Design of Footbridges Dutch Solutions for Bicycle and Pedestrian Bridges

Total Page:16

File Type:pdf, Size:1020Kb

Design of Footbridges Dutch Solutions for Bicycle and Pedestrian Bridges Design of Footbridges Dutch solutions for bicycle and pedestrian bridges Adriaan Kok • ipv Delft & The Netherlands ipv Delft creative engineers • Dutch Design Manual for Footbridges mail: [email protected] • Dutch Regulations for Footbridges website: ipvdelft.nl or ipvdelft.com • Dutch Design drivers & solutions 8th Australian Small Bridges Conference • Lessons Learned 27-28 Nov 2017, Surfers Paradise Australia bridges ipv Delft • infrastructure • urban furniture • architecture • lighting footbridge footbridge aquaduct bench footbridge footbridge tunnel canopy footbridge lamp shade bicycle parking bridges ipv Delft • Footbridges CROW publication 342 Summary CROW publication 342 Dutch, by ipv Delft English, by ipv Delft BRIEF DUTCH DESIGN MANUAL FOR BICYCLE AND PEDESTRIAN BRIDGES BRIEF DUTCH BRIEF DUTCH DESIGN MANUAL DESIGN MANUAL FOR BICYCLE AND PEDESTRIAN BRIDGES FOR BICYCLE As one of the Netherland’s main bridge design offices, ipv Delft has focused on designing bicycle and pedestrian bridges for two decades. The company has used AND PEDESTRIAN their extensive experience in bridge design to write this publication. This design manual focuses on the fundamentals of bridge design, answering practical questions regardign issues such as bridge width and slopes. It also lists the things that should BRIDGES by ipv Delft be taken into account before starting on the actual design and it offers insight in the Dutch regulations regarding loads and collision forces. General advice on cost re- duction is also included and several of the company’s projects are shown to illustrate the theoretical contents. The Brief Dutch Design Manual for Bicycle and Pedestrian Bridges therefore is a vital source of both practical information and bridge design inspiration. This publication is an English summary of the Dutch Design Manual for Bicycle and Pedestrian Bridges, which was published by CROW in 2014 and written by ipv Delft. www.ipvdelft.com www.crow.nl ipv Delft creative engineers +31 15 750 25 75 [email protected] in cooperation with Free Download: ipvdelft.com / publications Dutch Design Manual Structure: Follows the Development Process Traffic Network Analysis of Context Requirements Users Design Checklist Alignment Design Bridge Design Development Budget Dutch Design Manual Structure: Follows the Development Process Traffic Network Why Analysis of Context Requirements Users For Whom Design Checklist Alignment Design Bridge Design Development Budget What Dutch Design Manual Intended Users: All involved disciplines & stakeholders • Management • Urban Planning • Architects BRIEF DUTCH DESIGN MANUAL FOR BICYCLE AND PEDESTRIAN BRIDGES • Structural engineering BRIEF DUTCH BRIEF DUTCH DESIGN MANUAL DESIGN MANUAL • Traffic engineering FOR BICYCLE AND PEDESTRIAN BRIDGES FOR BICYCLE As one of the Netherland’s main bridge design offices, ipv Delft has focused on designing bicycle and pedestrian bridges for two decades. The company has used AND PEDESTRIAN their extensive experience in bridge design to write this publication. This design manual focuses on the fundamentals of bridge design, answering practical questions • Maintenance regardign issues such as bridge width and slopes. It also lists the things that should BRIDGES by ipv Delft be taken into account before starting on the actual design and it offers insight in the Dutch regulations regarding loads and collision forces. General advice on cost re- duction is also included and several of the company’s projects are shown to illustrate the theoretical contents. The Brief Dutch Design Manual for Bicycle and Pedestrian Bridges therefore is a vital source of