Busway (Low Voltage)

Total Page:16

File Type:pdf, Size:1020Kb

Busway (Low Voltage) Busway (Low Voltage) Circuit Breaker Enclosure 9 Busway (Low Voltage) 1 Product Description . V12-T9-2 Product History . V12-T9-2 2 Product History Time Line . V12-T9-3 Replacement Capabilities . V12-T9-4 3 Plug-In Units . V12-T9-4 Vintage Busway Products . V12-T9-4 4 100 Ampere Busway . V12-T9-6 Standard Plug-In Busway . V12-T9-7 5 Standard and Low Impedance . V12-T9-8 Quick-Assembled Plugs . V12-T9-10 6 CP2, CP3 or CP4 SAFETYBUS Busway Plug-In Units . V12-T9-11 Technology Upgrades . V12-T9-14 7 Clipper Power Systems, Busway TVSS Protection . V12-T9-14 IQ Energy Sentinel for Bus Plugs . V12-T9-15 8 Further Information . V12-T9-15 Pricing Information . V12-T9-15 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Volume 12—Aftermarket, Renewal Parts and Life Extension Solutions CA08100014E—October 2016 www.eaton.com V12-T9-1 9 Busway (Low Voltage) Busway (Low Voltage) plug-in and feeder bus in Westinghouse high frequency In 1966, Westinghouse 1 ratings up to 1500A. All of busway was introduced in introduced its first true these early designs used 1958 to address the inherent sandwich bus design with separated, uninsulated problems of transmitting H5000 feeder busway. 2 busbars inside a totally power at frequencies from H5000 was also the first enclosed or perforated 180 to 20,000 Hz. Cutler- single bolt joint design steel housing. Hammer high frequency BV offered by Westinghouse and 3 Standard Plug-In (balanced voltage) busway it initially used a PVC shrink Product Description In 1951, low impedance was also marketed during tubing and later a Mylar® feeder busway was 4 ® the late 1950s and early wrap for busbar insulation. Eaton’s Cutler-Hammer introduced as the first low voltage busway consists 1960s. Westinghouse high A combination of steel and design to use heat-shrinkable frequency busway and aluminum channels were 5 of aluminum or copper bars tubing for insulation on the inside a metal housing Cutler-Hammer BV busway used to form a lightweight busbars and a ventilated steel both found success in non-magnetic housing. The used for power distribution. housing. An internal ground Busway is available in aircraft manufacturing plants, grounding method for H5000 6 bus was not available with industrial induction heating was similar to low impedance ampere ratings of 100–5000A. this product line, but Busway is available as feeder systems, military missiles busway and an external provisions were made for and radar bases. ground bus mounted onto 7 (indoor or outdoor) and plug-in. mounting an external ground Feeder busway routes power the housing was the only bus directly to the busway Electric utility busway offering. H5000 plug-in from point-to-point, whereas housing. Low impedance was also introduced by 8 plug-in busway allows for busway rolled out in 1968 feeder and standard plug-in Westinghouse in 1958 and as a non-sandwich design power to be tapped off busway accounted for the was designed to conduct along a run as needed. with separated and 9 majority of busway business direct current with low uninsulated busbars. Busway is typically used in written by Westinghouse voltage drop. By 1963, manufacturing buildings and through the 1950s and into electric utility busway had In 1970, the Eaton’s Cutler- 10 high-rise office buildings. the 1960s. Low impedance been expanded to meet the Hammer Bethlehem, PA, Product History plug-in busway was growing industrial market plant introduced CP2 introduced in 1961. With for direct current power and SAFETYBUS that used an 11 Westinghouse began this design, the product was marketed simply as DC innovative single bolt, bridge marketing low voltage offering was expanded to busway. This product line joint design with a steel 12 busway in 1938. The first a maximum of 5000A for was applied to feeding housing for plug-in, and a product offering was power feeder and 4000A for plug-in. plating processes, welding combination of steel and distribution busway, using a installations, mill drives aluminum channels for the 13 multiple bolt joint that later During the 1950s, various and motors. feeder housing. CP2 used evolved into standard plug-in other designs were introduced a Mylar wrap for busbar busway. Victory bus duct was to meet specific customer In 1958, Westinghouse sold insulation and an Alstan® 14 developed during the Second needs. Westinghouse Lifeline the rights to the Life Line process for plating. The World War to comply with Unibus, rolled out in 1955, Unibus product line to EDP feeder busway was a federal limitations placed on provided low impedance of Allentown, PA, which sandwich design while the 15 usage of materials such as characteristics with plug-in marketed EDP Unibus until plug-in design used separated steel and copper, which were openings and incorporated 1962 when EDP became busbars that were braced and 16 critical to the war effort. In flexible armored cable a wholly owned subsidiary supported by corrugations 1947, Westinghouse began into the design for use as of Eaton. Eaton successfully formed in the housing sides. manufacturing busway at elbows, offsets and flat to marketed Unibus until 17 the newly acquired facility in edgewise adapters. the product line was Beaver, PA, with standard discontinued in 1974. 