Keyword List, Chemical Engineering Science

Total Page:16

File Type:pdf, Size:1020Kb

Keyword List, Chemical Engineering Science Keyword List, Chemical Engineering Science • Absorption • Corrosion • Instrumentation • Population balance • Adsorption • Crushing • Interface • Porous media • Aeration • Crystallisation • Interfacial tension • Powder technology • Aerobic • DEM • Interfacial rheology • Powders • Aerosol • Desalination • Ion exchange • Precipitation • Agglomeration • Design • Isothermal • Process control • Anaerobic • Desorption • Kinetics • Product design • Antibody • Dialysis • Laminar flow • Process systems • Attrition • Diffusion • Leaching • Product processing • Autocatalysis • Discrete element • Mass transfer • Protein • Azeotrope modeling • Materials • Radiation • Batch • Dispersion • Mathematical • Reaction engineering • Bilayers • Dissolution modelling • Remediation • Biocatalysis • Distillation • Membranes • Renewable energy • Biochemical • DNA • Metabolism • Rheology engineering • Downstream • Microelectronics • Safety • Biodiesel processing • Microreactor • Scale-up • Biofilm • Drop • Microfluidic • Sedimentation • Biological engineering • Drying • Microstructure • Selectivity • Biomolecule • Dust • Mixing • Separations • Biomolecular • Dynamic simulation • Model reduction • Sequestration engineering • Economics • Molding; Moulding • Simulation • Biomedical • Elasticity • Molecular biology • Sintering engineering • Electrochemistry • Molecular Engineering • Slurries • Bioprocess • Electrolysis • Momentum transfer • Soft solids • Bioreactors • Electronic materials • Monoclonal antibody • Solar energy • Bioseparation • Electro-osmosis • Morphology • Solid mechanics • Biotechnology • Electrophoresis • Moving bed • Solutions • Biotemplating • Emulsion • Multiphase flow • Stability • Bubble columns • Energy • Multiphase reactions • State equation • Bubble • Entropy • Multiphase reactors • Static mixer • Capsomere • Environment • Multiscale • Statistical • Carbon dioxide • Enzyme • Nanomaterials thermodynamics • Catalysis • Evaporation • Nanostructure • Supercritical fluid • Catalyst activation • Explosions • Nanoparticle • Sustainability • Catalyst deactivation • Extraction • Nanotechnology • Surfactant • Catalyst selectivity • Extrusion • NMR • Suspension • Catalyst support • Fermentation • Nonlinear dynamics • Synthetic biology • Cell biology • Films • Non-Newtonian fluids • Systems engineering • Cell engineering • Filtration • Nucleation • Theory of Liquids • Centrifugation • Flotation • Numerical analysis • Thermodynamics • CFD • Food • Optimisation process • Chaos • Fluid mechanics • Packed bed • Tissue engineering • Chemical analysis • Fluidization • Parameter • Tomography • Chemical processes • Foam identification • Transient response • Chemical reactors • Food processing • Particle • Transport processes • Chromatography • Formulation • Particle formation • Turbulence • Coagulation • Fouling • Particle processing • Unit operations • Colloid • Fractals • Particulate processes • Vaccine • Combustion • Fuel • Peptide • Vaporization • Complexity • Gases • Petroleum • Virus-like particle • Complex fluids • Gels • Pharmaceuticals • Viscoelasticity • Composites • Granulation • Phase change • Visualisation • Computation • Granular materials • Phase equilibria • Voidage • Computational • Greenhouse gas • Photochemistry • Waste treatment • chemistry • Heat conduction • PIV • Water • Computational fluid • Heat transfer • Pneumatic conveying • Wind energy dynamics • Homogenization • Pollution • Zeolites. • Condensation • Hydrate • Polymers • Control • Hydrodynamics • Polymer processing • Convection • Imaging • Polymerisation .
Recommended publications
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • Conceptual Understanding of Osmosis and Diffusion by Australian First-Year Biology Students
    International Journal of Innovation in Science and Mathematics Education, 27(9), 17-33, 2019 Conceptual Understanding of Osmosis and Diffusion by Australian First-year Biology Students Nicole B. Reinkea, Mary Kynna and Ann L. Parkinsona Corresponding author: Nicole B. Reinke ([email protected]) aSchool of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs QLD 4576, Australia Keywords: biology, osmosis, diffusion, conceptual assessment, misconception Abstract Osmosis and diffusion are essential foundation concepts for first-year biology students as they are a key to understanding much of the biology curriculum. However, mastering these concepts can be challenging due to their interdisciplinary and abstract nature. Even at their simplest level, osmosis and diffusion require the learner to imagine processes they cannot see. In addition, many students begin university with flawed beliefs about these two concepts which will impede learning in related areas. The aim of this study was to explore misconceptions around osmosis and diffusion held by first-year cell biology students at an Australian regional university. The 18- item Osmosis and Diffusion Conceptual Assessment was completed by 767 students. From the results, four key misconceptions were identified: approximately half of the participants believed dissolved substances will eventually settle out of a solution; approximately one quarter thought that water will always reach equal levels; one quarter believed that all things expand and contract with temperature; and nearly one third of students believed molecules only move with the addition of external force. Greater attention to identifying and rectifying common misconceptions when teaching first-year students will improve their conceptual understanding of these concepts and benefit their learning in subsequent science subjects.
