Basic Fact Sheet - Viral Encephalitis in Animals Texas Department of Health, Zoonosis Control Division

Total Page:16

File Type:pdf, Size:1020Kb

Basic Fact Sheet - Viral Encephalitis in Animals Texas Department of Health, Zoonosis Control Division Basic Fact Sheet - Viral Encephalitis in Animals Texas Department of Health, Zoonosis Control Division What is viral encephalitis? Viral encephalitis is a brain infection caused by specific viruses, such as eastern, western and Venezuelan equine encephalitis (EEE, WEE, and VEE) and West Nile virus (WNV). In normal situations, these diseases are transmitted by mosquitoes and are best known for affecting horses and people. Other domestic animals may also be affected by some of these viruses. How can an animal get viral encephalitis? The viruses are spread by mosquitoes. What are the signs of viral encephalitis? After ½ to 2 days, horses will have fever and a fast heart rate; they will stop eating, and look depressed. Weakness and staggering are followed by muscle spasms, chewing movements, incoordination (loss of balance), and seizures. The survival rate (number that live) varies for the different viruses. Of the infected animals that do not survive, some will die rapidly (within a few hours) while others could live several weeks before dying. How is viral encephalitis diagnosed? Only laboratory testing can provide a definite diagnosis. How is viral encephalitis treated? Treatment of animals showing signs of disease is limited to nursing care. Is a viral encephalitis vaccine available? Vaccines are available for horses. They should be given yearly. To be effective, the horse must be vaccinated before it is exposed to a virus. Can infected animals spread viral encephalitis? Mosquitoes spread the disease to horses and people after feeding on infected birds. Mosquitoes cannot spread the viruses from infected horses to other animals and people. What is done with animals that die of viral encephalitis? There are no special burial or disposal requirements. How can I protect my animals and myself? Vaccinate horses. Help control mosquitoes by removing standing water in house gutters and trash (such as old tires). Do not allow water to stagnate (stand too long) in birdbaths, pet bowls, flowerpots, wading pools, and other places where mosquitoes breed. Use mosquito repellents and wear long-sleeved clothing. Texas Department of Health, Zoonosis Control Division – (512)-458-7255 7/02 .
Recommended publications
  • Chasing the Dragon, a Case of Leukoencephalopathy Associated with Heroin Inhalation
    Chasing the dragon, a case of leukoencephalopathy associated with heroin inhalation Daniel Cho MD1, Hani Nazha MD2, Kalin Fisher BS2 Author Affiliations: 1. Charleston Area Medical Center, Charleston, West Virginia 2. West Virginia University, Morgantown, West Virginia The authors have no financial disclosures to declare and no conflicts of interest to report. Corresponding Author: Hani Nazha MD West Virginia University Morgantown, West Virginia Email: [email protected] Abstract Although rare, toxic leukoencephalopathy (TLE) associated with heroin inhalation has been reported. “Chasing the dragon” may lead to progressive spongiform degeneration of the brain and presents with a large range of neuropsychological sequelae. This case is an example of TLE in a middle-aged white male with a history of polysubstance abuse. He presented with a three week history of progressive neuropsychological symptoms, including abulia, bradyphrenia, hyperreflexia, and visual hallucinations. He was initially suspected to have progressive multifocal leukoencephalopathy, however, JCV PCR was negative. MRI showed diffuse abnormal signal in the white matter, extending into the thalami and cerebral peduncles. Brain biopsy was performed, which revealed spongiform degeneration, and a diagnosis of TLE was made. The patient was then transferred to a skilled nursing facility. Clinical suspicion based on a thorough history and clinical exam findings is paramount in recognition of heroin-associated TLE. Although rare, heroin-inhalation TLE continues to be reported. As ‘chasing the dragon’ is gaining popularity among drug users, it is important for clinicians to be able to recognize this disease process. Keywords Opioid, Addiction, Heroin, Leukoencephalopathy Introduction Toxic leukoencephalopathy (TLE) associated with heroin abuse was first described in 1982.1 “Chasing the dragon" is a method of heroin vapor inhalation in which a small amount of heroin powder is placed on aluminum foil, which is then heated by placing a match or lighter underneath.