both practical information and bridge design • Contractors inspiration. This publication is an English summary of the Dutch Design Manual for Bicycle and Pedestrian Bridges, which was published by CROW in 2014 and written by ipv Delft. www.ipvdelft.com • Advocates www.crow.nl ipv Delft creative engineers +31 15 750 25 75 [email protected] • Local stakeholders in cooperation with Dutch Design Manual Intended Goal: Create Understanding Between representatives of Technical & Social requirements City Officials (social) we should we try ! we try Design(er) do ! (technical) (social) (City) Citizens Engineers Advocates can’t we ? we try (technical) (social) Dutch Design Manual Involvement of disciplines & stakeholders: De-Siloing the Process Analysis of Requirements Design Development Client Network Context Users Checklist Alignment Design Management Engineering Traffic Urban planning Lighting Maintenance Consultants Engineer Architect Subsoil Local Businesses Citizens Advocates Contractor Dutch Design Manual Structure: Follows the Development Process Traffic Network Analysis of Context Requirements Users Design Checklist Alignment Design Bridge Design Development Budget Dutch Design Manual The Netherlands UK Germany France Italy Spain Context (international) The Netherlands in Europe The Netherlands Australia 17 mln inhabitants 23.4 mln inhabitants Context (international) The Netherlands compared to Australia Sydney 307 km Amsterdam Rotterdam 60 km 240 km Canberra Germany Belgium Context (national) The Netherlands compared to Sydney - Canberra Region Sydney Amsterdam Rotterdam Canberra Meuse Rhine Network (national) Dutch network compared to Sydney - Canberra Region Network (national) transport over water and road Network (international) The Netherlands, a hub for Europe Foundation Piles almost always required - 4 m + 8 m - 7 m + 10 m 10 - 20 m • Marshy River Delta peat, clay & sand + 322 m 26% below sea level Context (national) ground level and subsurface conditions 1995 flood Flood Risk Areas 26% below sea level 29% above sea level risk of flooding by river Context (national) flooding risk - 15 ºC in Winter + 35 ºC in Summer Context (national) 50 ºC temperature difference Natural Constraints Exploring the world Limited Resources Open to new ideas Context (national) resourcefull by constraints Travel Time bike & car equal up to 7.5 km 15 km Beach 7.5 km Amsterdam Airport Network (regional) travel time in dense populated areas 8 mln people with all needs within cycling distance Amsterdam Rotterdam Eindhoven Network (national) travel time in dense populated areas Dutch King • 18 million bikes • > 14 million trips / day • 35.000 km bike path • 2500 km highway • 8 million cars Network (national) Cycling Facts Network (national) need for a lot of bridges Users Not intended Not intended vehicle, Hooligans, ... Determine • Needed Space • Road Planning Regular • Loads Occasionally Cyclists, Pedestrians, • Abuse Mopeds, Disabled vehicles Maintenance, Prevention Emergency Services Special Other Disabled, Elderly, Utility Children companies ... Users all potential users bridgesUsers bridge & Intersecting for a footbridge crossing a road regular regular regular special special special occasional not intended not intended not intended other 75 cm 25 - 80 cm 25 cm width sway distance 2,5 m vertical clearance Users cyclists measurements 32.5 cm 62.5 cm railing wall 50 cm extra width in curve Users cyclists distance to objects Deck Width Hovenring two lanes - two directions cm 32.5 75 25 75 25 75 25 75 32.5 4.4 m Users cyclists deck width minimum width one way minimum width two way in curve 32.5 75 32.5 cm 32.5 50 75 25 75 32.5 cm 1.4 m 2,9 m Users cyclists deck width 0,7 m 0,8 m 0,85 m Users pedestrians measurements max. 20 m max. 0.5 m ≥ 0,9 m ≥ 1,8 m ≥ 1,2 m ≥ 0,9 m Users pedestrians deck width ∆ H > 13 m Railing min. 1.2 m → ∆ H 1-13 m Railing 1 m → stairs & slopes min. Railing 0.85 m → Australia (hand) railing height pedestrians 1.2 m cylists 1.4 m disabled, children 0.7 m Users railing height Dutch Fx, Fy 3 kN/m Australia Fx, Fy ? 