    [Show full text]
  • Circle Reverse Osmosis System
    CIRCLE REVERSE OSMOSIS SYSTEM KEY FEATURES Water Saving Technology – Patented technology eliminates backpressure The RC100 conforms to common in conventional RO systems making the Circle up to 10 times more NSF/ANSI 42, 53 and efficient than existing products. 58 for the reduction of Saves You Money – Conventional RO systems waste up to 24 gallons of Aesthetic Chlorine, Taste water per every 1 gallon of filtered water produced. The Circle only wastes and Odor, Cyst, VOCs, an average of 2.1 gallons of water per 1 gallon of filtered water produced, Fluoride, Pentavalent Arsenic, Barium, Radium 226/228, Cadmium, Hexavalent saving you water and money over the life of the product!. Chromium, Trivalent Chromium, Lead, RO Filter Auto Flushing – Significantly extends life of RO filter. Copper, Selenium and TDS as verified Chrome Faucet Included – With integrated LED filter change indicator. and substantiated by test data. The RC100 conforms to NSF/ANSI 372 for Space Saving Compact Design – Integrated rapid refill tank means more low lead compliance. space under the sink. SPECIFICATIONS Product Name H2O+ Circle Reverse Osmosis Water Filtration System Model / SKU RC100 Installation Undercounter Sediment Filter, Pre-Carbon Plus Filter, Post Carbon Block Filter (RF-20): 6 months Filters & Lifespan RO Membrane Filter (RF-40): 24 months Tank Capacity 6 Liters (refills fully in less than one hour) Dimensions 9.25” (W) x 16.5” (H) x 13.75” (D) Net weight 14.6 lbs Min/Max Operating Pressure 40 psi – 120 psi (275Kpa – 827Kpa) Min/Max Water Feed Temp 41º F – 95º F (5º C – 35º C) Faucet Flow Rate 0.26 – 0.37 gallons per minute (gpm) at incoming water pressure of 20–100 psi Rated Service Flow 0.07 gallons per minute (gpm) Warranty One Year Warranty PO Box 470085, San Francisco CA, 94147–0085 brondell.com 888-542-3355.
    [Show full text]
  • The Role of Nanotechnology in Chemical Substitution
    EUROPEAN PARLIAMENT Scientific Technology Options Assessment S T O A The role of Nanotechnology in Chemical Substitution STUDY IPOL/A/STOA/ST/2006-029 PE 383.212 This project was commissioned by STOA under Framework Contract IP/A/STOA/FWC/2005-28). The associated workshop, "The Role of Nanotechnology in Chemical Substitution" was organised by the European Parliament in Brussels on 13 September 2006. Only published in English. Authors: ETAG European Technology Assessment Group Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Danish Board of Technology (DBT), Copenhagen Flemish Institute for Science and Technology Assessment (viWTA), Brussels Parliamentary Office of Science and Technology (POST), London Rathenau Institute, The Hague Dr. Ulrich Fiedeler, ITAS E-mail: [email protected] Administrator: Mr. Miklos Györffi Policy Department A: Economic and Scientific Policy DG Internal Policies European Parliament Rue Wiertz 60 - ATR 00K076 B-1047 Brussels Tel: +32 (0)2 283 25 05 Fax: +32 (0)2 284 49 84 E-mail: [email protected] Manuscript completed in April 2007. The opinions expressed in this document do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorised provided the source is acknowledged and the publisher is given prior notice and receives a copy. E-mail: poldep- [email protected]. IP/A/STOA/ST/2006-029 PE 383.212 TABLE OF CONTENTS 1 EXECUTIVE SUMMARY..............................................................................................................ii
    [Show full text]
  • Chemical Engineering Curriculum
    CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term First Year EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 CISC 106 General Computer Science for Engineers 3 PHYS 207 Fundamentals of Physics I 4 ENGL 110 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 Second Year CHEG 231 Chemical Engineering Thermodynamics 3 CHEG 325 Chemical Engineering Thermodynamics 3 CHEM 220 Quantitative Analysis 3 CHEG 304 Random Variability in Chemical Processes 3 CHEM 221 Quantitative Analysis Laboratory 1 CHEM 444 Physical Chemistry 3 PHYS 208 Fundamentals of Physics II 4 CHEM 445 Physical Chemistry Laboratory ( a ) 0/1 MSEG 302 Materials Science for Engineers 3 MATH 305 Applied Math for Chemical Engineering 3 Breadth Requirement Elective 2 3 Breadth Requirement Elective 3 3 17 15/16 Third Year CHEG 332 Chemical Engineering Kinetics 3 CHEG 342 Heat and Mass Transfer 3 CHEG 341 Fluid Mechanics 3 CHEG 345 Chemical Engineering Laboratory I 3 CHEM 331 Organic Chemistry I 3 CHEM 332 Organic Chemistry ( b ) or 3 CHEM 333 Organic Chemistry Laboratory 1/2 CHEM 527 Introduction to Biochemistry Technical Elective 1 3 Breadth Requirement Elective 4 3 Technical Elective 2 3 CHEG Elective 1 3 16/17 15 Fourth Year CHEG 431 Chemical Process Design 1 3 CHEG 432 Chemical Process Design 2 (DLE) 3 CHEG 401 Chemical Process Dynamics and Control 3 CHEG Elective 3 3 CHEG 445 Chemical Engineering Laboratory II 3 Technical Elective 3 3 CHEG Elective 2 3 Technical Elective 4 or CHEG Elective 4 3 Breadth Requirement Elective 5 3 Breadth Requirement Elective 6 3 15 15 Total Credit Hours 126 ( a ) If CHEM 333 is taken for two credits, CHEM 445 is not required.