    [Show full text]
  • Viral Encephalitis: a Hard Nut to Crack
    Published online: 02.10.2019 THIEME 98 ViralReview Encephalitis Article Shukla et al. Viral Encephalitis: A Hard Nut to Crack Alka Shukla1 Mayank Gangwar1 Sonam Rastogi1 Gopal Nath1 1Department of Microbiology, Viral Research and Diagnostic Address for correspondence Gopal Nath, MD, PhD, Department Laboratory, Institute of Medical Sciences, Banaras Hindu of Microbiology, Viral Research and Diagnostic Laboratory, Institute University, Varanasi, India of Medical Sciences, Banaras Hindu University, Varanasi, India (e-mail: [email protected]). Ann Natl Acad Med Sci (India) 2019;55:98–109 Abstract Viral encephalitis is inflammation of brain that manifests as neurological complication of viral infections. There are quite a good number of viruses, for example, human her- pes virus, Japanese encephalitis, and enteroviruses that can result in such a dreadful condition. Geographical location, age, gender, immune status, and climatic conditions also contribute to the establishment of this disease in an individual. Clinical signs and symptoms include fever, headache, altered level of consciousness, changed mental status, body ache, seizures, nausea, and vomiting. Effective management of this dis- ease relies on timely diagnosis that in turn depends on apt and suitable investigation Keywords techniques. Traditional investigations have thinned out these days owing to the fact ► encephalitis that advanced molecular technologies have been introduced to the diagnostic field. ► viral infection Treatment of viral encephalitis mainly involves symptomatic relieve from fever, mal- ► pathogenesis aise, myalgia along with measures to reduce viral load in the patient. This review men- ► molecular techniques tions about all the possible aspects of viral encephalitis starting from etiology to the ► management management and preventive measures that include immunization and vector control.
    [Show full text]
  • Seizures in Encephalitis
    Neurology Asia 2008; 13 : 1 – 13 REVIEW ARTICLES Seizures in encephalitis Usha Kant Misra DM, *C T Tan MD, Jayantee Kalita DM Department of Neurology, Sanjay Gandhi PGIMS, Lucknow, India; *Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia Abstract A large number of viruses can result in encephalitis. However, certain viruses are more prevalent in certain geographical regions. For example, Japanese encephalitis (JE) and dengue in South East Asia and West Nile in Middle East whereas Herpes simplex encephalitis (HSE) occurs all over the world without any seasonal or regional variation. Encephalitis can result in acute symptomatic seizures and remote symptomatic epilepsy. Risk of seizures after 20 years is 22% following encephalitis and 3% after meningitis with early seizures. Amongst the viruses, HSE is associated with most frequent and severe epilepsy. Seizures may be presenting feature in 50% because of involvement of highly epileptogenic frontotemporal cortex. Presence of seizures in HSE is associated with poor prognosis. HSE can also result in chronic and relapsing form of encephalitis and may be an aetiology factor in drug resistant epilepsy. Amongst the Flaviviruses, Japanese encephalitis is the most common and is associated with seizures especially in children. The frequency of seizures in JE is reported to be 6.9% to 46%. Associated neurocysticercosis in JE patients may aggravate the frequency and severity of seizures. Other flaviviruses such as equine, St Louis, and West Nile encephalitis can also produce seizures. In Nipah encephalitis, seizures are commoner in relapsed and late-onset encephalitis as compared to acute encephalitis (50% vs 24%). Other viruses like measles, varicella, mumps, influenza and enteroviruses may result in encephalitis and seizures.
    [Show full text]
  • Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-​Related Disease
    REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV).
    [Show full text]
  • Encephalitis Fact Sheet
    Encephalitis Fact Sheet What is encephalitis? Encephalitis is an inflammation (irritation and swelling) of the brain tissue. It can occur as a primary illness or as a result of another illness elsewhere in the body. Frequently caused by an infection with a virus, encephalitis can be mild or severe, but severe cases are rare. Who gets encephalitis? Anyone can get encephalitis, but young children, older adults, and persons with weakened immune systems are more at risk. How is encephalitis spread? Primary encephalitis occurs when a virus directly infects the brain. Viruses that are carried by infected mosquitoes and ticks can cause primary encephalitis. Other viruses can cause an illness and then encephalitis can develop as a complication of the viral illness. When encephalitis develops after another infection, it is called post-infectious encephalitis. Post-infectious encephalitis most commonly follows a bout of chickenpox, mumps, or measles. What are the symptoms of encephalitis? Encephalitis frequently causes headache, fever, confused thinking, seizures, or problems with vision, speech, or movement. Infants and young children might have nausea, vomiting, body stiffness, constant crying, and poor feeding. How soon after exposure do symptoms appear? Encephalitis can occur within two to three weeks after a viral illness. Symptoms begin within a few days to one or two weeks after the bite from an infected mosquito. How is encephalitis diagnosed? Medical evaluation and special tests are needed to confirm the diagnosis. Anyone with a severe headache, fever, and altered mental status should seek medical care immediately. What is the treatment for encephalitis? Doctors might prescribe antiviral drugs, anti-inflammatory drugs, or other treatments for the symptoms as needed.