0.75 - 3 kN/m (crowds) Openings < 0.1 m (wire) - 0.125 m Fy Fx < 0.1 m Ø 0.5 m Users railing openings and loads ipv Delft • railing designs type & infill wire wire cable mesh glass wood lamellas bars - balusters structural structural structural decorative Railing height ? Railing 1 & 1.4 m Railing 0.7, 1.2 & 1.4 m ? cyclists cyclists pedestrians pedestrians children 1m 1.4 m J. Pesch Bridge, Brisbane Toowong Crossing, Brisbane Proprietary Barrier Cairns Users Australian railing examples Users unintended use - climable railing inward inclined wires cable mesh near petting zoo Users unintended use - climable railing standard anti-throw-screen 2.5 m Users unintended use - anti-throw-screen integrated stainless steel cable mesh anti-throw-screen Users unintended use - anti-throw-screen Concentrated Load 7 kN 0n surface of 0.1 x 0.1 m Uniformly Distributed Load 5 kN/m² (5 kPa) Reduction allowed using formula: Uniform load = 2.0 + (120/bridge length +30) kPa Allowed when no crowds are expected. With minimum of 2.5 kPa Users pedestrians & cyclists loads Maintenance Vehicle specifications • 2 axles with a 3 m wheelbase; • Axle load of 25 kN (2500 kg); • 2 wheels / axle, with a 1.75 m track width; • 0,25 m x 0,25 m contact surface / wheel. Users standard maintenance vehicle loads • 9 metric tons maintainance vehicle - Hovenring Users Heavy maintenance vehicle loads Unauthorized Vehicle specifications: • 2 axles with a 3 m wheelbase • Characteristic axle load of 40 kN & 80 kN • 2 wheels per axle, with a 1,3 m track width • 0,2 m x 0,2 m contact surface per wheel. Users Unauthorized vehicle loads min. 4.6 m - 7 m (no collision load) vertical clearance Users vertical clearance car traffic Road Collision Load on Bridge Deck (Fdx) Eurocodes Dutch appendix Highways 500 kN 2000
Recommended publications
  • Bridges and Applications Bridges and Applications Bridges and Applications Arch Bridges
    10/23/2014 Bridges and Applications Bridges and Applications • Bridges are used to span across distances that are difficult to otherwise pass through. • Rivers • Deep gorges • Other roadways Bridges and Applications Arch Bridges • There are four basic types of bridges – Arch – Beam – Suspension – Cable‐stayed • Each type has different design and is therefore better suited to different applications 1 10/23/2014 Arch Bridges Arch Bridges • Instead of pushing straight down, the weight of an arch bridge is carried outward along the curve of the arch to the supports at each end. Abutments, carry • These supports, called the abutments, carry the load the load and keep the ends of the bridge from spreading outward. and keep the ends of the bridge from spreading outward Arch Bridges Arch Bridges • When supporting its own weight and the • Today, materials like steel and pre‐stressed weight of crossing traffic, every part of the concrete have made it possible to build longer arch is under compression. and more elegant arches. • For this reason, arch bridges must be made of materials that are strong under compression. New River Gorge, – Rock West Virginia. – Concrete 2 10/23/2014 Arch Bridges Arch Bridges • Usually arch bridges employ vertical supports • Typically, arch bridges span between 200 and called spandrels to distribute the weight of 800 feet. the roadway to the arch below. Arch Bridges One of the most revolutionary arch bridges in recent years is the Natchez Trace Parkway Bridge in Franklin, Tennessee, which was opened to traffic in 1994. It's the first American arch bridge to be constructed from segments of precast concrete, a highly economical material.