18 19 Standard Plug-In H5000 Feeder Electric Utility (DC) Low Impedance Plug-In 20 21 Low Impedance Feeder High Frequency H5000 Plug-In 225–1000A Current Limiting 22 23 Typical Pow-R-Way Plug-In Straight Length Typical Pow-R-Way II Plug-In Straight Length 24 25 V12-T9-2 Volume 12—Aftermarket, Renewal Parts and Life Extension Solutions CA08100014E—October 2016 www.eaton.com Busway (Low Voltage) 9 Westinghouse introduced Cutler-Hammer CP4 In 1988, Westinghouse Cutler-Hammer Pow-R- the Pow-R-Way product SAFETYBUS was introduced moved the busway product Way III® was introduced in 1 line in 1971. Pow-R-Way in 1985 and incorporated line to the Greenwood, SC, 1997. As in the past, specific employed the sandwich the sandwich design into the manufacturing facility. customer needs have driven design in both feeder and plug-in busway. CP4 featured At that time, an improved the design of this product 2 plug-in. At that time, Pow-R- a UL® recognized case ground Alstan plating process was line. High short-circuit ratings, Way used a combination of path rating and 130°C Mylar implemented for silver- finger-safe protection at the 3 PVC, applied by the fluidized busbar insulation. CP4 used plating the joint and contact plug-in openings, integral bed process, and Mylar the CP3 bridge joint package surfaces. In 1993, the housing ground path, two- sheeting for busbar insulation and accepted CP2 and CP3 automated fluidized bed piece extruded aluminum 4 that achieved a Class A, bus plugs. The CP4 product process was changed to housing and an optional 105°C rating. Silver-plating of line was successful in both Class B, 130°C, epoxy 200% neutral are just some all joint and contact surfaces the commercial and industrial insulation. of the features with this 5 was applied by a Zincate markets until it was product line. process. Pow-R-Way is a discontinued in 1994. bolt-end/slot-end design with 6 a single bolt connection at the joint and is rated from Product History Time Line 7 600 to 5000A. Pow-R-Way II was rolled out in 1975 with Product 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 Present ratings of 225A and 400A in 8 feeder and plug-in. Pow-R- Power distribution bus Way II is a single, captive bolt per bar design for indoor, Victory bus duct 9 horizontal applications only. Standard plug-in During 1980, the Cutler- Low impedance bus 10 Hammer busway design was upgraded and they began Life line Unibus marketing CP3 SAFETYBUS. High frequency bus 11 CP3 featured an improved bridge joint package and a Cutler-Hammer BV bus 12 polyethylene terephthalate Current limiting bus wrap for busbar insulation. CP3 maintained the CP2 Electric utility bus 13 housing design with busbar DC busway separation in the plug-in product configuration. 100 ampere busway 14 Low impedance plug-in Cutler-Hammer Unibus 15 H5000 feeder H5000 plug-in 16 Cutler-Hammer CP2 17 Pow-R-Way Pow-R-Way II 18 Cutler-Hammer CP3 Cutler-Hammer CP4 19 Pow-R-Way III 20 21 22 23 24 25 Volume 12—Aftermarket, Renewal Parts and Life Extension Solutions CA08100014E—October 2016 www.eaton.com V12-T9-3 Busway (Low Voltage) 9 Replacement Capabilities—Plug-In Units 1 Replacement Capabilities Vintage Busway Products Vintage Busway Plug-In Unit Plug-In Units ● Replacement pieces or Stab base assembly for additions to vintage Cutler- breaker and fusible types. 2 Replacement Capabilities Hammer bus (CP2, CP3, 1 CP4) are being handled Busway Types Bus Adapter Plugs whenever possible by 3 Power distribution bus No No No making transition to Victory bus duct No No No Eaton’s current design Pow-R-Way III bus 4 Standard plug-in Yes No Yes ● Obtain style number Low impedance bus No Yes — and complete nameplate 5 Life line Unibus No No No information from existing Top View busway and contact your High frequency bus No No No local Eaton Field Sales 6 Cutler-Hammer BV bus No No No office for pricing and Current limiting bus No Yes — availability Electric utility bus No No No ● Plugs for vintage 7 Cutler-Hammer bus, DC busway No No No Pow-R-Way bus, and 100 ampere busway Yes No Yes Pow-R-Way III bus are 8 Bottom View Low impedance plug-in No Yes Yes not interchangeable Fuse Base Assembly Cutler-Hammer Unibus No No No Pow-R-Way Plug-In Unit 9 For all busway.