    [Show full text]
  • Meningitis/Encephalitis Pathogen Panel
    Meningitis/Encephalitis Pathogen Panel The list of pathogens which can potentially cause meningitis, encephalitis, and meningoencephalitis is broad. Early effective therapy for both bacterial and certain viral pathogens has been associated with improved outcomes. Patients whose history, exam, and/or imaging suggests one of these conditions should have a lumber puncture performed with appropriate diagnostic testing including a cell count with differential, protein, and glucose. Additional tests to consider include bacterial culture, cryptococcal antigen testing, fungal cultures, cultures for acid fast bacilli and/or the new Meningitis/Encephalitis Pathogen Panel. Nebraska Medicine has recently introduced a new FDA-approved test called the Meningitis/Encephalitis Pathogen Panel (MEPP). This test uses a nested multiplex PCR-approach to amplify DNA targets directly from cerebrospinal fluid (CSF) in patients with signs and symptoms of meningitis or encephalitis. It is able to detect a variety of common bacterial, viral, and fungal pathogens (Table 1). Table 1: Pathogens Detected by Meningitis/Encephalitis Pathogen Panel Bacteria Viruses Yeast Gram-negative Cytomegalovirus Cryptococcus Escherichia coli K1 Enterovirus neoformans/gattii Haemophilus influenzae Herpes simplex virus 1 Neisseria meningitidis Herpes simplex virus 2 Gram-positive Human herpesvirus 6 Listeria monocytogenes Human parechovirus Streptococcus agalactiae (Group B Strep) Varicella zoster virus (VZV) Streptococcus pneumoniae This test is sensitive and very specific (see Supplementary Table 1 for complete detail), and should only be performed in patients where CNS infection is being seriously considered. Previous studies have shown that using clinical and CSF criteria to determine when to perform PCR testing is unlikely to miss clinically significant results and is highly cost-effective.1-3 For example Wilen, et al.3 restricted herpes virus and enterovirus PCR testing to patients who were: age <2 years, immunosuppressed, or who had >10 WBCs/µl.
    [Show full text]
  • Viral Encephalitis: the Role of Birds1 Jacqueline Jacob2
    FACTSHEET PS-50 Viral Encephalitis: The role of birds1 Jacqueline Jacob2 August 1999's encephalitis outbreak in New Viral encephalitis is transmitted through the bite York City and surrounding areas brought the issue of of a mosquito that has become infected by feeding on viral encephalitis to the attention of the general an infected bird. The virus can NOT be transmitted public. Also, news that birds from the Bronx Zoo from person to person or from birds to people. In had died from the virus raised fears in poultry addition, there is NO danger of being infected from keepers throughout the eastern United States who consumption of poultry products, including meat and have been wondering if they are at risk of catching eggs. the disease from their birds. The purpose of this publication is to clear up some of the misconceptions Birds who live near bodies of standing water, with regards to viral encephalitis and the role birds such as freshwater swamps, are susceptible to play in its transmission. infection with an encephalitis virus. For a short time after a bird is infected it carries high levels of the What is Encephalitis? virus in its blood. Once the bird recovers, it develops immunity to the disease. If a mosquito feeds on a "Encephalitis" is an inflammation of the brain. recently infected bird, the mosquito will become a It can be caused by head injury, bacterial infections lifelong carrier of the disease. The mosquito will and, most commonly, viral infections. While most then transmit the infection to the next bird it feeds on, people infected with viral encephalitis have only mild which will in turn give it to more mosquitoes.