    [Show full text]
  • Siena Footbridge
    Structural Stainless Steel Case Study 05 Siena Footbridge Completed in 2006, this stainless steel cable stayed footbridge spans 60 m over a busy motorway in the suburb of Ruffolo, Siena, in central Italy. The bridge girders and pylons are fabricated from a ‘lean’ duplex grade of stainless steel and it is one of the first times this grade has been used for a footbridge. The bridge has a striking appearance, is functionally efficient and cost-effective with a low life cycle cost. Material Selection The City of Siena required an attractive pedestrian crossing to be constructed over the motorway in the suburb of Ruffolo. The structure needed to have a 120 year design life without expensive and disruptive maintenance requirements. The architect selected the ‘lean’ stainless steel duplex grade 1.4162 (S32101) for the girders and pylons of the bridge. Lean duplexes have a very low nickel content (1.5 % compared to >3 % in standard duplex stainless steels), which results in significant cost benefits compared to other austenitic and duplex grades. This grade of stainless steel also experiences less price volatility because of the low nickel content. The corrosion resistance of 1.4162, which lies between that of austenitic grades 1.4301 (S30400) and 1.4404 (S31603), is adequate for Ruffolo’s benign inland environment with relatively low pollution levels. Grade 1.4162 has high strength (450 N/mm2), good ductility (at least 30 %) and good formability and weldability. The high strength enables reductions in section sizes, relative to carbon steel sections, leading to lighter structures. This grade has tremendous potential for future structural applications.
    [Show full text]
  • Simple Innovative Comparison of Costs Between Tied-Arch Bridge and Cable-Stayed Bridge
    MATEC Web of Conferences 258, 02015 (2019) https://doi.org/10.1051/matecconf/20192 5802015 SCESCM 20 18 Simple innovative comparison of costs between tied-arch bridge and cable-stayed bridge Järvenpää Esko1,*, Quach Thanh Tung2 1WSP Finland, Oulu, Finland 2WSP Finland, Ho Chi Minh, Vietnam Abstract. The proposed paper compares tied-arch bridge alternatives and cable-stayed bridge alternatives based on needed load-bearing construction material amounts in the superstructure. The comparisons are prepared between four tied arch bridge solutions and four cable-stayed bridge solutions of the same span lengths. The sum of the span lengths is 300 m. The rise of arch as well as the height of pylon and cable arrangements follow optimal dimensions. The theoretic optimum rise of tied-arch for minimum material amount is higher than traditionally used for aesthetic reason. The optimum rise for minimum material amount parabolic arch is shown in the paper. The mathematical solution uses axial force index method presented in the paper. For the tied-arches the span-rise-ration of 3 is used. The hangers of the tied-arches are vertical-The tied-arches are calculated by numeric iteration method in order to get moment-less arch. The arches are designed as constant stress arch. The area and the weight of the cross section follow the compression force in the arch. In addition the self-weight of the suspender cables are included in the calculation. The influence of traffic loads are calculated by using a separate FEM program. It is concluded that tied-arch is a competitive alternative to cable-stayed bridge especially when asymmetric bridge spans are considered.
    [Show full text]
  • Visit Ohio's Historic Bridges
    SPECIAL ADVERTISING SECTION Visit Ohio’s Historic Bridges Historic and unique bridges have a way of sticking in our collective memories. Many of us remember the bridge we crossed walking to school, a landmark on the way to visit relatives, the gateway out of town or a welcoming indication that you are back in familiar territory. The Ohio Department of Transportation, in collaboration with the Ohio Historic Bridge Association, Ohio History Connection’s State Historic Preservation Office, TourismOhio and historicbridges.org, has assembled a list of stunning bridges across the state that are well worth a journey. Ohio has over 500 National Register-listed and historic bridges, including over 150 wooden covered bridges. The following map features iron, steel and concrete struc- tures, and even a stone bridge built when canals were still helping to grow Ohio’s economy. Some were built for transporting grain to market. Other bridges were specifically designed to blend into the scenic landscape of a state or municipal park. Many of these featured bridges are Ohio Historic Bridge Award recipients. The annual award is given to bridge owners and engineers that rehabilitate, preserve or reuse historic structures. The awards are sponsored by the Federal Highway Administration, ODOT and Ohio History Connection’s State Historic Preservation Office. Anthony Wayne Bridge - Toledo, OH Ohio Department of Transportation SPECIAL ADVERTISING SECTION 2 17 18 SOUTHEAST REGION in eastern Ohio, Columbiana County has Metropark’s Huntington Reservation on the community. A project that will rehabilitate several rehabilitated 1880’s through truss shore of Lake Erie along US 6/Park Drive.