Recommended publications
  • DIV-16 Electrical Labor
    Division 16 Electrical Estimating Tips General 163 Motors, Starters, Boards & Estimators for this division item shall have full Switches knowledge of the system and working knowledge Estimator shall include all supporting systems used, prepare a complete take-off quantities, for these items, whether it is a foundation, code requirements, specifications, and bracket or a piece of wood. SCECO requirements. 164 Transformers & Bus Ducts 160 Raceways Never forget to include the equipment cost for Conduit should be taken off in three main such installation, whether scaffolding, lifts or categories: power distribution, branch power, cranes. and branch lighting, so the estimator can concentrate on systems and components, 165 Lighting therefore making it easier to ensure all items Productivity rate for lighting fixtures varies with have been accounted for. For cost modifications the number of fixtures included in a single room. for elevated conduit installation, add the Estimators are advised to increase productivity percentage to labor according to the height of rate of lighting fixtures in large rooms including installation for all and only the quantities more than six (6) fixtures. exceeding the different height levels and number of building floors. 168 Special Electrical System Usually most of these systems are let to 161 Conductors & Grounding specialized contractors, provisions for special Remember that aluminum wiring of equal installation requirements shall be consulted. capacity is larger in diameter than copper and may require larger conduit. If more than three 169 Utilities wires at a time are being pulled, deduct Usually these items are let to specialty percentages from the labor hours of that contractors, whether for transmission lines and grouping of wires.
    [Show full text]
  • Pow-R-Way III Busway Design Guide
    Design Guide DG017002EN Effective February 2020 Low-voltage power distribution and control systems > Busway > Low-voltage busway—Pow-R-Way III Contents General Description . 24 .1-2 Overview .................................. 24.1-2 Standards .................................. 24.1-2 Construction Details .......................... 24.1-3 Fittings . 24 .1-8 Fittings .................................... 24.1-8 Elbows .................................... 24.1-9 Flanges .................................... 24.1-12 Offsets .................................... 24.1-14 Tees ...................................... 24.1-16 Crosses ................................... 24.1-17 Tap Boxes ................................. 24.1-18 Weatherheads .............................. 24.1-20 Expansion Joints ............................ 24.1-21 Phase Transpositions ......................... 24.1-21 Transformer Taps ............................ 24.1-22 Transformer Throat Connections ................ 24.1-23 Reducers .................................. 24.1-24 Meter Center Power Takeoffs .................. 24.1-25 Busway-Connected Panelboards ................ 24.1-28 Pow-R-Way III Adapters ....................... 24.1-29 Wall/Floor/Roof Flanges and End Closers ......... 24.1-30 Hangers ................................... 24.1-31 Devices . 24 .1-33 Plug-In Protective Devices ..................... 24.1-33 Surge Protective Device (SPD) Plug-In Devices ..... 24.1-35 Power Takeoffs ............................. 24.1-38 Receptacle Plug-In Devices .................... 24.1-39
    [Show full text]
  • Design, Construction and Simulation of a Circuit- Breaker Based Feeder
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 2, August 2014 Design, Construction and Simulation of a Circuit- Breaker Based Feeder Pillar with over current And Earth-Fault Protection Cum Digitalized Voltmeter Azuatalam D.T., Diala U.H., Iwuchukwu U.C., Joe-Uzuegbu C.K., Morah F.C. and Ayalogu E.I. Dept. of Electrical and Electronic Engineering, Federal University of Technology Owerri, Imo State, Nigeria Abstract -This research embodies the design, construction three-phase in case there is a phase failure in the and simulation of a feeder pillar (415VAC) with over-current, system.The design of the feeder is done in such a way overload and earth-fault protection with the aid of a phase that restoring of power after fault has occurred will be sequence relay, contactor, earth-leakage circuit breaker and easy such that after fault is cleared, breakers can be put in three-phase overload relay. The analog voltmeters in the normal position to restore power. Also, the system is various bus-bars (red, yellow and blue phases) in a conventional feeder pillar is replaced with a digital panel designed in such a way that there will be easy voltmeter indicating the voltage across a phase (240V) or line- discrimination. After the source, the bus bar is connected to-line (415VAC) flowing through the bus-bars. The major next, then the contactor controlled by a switch.The reason for this research study is to prevent the constant contactor feeds the phase monitor and three-pole circuit changing of fuses.