    [Show full text]
  • Encephalitis Caused by Herpes Simplex Virus Type 2, Successfully Treated with Acyclovir: Case Report
    Case Report Annals of Infectious Disease and Epidemiology Published: 26 Mar, 2017 Encephalitis Caused by Herpes Simplex Virus Type 2, Successfully Treated with Acyclovir: Case Report Ivaylo Nikolaev Pakov, Galya Ivanova Gancheva* and Tsetsa Georgieva Doichinova Department of Infectious Diseases, Epidemiology, Parasitology and Tropical Medicine, Medical University-Pleven, Bulgaria Abstract Herpes simplex encephalitis (HSE) is one of the most devastating infections of central nervous system (CNS), associated with high mortality and severe neurologic sequels among survivors. Detection of HSV-DNA in cerebrospinal fluid (CSF) by PCR is the “gold standard” for confirmation of diagnosis. Clinical Case: thirteen-year-old girl became sick with sub-febrile temperature, catarrhal symptoms and hearing loss followed by behavioral changes. On admission, she was inadequate and excited. Neurologic examination found no signs of meningeal irritation. Laboratory investigations revealed normal blood and CSF parameters; positive HSV-2-DNA in CSF by PCR; normal cranial CT-scan. Electroencephalography registered signs of ictal episodes. Intensive treatment including acyclovir was performed. After 30-days-hospital period with persistent agitation, the patient was discharged with unchanged psychotic status. One-month-follow-up control examination did not show improvement, but one month later all psychotic symptoms suddenly disappeared. Conclusion: Awareness for HSE and early initiation of acyclovir therapy are crucial for favorable outcome. Keywords: Herpes simplex virus type 2; Herpes simplex encephalitis; PCR of CSF; Acyclovir Introduction The incidence of infections caused by herpes simplex viruses (HSV) has increased worldwide OPEN ACCESS over the last several decades. Those neurotropic DNA-viruses are responsible for a wide variety of disease states and a serious neurological morbidity and mortality.
    [Show full text]
  • Granulomatous Meningoencephalitis and Necrotizing Encephalitis
    Granulomatous Meningoencephalitis and Necrotizing Encephalitis A. Courtenay Freeman, DVM Marc Kent, DVM, DACVIM (Small Animal and Neurology) Scott J. Schatzberg, DVM, PhD, DACVIM (Neurology) BASIC INFORMATION TREATMENT AND FOLLOW-UP Description Granulomatous meningoencephalitis (GME) and necrotizing Treatment Options encephalitis (NE) are disorders that arise from inflammation of the Because GME and NE are caused by inflammation, treatment is brain and/or spinal cord and their coverings (the meninges). These initially directed at suppressing the inflammation with steroids. diseases affect predominantly young, small-breed dogs. High doses are used initially; as the animal improves, the dosage Causes may be lowered gradually over the course of months. The goal Both GME and NE are presently considered to be autoimmune dis- of therapy is to reduce the dosage to the minimal amount needed orders, meaning that the body launches an abnormal attack against to control the clinical signs. Side effects of steroids include its own nervous system tissues. Potential triggers for the autoim- increased thirst, appetite, and urination. Animals may breathe mune attack may include infections and vaccinations. Genetics heavily and pant excessively. Long-term side effects include a may also play a role in the development of GME and NE. thin hair coat, poor wound healing, and muscle loss. Steroid ther- Although any breed of dog may be affected with GME, toy apy can also make the dog prone to infections of the skin and breeds are affected most often. Breeds commonly affected by NE urinary tract. Notify your veterinarian if any of these side effects include the pug, Maltese, Yorkshire terrier, Chihuahua, French occur.
    [Show full text]
  • Viral Encephalitis: a Review of Diagnostic Methods and Guidelines for Management
    European Journal of Neurology 2005, 12: 331–343 EFNS TASK FORCE/CME ARTICLE Viral encephalitis: a review of diagnostic methods and guidelines for management I. Steinera, H. Budkab, A. Chaudhuric, M. Koskiniemid, K. Sainioe, O. Salonenf and P. G. E. Kennedyc aLaboratory of Neurovirology, Department of Neurology, Hadassah University Hospital, Jerusalem, Israel; bInstitute of Neurology, Medical University of Vienna, Vienna, Austria; cDepartment of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK; dDepartment of Virology, Haartman Institute, eDepartment of Clinical Neurophysiology, and fHelsinki Medical Imaging Center, University of Helsinki, Helsinki, Finland Keywords: Viral encephalitis is a medical emergency. The spectrum of brain involvement and the central nervous system, prognosis are dependent mainly on the specific pathogen and the immunological state diagnosis, encephalitis, of the host. Although specific therapy is limited to only several viral agents, correct guidelines, therapy, virus immediate diagnosis and introduction of symptomatic and specific therapy has a dramatic influence upon survival and reduces the extent of permanent brain injury in Received 6 January 2005 survivors. We searched MEDLINE (National Library of Medicine) for relevant Accepted 6 January 2005 literature from 1966 to May 2004. Review articles and book chapters were also included. Recommendations are based on this literature based on our judgment of the relevance of the references to the subject. Recommendations were reached by con- sensus. Where there was lack of evidence but consensus was clear we have stated our opinion as good practice points. Diagnosis should be based on medical history, examination followed by analysis of cerebrospinal fluid for protein and glucose con- tents, cellular analysis and identification of the pathogen by polymerase chain reaction (PCR) amplification (recommendation level A) and serology (recommendation level B).