    [Show full text]
  • Pedestrian Footbridge, (Applicant Identification: ) Environmental Assessment
    PEDESTRIAN FOOTBRIDGE, (APPLICANT IDENTIFICATION: ) ENVIRONMENTAL ASSESSMENT New York State Governor’s Office of Storm Recovery May 8, 2015 PEDESTRIAN FOOTBRIDGE – ENVIRONMENTAL ASSESSMENT & ERR PROJECT SUMMARY Responsible Entity: New York State Homes & Community Renewal – Housing Trust Fund Corporation cooperating with the Governor’s Office of Storm Recovery (GOSR) Certifying Officer: Daniel Greene, Esq., Certifying Environmental Officer, GOSR Project Name: Pedestrian Footbridge, Funding Recipient: Federal Agency: U.S. Department of Housing & Urban Development (HUD) Project #: Project Sponsor: New York State Housing Trust Fund Corporation Program Name: New York State Community Development Block Grant – Disaster Recovery (Housing Assistance Programs, 1 - 4 Unit) Project Address: , Sundown, NY 12740 Project County: Ulster County, NY Estimated Project Cost: $140,000 Project Sponsor Governor’s Office of Storm Recovery Address: 99 Washington Avenue, Suite 1224 Albany, New York 12231 Primary Contact/ Person Governor’s Office of Storm Recovery To Direct Comments: 25 Beaver Street, 5th Floor New York, New York 10004 E-Mail address: [email protected] Telephone Number: (212) 480-4644 Project NEPA 24 CFR 58.36 Classification: Finding of No Significant Impact - The project will not result ENVIRONMENTAL in a significant impact on the quality of the human FINDING: environment. Finding of Significant Impact - The project may significantly affect the quality of the human environment. The undersigned hereby certifies that New York State Housing Trust Fund Corporation has conducted an environmental review of the project identified above and prepared the attached environmental review record in compliance with all applicable provisions of the National Environmental Policy Act of 1969, as amended, (42 USC sec.
    [Show full text]
  • Footbridge Design for Pedestrian Induced Vibrations
    FOOTBRIDGE DESIGN FOR PEDESTRIAN INDUCED VIBRATIONS SABINA PIRAS, KWAN CHIN WSP OPUS, Auckland, New Zealand INTRODUCTION With innovative engineering and inspiring design, footbridges have become functional works of art. However, the use of longer and lighter spans have made footbridges more susceptible to human-induced vibrations; causing discomfort to pedestrians and compromising the utility of the structure, even though the bridge is structurally sound and safe to cross. Design codes address this dynamic problem by providing limits for natural frequency and simplistic provisions to keep the footbridge experience pleasant. For slender, lightweight bridges, such as stress ribbon or cable-stayed bridges, this dynamic problem can be onerous and require a refined analysis to demonstrate that the comfort level can be satisfied. This paper presents a guideline to determine the dynamic bridge characteristics under pedestrian loading. In addition, factors that influence a bridge’s response to vibration and possible vibration mitigation measures are discussed herein. This paper focuses on the recommended design procedure by presenting an analytical model of a concrete footbridge subjected to a dynamic load representing the effects of a stream of pedestrians crossing the structure. In the vertical direction, the peak acceleration from the pedestrian loading is compared with published acceptance criteria. In the lateral direction, the critical number of pedestrians at which the bridge response becomes unstable is calculated. HUMAN LOCOMOTION When a pedestrian crosses a bridge, a dynamic force is produced which has components in the vertical, lateral and longitudinal directions. These dynamic forces are described as a function of time and space, periodically repeated with regular time intervals.