    [Show full text]
  • Low and Medium Voltage Bus Duct Types LX and MX Types LX and MX Bus Duct
    Low and Medium Voltage Bus Duct Types LX and MX Types LX and MX Bus Duct APPLICATION Growing emphasis on the reliability of electrical power Type LX and type MX bus duct systems are suitable for systems for industrial and commercial facilities has installation in almost any environment. Bus duct is inher- resulted in increased demand for both low and medium ently resistant to many of the forces or conditions which voltage metal enclosed bus duct. M&I Electric Industries, accelerate the deterioration of insulated cable in conduit Inc. type LX (low voltage) and type MX (medium voltage) or tray. As a major added benefit, bus duct is often less bus duct provides a solution to this demand. expensive than equivalent cable installations. Types LX and MX bus duct systems are reliable, afford- M&I can supply special assemblies of types LX and MX able, and are readily available. Like all M&I products, LX bus duct on extremely short notice to meet emergency and MX bus duct systems benefit from M&I’s commitment (burn-out) requirements. to consistently exceed customer quality and availability expectations. M&I types LX and MX bus duct is commonly used for: M&I types LX and MX bus duct can be supplied in a wide · Main service entrance bus. range of ratings, arrangements, designs, materials, and enclosure types. This range of products has been · Switchgear main bus interconnections. designed to meet the electrical and physical requirements of virtually any electrical power system or equipment · Connections between transformers and switchgear. installation. RATINGS Nominal Voltage Continuous Dry Withstand Dew Withstand Impulse Voltage Short-Circuit Rating Current Rating Voltage Rating Voltage Rating Rating Current Rating 1200 Amperes 2000 Amperes 600 Volts 2.2 kV N/A N/A 100 kA 3000 Amperes 4000 Amperes 1200 Amperes 2000 Amperes 58 kA 5 kV 19.0 kV 15.0 kV 60 kV BIL 3000 Amperes 78 kA 4000 Amperes 1200 Amperes 2000 Amperes 58 kA 15 kV 36.0 kV 24 kV 95 kV BIL 78 kA 3000 Amperes 4000 Amperes The ratings above are for standard bus duct in accordance with ANSI standard C37.23 1987.