    [Show full text]
  • Dementia and Cognitive Impairment in Adults As Sequels of HSV-1-Related Encephalitis a Review
    Dement Neuropsychol 2021 June;15(2):164-172 Views & Reviews https://doi.org/10.1590/1980-57642021dn15-020002 Dementia and cognitive impairment in adults as sequels of HSV-1-related encephalitis a review Emille Magalhães Neves Campos1 , Laís Damasceno Rodrigues2 , Leandro Freitas Oliveira2 , Júlio César Claudino dos Santos2,3 ABSTRACT. Considering the variety of mechanisms of Herpes simplex virus (HSV-1) contamination and its broad invasive potential of the nervous system, a life-long latent infection is established. Infected adult individuals may be susceptible to viral reactivation when under the influence of multiple stressors, especially regarding immunocompromised patients. This guides a series of neuroinflammatory events on the cerebral cortex, culminating, rarely, in encephalitis and cytotoxic / vasogenic brain edema. A sum of studies of such processes provides an explanation, even though not yet completely clarified, on how the clinical evolution to cognitive impairment and dementia might be enabled. In addition, it is of extreme importance to recognize the current dementia and cognitive deficit worldwide panorama. The aim of this literature review is to elucidate the available data upon the pathophysiology of HSV-1 infection as well as to describe the clinical panorama of the referred afflictions. Keywords: herpesvirus 1, human, central nervous system viral diseases, encephalitis, herpes simplex, cognitive dysfunction, dementia. DEMÊNCIA E DÉFICIT COGNITIVO EM ADULTOS COMO SEQUELAS DE ENCEFALITE RELACIONADA AO HSV-1:UMA REVISÃO RESUMO. Considerando a variedade de mecanismos de contaminação pelo vírus Herpes simplex (HSV-1) e seu amplo potencial invasivo do sistema nervoso, uma infecção latente por toda a vida é estabelecida. Indivíduos adultos infectados podem ser suscetíveis à reativação viral quando estão sob a influência de múltiplos estressores, principalmente em pacientes imunocomprometidos.
    [Show full text]
  • Human Rabies Encephalitis Prevention and Treatment: Progress Since Pasteur’S Discovery Laurent Dacheux, Olivier Delmas, Hervé Bourhy
    Human rabies encephalitis prevention and treatment: progress since Pasteur’s discovery Laurent Dacheux, Olivier Delmas, Hervé Bourhy To cite this version: Laurent Dacheux, Olivier Delmas, Hervé Bourhy. Human rabies encephalitis prevention and treat- ment: progress since Pasteur’s discovery. Infectious Disorders - Drug Targets, Bentham Science Publishers, 2011, 11 (3), pp.251–299. 10.2174/187152611795768079. pasteur-01491353 HAL Id: pasteur-01491353 https://hal-pasteur.archives-ouvertes.fr/pasteur-01491353 Submitted on 21 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License TITLE Human Rabies Encephalitis Prevention and Treatment: Progress Since Pasteur’s Discovery RUNNING TITLE Prevention and Treatment of Human Rabies Received 3 November 2010; revised 24 December 2010; accepted 10 January 2011. 1/115 ABSTRACT Rabies remains one of the most ancient and deadly of human infectious diseases. This viral zoonosis is transmitted principally by the saliva of infected dogs, inducing a form of encephalomyelitis that is almost invariably fatal. Since the first implementation, by Louis Pasteur in 1885, of an efficient preventive post-exposure treatment, more effective protocols and safer products have been developed, providing almost 100% protection if administered early enough.
    [Show full text]