    [Show full text]
  • Arched Bridges Lily Beyer University of New Hampshire - Main Campus
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter I: History
    [Show full text]
  • Arizona Historic Bridge Inventory | Pages 164-191
    NPS Form 10-900-a OMB Approval No. 1024-0018 (8-86) United States Department of the Interior National Park Service National Register of Historic Places Continuation Sheet section number G, H page 156 V E H I C U L A R B R I D G E S I N A R I Z O N A Geographic Data: State of Arizona Summary of Identification and Evaluation Methods The Arizona Historic Bridge Inventory, which forms the basis for this Multiple Property Documentation Form [MPDF], is a sequel to an earlier study completed in 1987. The original study employed 1945 as a cut-off date. This study inventories and evaluates all of the pre-1964 vehicular bridges and grade separations currently maintained in ADOT’s Structure Inventory and Appraisal [SI&A] listing. It includes all structures of all struc- tural types in current use on the state, county and city road systems. Additionally it includes bridges on selected federal lands (e.g., National Forests, Davis-Monthan Air Force Base) that have been included in the SI&A list. Generally not included are railroad bridges other than highway underpasses; structures maintained by federal agencies (e.g., National Park Service) other than those included in the SI&A; structures in private ownership; and structures that have been dismantled or permanently closed to vehicular traffic. There are exceptions to this, however, and several abandoned and/or privately owned structures of particular impor- tance have been included at the discretion of the consultant. The bridges included in this Inventory have not been evaluated as parts of larger road structures or historic highway districts, although they are clearly integral parts of larger highway resources.
    [Show full text]
  • Character of Vortex Induced Vibration in Suspension Footbridge *Jiawu Li , Yinzhi Wang and Shuaiyu Chen
    Character of Vortex Induced Vibration in Suspension Footbridge *Jiawu Li1), Yinzhi Wang2) and Shuaiyu Chen3) 1), 2), 3) Highway school of Chang’an University, Xi’an 710064, China 1) [email protected] ABSTRACT In this paper, the characteristics of vortex induced vibration by use of six types of sectional model in suspension footbridges are investigated. Combined with wind tunnel test results based on dynamic characteristic analysis and CFD-Fluent numerical simulation results, the influence of parameters, such as the porous ratio of handrail fence and pedestrian, on the character of vortex-induced deck vibration was probed. According to the test results, the mitigating measures were checked to improve the performance of suspension footbridge in service. 1. INTRODUCTION Suspension footbridges are very often characterized by low stiffness, narrow deck, low mass and small damping. So it is susceptible to vibrations when subjected to dynamic loads. Especially in recent decades, materials with improved mechanical characteristics are widely used in construction of footbridges so that the fundamental frequency of these structures is often close to the dynamic excitation of pedestrian and wind. As a result, vibrations are often commonly occurred in such structures. As is known, excessive vibrations have severe effects not only on comfort of pedestrians but also on duration of structures so many specifications develop provisions of vibrations to guide design of footbridges. For instance, EN 1990/A1 [1] mandates that verification of the vibration comfort criteria should be performed when the fundamental frequency of the footbridge is less than 5.0 Hz for vertical vibrations and 2.5 Hz for horizontal and torsional vibrations.
    [Show full text]
  • Bayonne Bridge Lesson Plan
    The Bayonne Bridge: The Beautiful Arch Resources for Teachers and Students [Printable and Electronic Versions] The Bayonne Bridge: The Beautiful Arch Resources for Teachers And Students [Printable and Electronic Versions] OVERVIEW/OBJECTIVE: Students will be able to understand and discuss the history of NOTES: the Bayonne Bridge and use science and engineering basics • Key words indicated in to investigate bridge design and test an arch bridge model. Bold are defined in call- out boxes. TARGET GRADE LEVEL: • Teacher-only text Fourth grade instruction, adaptable to higher levels as indicated with Italics. desired in the subjects of Social Studies and Engineering. FOCUS: In Part I, students learn about history of the Bayonne Bridge including the many engineering challenges encountered during the project and the people who helped overcome those challenges. In Part II, students learn engineering concepts to understand how bridges stay up and use these concepts to complete activities on bridge design before applying these concepts to theorize how the Bayonne Bridge works. MATERIALS: • Part I: DVD of “The Bayonne Bridge Documentary” • Part II: 2–4 heavy textbooks or 2 bricks per group; 2 pieces of “cereal box” cardboard or similar, 12 x 8 in; weights (anything small that can be stacked on the structure); red and blue marker, crayon or colored pencil for each student or group. The Bayonne Bridge: The Beautiful Arch Contents Teacher Materials | Part I: History of the Bayonne Bridge . T-1 Teacher Materials | Part II: Bridge Engineering . T-7 Student Materials | Part I: History of the Bayonne Bridge . S-1 Student Materials | Part II: Bridge Engineering .