    [Show full text]
  • Powervac Switchgear Application Guide
    Power/Vac® Product Family Application Guide Intentionally left blank Application Guide Power/Vac® Metalclad Switchgear And Related Products Power/Vac® is a registered trademark of Powell Industries Inc., Houston, Texas. Information contained in this Application Guide is based on established industry standards and practices. It is published in the interest of assisting power system planners and engineers in the preparation of their plans and specifications for medium-voltage metalclad switchgear. Neither Powell Electrical nor any person acting on its behalf assumes any liability with respect to the use of, or for damages or injury resulting from the use of any information contained in this Application Guide. The information in this guide does not supplement or replace performance data contained in other product publications of the Company. The Com- pany reserves the right, at its discretion, to change material or design without prior notification. Sections Power/Vac® Switchgear Concepts And Basic Configurations 1 Creating System One-Line Diagrams 2 Circuit Breaker Ratings and Selection 3 Control Power Considerations 4 System and Equipment Protection 5 Power/Vac® Switchgear Equipment Applications 6 Standard Power/Vac® Construction Features and Installation Information 7 Ground and Test Device, Dummy Breaker 8 Intentionally left blank ContentsSection 1 Section 1 Power/Vac® Switchgear Concepts And Basic Configurations Page USE OF APPLICATION GUIDE.......................................................................... 1-2 Power/Vac® METALCLAD
    [Show full text]
  • Westinghouse AP1000 Design Control Document Rev. 16
    8. Electric Power AP1000 Design Control Document 8.3 Onsite Power Systems 8.3.1 AC Power Systems 8.3.1.1 Description The onsite ac power system is a non-Class 1E system comprised of a normal, preferred, maintenance and standby power supplies. The normal, preferred, and maintenance power supplies are included in the main ac power system. The standby power is included in the onsite standby power system. The Class 1E and non-Class 1E 208/120 Vac instrumentation power supplies are described in subsection 8.3.2 as a part of uninterruptible power supply in the dc power systems. 8.3.1.1.1 Onsite AC Power System The main ac power system is a non-Class 1E system and does not perform any safety-related functions. It has nominal bus voltage ratings of 6.9 kV, 480 V, 277 V, 208 V, and 120 V. Figure 8.3.1-1 shows the main generator, transformers, feeders, buses, and their connections. The ratings of major ac equipment are listed in Table 8.3.1-3. During power generation mode, the turbine generator normally supplies electric power to the plant auxiliary loads through the unit auxiliary transformers. The plant is designed to sustain a load rejection from 100 percent power with the turbine generator continuing stable operation while supplying the plant house loads. The load rejection feature does not perform any safety function. During plant startup, shutdown, and maintenance the generator breaker remains open. The main ac power is provided by the preferred power supply from the high-voltage switchyard (switchyard voltage is site-specific) through the plant main stepup transformers and two unit auxiliary transformers.
    [Show full text]
  • Non-Segregated Phase Bus Duct Design Guide
    Design Guide DG017001EN Effective July 2020 Low-voltage power distribution and control systems > Busway > Busway—medium voltage Contents General Description . 11 .1-2 Overview .................................. 11.1-2 Standards .................................. 11.1-2 Construction Details ......................... 11.1-4 Fittings . 11 .1-8 Traditional Elbows ........................... 11.1-8 Offsets .................................... 11.1-9 Tees ...................................... 11.1-10 Switchgear Flanges .......................... 11.1-11 End Cable Tap Box ........................... 11.1-12 Phase Transposition .......................... 11.1-12 Expansion Joints ............................ 11.1-13 Bushing Box Termination ...................... 11.1-13 Transformer Termination ....................... 11.1-14 Sealing Ring ................................ 11.1-14 Vapor Barriers ............................... 11.1-15 Fire Barriers ................................ 11.1-15 Column Supports ............................ 11.1-16 Horizontal Hanger ........................... 11.1-17 Wall/Floor Flange ............................ 11.1-19 Devices . 11 .1-20 Space Heaters .............................. 11.1-20 Layout . 11 .1-21 Installation Diagrams ......................... 11.1-21 Field Fit ................................... 11.1-22 Application Data . 11 .1-24 Electrical Data .............................. 11.1-24 Physical Data ............................... 11.1-25 More about this product Eaton.com/busway Complete library of design guides
