. Click on years away from the galactic plane in both browse image for a visible/infrared comparison. Image directions, far beyond where stars are found. credit: NASA/JPL-Caltech/University of Arizona/NOAO Previous observations of Messier 82 had revealed two cone-shaped clouds of very hot gas projecting outward below and above the center of galaxy. Where there's smoke, there's fire - even in outer Spitzer's sensitive infrared vision allowed space. A new infrared image from NASA's Spitzer astronomers to see the galaxy's dust. Space Telescope shows a burning hot galaxy whose fiery stars appear to be blowing out giant "Spitzer showed us a dust halo all around this billows of smoky dust. galaxy," said Engelbracht. "We still don't understand why the dust is all over the place and The galaxy, called Messier 82, or the "Cigar not cone-shaped." galaxy," was previously known to host a hotbed of young, massive stars.
    [Show full text]