    [Show full text]
  • High Line Canal Footbridge at Hampden
    Emily Black City of Cherry Hills Village High Line Canal Footbridge at Hampden Joint Project Application City of Cherry Hills Village Emily Black [email protected] Printed On: 10 October 2018 Joint Project Application 1 Emily Black City of Cherry Hills Village Application Form Application Summary Grant Category* Select One: Joint Project Primary Contact Information* Please provide information for the primary contact for this project in the following format. Agency: Name: Title: Telephone: Email: Agency: City of Cherry Hills Village Name: Emily Black Title: Parks and Recreation Coordinator Telephone: (303) 783-2742 Email: [email protected] Project Type* Select One: Trail Project: Trail/trailhead construction or improvement, including stream/road crossings and trailhead amenities (such as parking, restrooms or shelters) Site Improvement Project: New construction, improvement, repair, or replacement of passive outdoor recreation amenities Acquisition Project: Eligible projects include fee simple acquisition of land for public open space or trails; acquisition of buffer land; acquisition of a conservation easement; and/or acquisition of water rights Other Project: Other allowable projects include stream/habitat restoration, natural re-vegetation, and water quality improvement Trail Project Project Title* High Line Canal Footbridge at Hampden Printed On: 10 October 2018 Joint Project Application 2 Emily Black City of Cherry Hills Village Project Address 3800 E. Hampden Avenue, Cherry Hills Village, CO 80113 Project Location* Select all that apply: Cherry Hills Village GPS Coordinates (Latitude in Decimal Degrees)* Example: Dove Valley Regional Park Latitude: 39.577303 39.652809 GPS Coordinates (Longitude in Decimal Degrees)* Example: Dove Valley Regional Park Longitude: -104.828850 -104.946846 Grant Request Amount* $225,000.00 Cash Match Amount* $257,215.00 Total Project Amount* Total project amount includes grant request and cash match only.
    [Show full text]
  • Alfred Pancoast Boller a Gentleman of the Highest Type by Frank Griggs, Jr., Ph.D., P.E., P.L.S
    Great achievements notable structural engineers Alfred Pancoast Boller A Gentleman of the Highest Type By Frank Griggs, Jr., Ph.D., P.E., P.L.S. lfred Boller was born in After bankruptcy of the company, Alfred Philadelphia, Pennsylvania on opened his own office in New York City. In February 23, 1840. After attending 1876, he published Practical treatise on the local schools, he received an A.B. construction of iron highway bridges, for the Afrom the University of Pennsylvania 1858 and use of town committees. This comprehensive a C.E. degree from Rensselaer Polytechnic little book expanded his reputation and led Institute in Troy, New York in 1861. to many commissions to build bridges in the ® Alfred began his engineering career as a northeastern United States. A. P. Boller. surveyor mapping anthracite coalfields for Boller’s first large bridge was across the It was opened to traffic August 24, 1905. the Lehigh Coal and Navigation Company Hudson River at Troy, New York. It had long His next bridge over the Harlem was the in Pennsylvania and in 1863 joined the fixed Whipple double intersection truss spans University Heights Bridge, 1908 (formerly Department of Bridges of the Philadelphia of 244, 244 and 226 feet, with the swing span the Harlem Ship Channel Bridge). Although and Erie Railroad Company. On April 24, being 258 feet.Copyright it was not fully completed, it opened to traf- 1864 he married Katherine Newbold. They In 1882, he designed and built the Albany fic January 8, 1908. His last bridge over the had five children while living in East Orange, and Greenbush Bridge across the Hudson Harlem River was the Madison Avenue Bridge New Jersey.
    [Show full text]