    [Show full text]
  • WL Low Voltage Metal-Enclosed Switchgear
    WL Low Voltage Metal-Enclosed Switchgear Selection and Application Guide usa.siemens.com/switchgear Type WL Low Voltage Metal-Enclosed Switchgear Table of Contents General Information 2 Construction Details 3-5 WL Circuit Breaker 6-8 Electronic Trip Unit 9-15 Breaker Technical Data 16-17 WL Secondary Terminal Assisgnments 18 Section Configurations 19-20 Shipping Weights and Dimensional Information 21-29 VT, CPT, CT Data 30 1 Type WL Low Voltage Metal-Enclosed Switchgear General Information Siemens Type WL low voltage metal- enclosed switchgear is designed, constructed and tested to provide superior power distribution, power monitoring and control. At the heart of the Type WL low voltage switchgear is the World Class Siemens WL breaker. Siemens Type WL low voltage switchgear can be utilized in the following applications: • Industrial Heavy assembly Semiconductor Petrochemical Automotive Biotech Pharmaceutical • Institutional Type WL Low Voltage Metal-Enclosed Switchgear Water treatment Airports Industry Standards Universities • ANSI C37.17 – Trip Devices for AC Type WL switchgear with power circuit Medical facilities and General Purpose DC Low-Voltage breakers are designed, tested and Correctional facilities Power Circuit Breakers constructed in accordance with: • NEMA SG3 - Low Voltage Power • Critical Power • UL 1558 – Metal-Enclosed Low Circuit Breakers Data Processing Voltage Power Circuit Breaker Continuous industrial process Switchgear Features and modifications required by Hospitals • ANSI C37.20.1 – Metal-Enclosed NEC are incorporated
    [Show full text]
  • LECTRO Bus Way System [Series LSB II / 300A - 6400A] LECTRO Bus Way System [Series LSB II/ 300A - 6400A] Energy Demand Is Ever Growing
    LECTRO Bus Way System [Series LSB II / 300A - 6400A] LECTRO Bus Way System [Series LSB II/ 300A - 6400A] Energy demand is ever growing... we attempt to provide efficient distribution of electrical power with minimum power loss Contents Introduction .......................... 05 Busducts advantages , applications ... 06 LECTRO BAR Series LSB II Features .......................... 08 Design, Construction .............. 10 Types .......................... 12 Innovations .......................... 14 Accessories .......................... 16 Data Sheet .......................... 29 Qualification .......................... 30 04 Introduction Introduction Busducts Since 1980, Lectrobar has manufactured and installed thousands of meters of bus ducts. State of the art ISO certified manufacturing facility has their products type tested by KEMA of Netherlands. Lectrobar busducts are trusted for their high safety factor & long life span. Lectrobar presents “Series LSB II” bus bar risers ranging from 300A upto 6400A. Features Design Types Innovations Accessories Data Sheet Qualification At Lectrobar, you - the client, is the purpose for our pursuit of growth and most importantly, perfection. Thank you for choosing us to partner your journey in creating effective, efficient and sustainable power solutions. 05 Busducts Advantages of busbar )OH[LELOLW\ (IÀFLHQF\ Less space over cables reusable, expandable Cost savings Tapoffs make supply to addi- Half the man-hours: thanks to the sandwich de- tional loads easy at anytime Installation requires only half
    [Show full text]
  • Specification N0
    NORTHERN INDIANA COMMUTER TRANSPORTATION DISTRICT TRACTION POWER REHABLITATION SPECIFICATION FOR MADISON SUBSTATION PREPARED FOR NICTD BY: LARAMORE, DOUGLASS & POPHAM, INC. Consulting Engineers 20N. Wacker Drive, Suite: 1500 Chicago, IL 60606 DISTRICT NORTHERN INDIANA COMMUTER TRANSPORTATION DISTRICT MADISON SUBSTATION REHABLITATION TABLE OF CONTENTS EXHIBIT 1 DRAWINGS AND TECHNICAL SPECIFICATION DIVISION 1 – GENERAL PAGES SECTION 01010 SUMMARY OF WORK 01010-1 THRU 01010-9 SECTION 01011 DRAWING LIST 01011-1 THRU 01011-2 SECTION 01012 WORK SEQUENCE AND CONSTRAINTS 01012-1 THRU 01012-3 SECTION 01027: SCHEDULE OF VALUES 01027-1 THRU 01027-2 SECTION 01300: SUBMITTALS 01300-1 THRU 01300-10 SECTION 01310: PROGRESS SCHEDULE AND REPORTS 01310-1 THRU 01310-5 SECTION 01700: PROJECT CLOSEOUT 01700-1 THRU 01700-4 DIVISION 16 – ELECTRIAL SECTION 16010: GENERAL PROVISIONS ELECTRICAL 16010-1 THRU 16010-3 SECTION: 16011: BASIC ELECTRICAL MATERIALS AND METHODS 16011-1 THRU 16011-12 SECTION 16125: TRACTION POWER CABLES 16125-1 THRU 16125-12 SECTION 16126: TRACTION POWER CABLE LUGS 16126-1 THRU 16126-2 SECTION 16127: CABLE TAGS 16127-1 THRU 16127-1 SECTION 16601: GENERAL REQUIREMENTS FOR TRACTION POWER EQUIPMENT 16601-1 THRU 16601-17 SECTION 16602: RECTIFIER TRANSFORMER 16602-1 THRU 16602-7 SECTION 16603: I500 VOLT DC SILICON RECTIFIER 16603-1 THRU 16603-9 TABLE OF CONTENTS Page 1 DISTRICT EXHIBIT 1 DRAWINGS AND TECHNICAL SPECIFICATION (Continued) DIVISION 16 – ELECTRIAL PAGES SECTION 16604: 1500 VOLT DC SWITCHGEAR 16604-1 THRU 16604-11 SECTION 16605: ANODE
    [Show full text]
  • Busway Systems
    Busway Systems Class 5600 CONTENTS Description Page Product Description . 9 Construction . 12 Application Data . 17 Layout and Measurement . 26 Installation, Special Features, and Services . 28 Electrical Data. 31 225 A–600 A Catalog Numbering System/Physical Data . 33 800 A–5000 A Catalog Numbering System/Physical Data . 42 Catalog Numbering System/Plug-In Units (“Bus Plugs”) . 59 Suggested Busway Specifications . 72 100 A Plug-In Busway. 74 100 A Plug-In Busway Suggested Specifications . 79 POWER-ZONE™ Metal-Enclosed Busway. 80 Schneider Electric Brands POWER-ZONE Metal-Enclosed Busway Suggested Specifications. 86 Busway Systems Contents PRODUCT DESCRIPTION . 9 General . 9 Sandwich Construction . 9 Totally Enclosed Housing . 9 Compact Size . 9 Finish . 9 Insulation . 9 Plating. 10 Dielectric Testing . 10 VISI-TITE® One Bolt Joint . 10 EZ JOINT PAK™ Connector Assembly . 10 Labor Savings. 10 Tie Channels. 11 Internal Smoke/Gas Barriers . 11 Short Circuit Strength . 11 Voltage Drop. 11 Outdoor Busway . 11 Universal Fittings . 11 Quality. 11 Integral Ground Bus . 11 CONSTRUCTION . 12 Plug-in Busway 225 A–600 A . 12 Plug-in Busway 800 A–5000 A . 13 Indoor Feeder Busway 800 A–5000 A . 14 Outdoor Feeder Busway 800A–5000 A . 15 APPLICATION DATA. 17 The Four Types of Busway Runs . 17 Service Entrance Run . 17 Plug-In Type Vertical Riser . 17 Plug-In Type Horizontal Run . 17 Feeder Type Tie Run. 17 Service Entrance Runs . 18 Service Heads . 18 Transformer Taps . 19 Bussed Transformer Connections. 20 Phasing . 20 Other Service Entrance Connections . 20 Plug-in Busway Horizontal Run . 22 Phasing . 22 Identification . 22 Plug-in Risers . 23 Dimensions .
    [Show full text]
  • Nureg/Cr-7175 Bnl-Nureg-98371-2012
    NUREG/CR-7175 BNL-NUREG-98371-2012 Susceptibility of Nuclear Stations to External Faults Office of Nuclear Regulatory Research AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as books, NRC’s Public Electronic Reading Room at journal articles, transactions, Federal Register notices, http://www.nrc.gov/reading-rm.html. Publicly released Federal and State legislation, and congressional reports. records include, to name a few, NUREG-series Such documents as theses, dissertations, foreign reports publications; Federal Register notices; applicant, and translations, and non-NRC conference proceedings licensee, and vendor documents and correspondence; may be purchased from their sponsoring organization. NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative Copies of industry codes and standards used in a reports; licensee event reports; and Commission papers substantive manner in the NRC regulatory process are and their attachments. maintained at— The NRC Technical Library NRC publications in the NUREG series, NRC Two White Flint North regulations, and Title 10, “Energy,” in the Code of 11545 Rockville Pike Federal Regulations may also be purchased from one Rockville, MD 20852–2738 of these two sources. 1. The Superintendent of Documents These standards are available in the library for reference U.S. Government Printing Office use by the public. Codes and standards are usually Mail Stop SSOP copyrighted and may be purchased from the originating Washington, DC 20402–0001 organization or, if they are American National Standards, Internet: bookstore.gpo.gov from— Telephone: 202-512-1800 American National Standards Institute nd Fax: 202-512-2250 11 West 42 Street 2.
    [Show full text]