    [Show full text]
  • Chapter 10 – Chemical Reactions Notes
    Chapter 8 – Chemical Reactions Notes Chemical Reactions: Chemical reactions are processes in which the atoms of one or more substances are rearranged to form different chemical compounds. How to tell if a chemical reaction has occurred (recap): Temperature changes that can’t be accounted for. o Exothermic reactions give off energy (as in fire). o Endothermic reactions absorb energy (as in a cold pack). Spontaneous color change. o This happens when things rust, when they rot, and when they burn. Appearance of a solid when two liquids are mixed. o This solid is called a precipitate. Formation of a gas / bubbling, as when vinegar and baking soda are mixed. Overall, the most important thing to remember is that a chemical reaction produces a whole new chemical compound. Just changing the way that something looks (breaking, melting, dissolving, etc) isn’t enough to qualify something as a chemical reaction! Balancing Equations Notes: Things to keep in mind when looking at the recipes for chemical reactions: 1) The stuff before the arrow is referred to as the “reactants” or “reagents”, and the stuff after the arrow is called the “products.” 2) The number of atoms of each element is the same on both sides of the arrow. Even though there may be different numbers of molecules, the number of atoms of each element needs to remain the same to obey the law of conservation of mass. 3) The numbers in front of the formulas tell you how many molecules or moles of each chemical are involved in the reaction. 4) Equations are nothing more than chemical recipes.
    [Show full text]
  • Chemistry - B.S
    Chemistry - B.S. College of (Biochemistry Option) Arts and Sciences The Department of Chemistry offers the Bachelor of Science degree for students who Graduation Composition and Communication Requirement intend to become professional chemists or do graduate work in chemistry or a closely (GCCR) related discipline. There are three options in the B.S. program: a traditional track WRD 310 Writing in the Natural Sciences ............................................................. 3 covering all the major areas of chemistry, an option that emphasizes biochemistry and an option in materials chemistry. The Biochemistry and Traditional Options are Graduation Composition and Communication certified by the American Chemical Society. A Bachelor of Arts degree program is Requirement hours (GCCR) .................................................................... 3 offered as well for students who want greater flexibility in the selection of courses to perhaps pursue more diverse degree options, including dual and double majors. For College Requirements all majors CHE 109 and CHE 110 have been defined as equivalent to CHE 105. The I. Foreign Language (placement exam recommended) ................................... 0-14 Department also offers the Master of Science and the Doctor of Philosophy degree. II. Disciplinary Requirements a. Natural Science (completed by Major Requirements) 128 hours b. Social Science ......................................................................................... 3 Any student earning a Bachelor of Science (BS)
    [Show full text]
  • CHEMICAL REACTION ENGINEERING* Current Status and Future Directions
    [eJij9iviews and opinions CHEMICAL REACTION ENGINEERING* Current Status and Future Directions M. P. DUDUKOVIC and petrochemical industry provided a fertile ground Washington University for further development of reaction engineering con­ St. Louis, MO 63130 cepts. The final cornerstone of this new discipline was laid in 1957 by the First Symposium on Chemical HEMICAL REACTIONS have been used by man­ Reaction Engineering [3] which brought together and C kind since time immemorial to produce useful synthesized the European point of view. The Amer­ products such as wine, metals, etc. Nevertheless, the ican and European schools of thought were not identi­ unifying principles that today we call chemical reac­ cal, but in time they converged into the subject matter tion engineering were not developed until relatively a that we know today as chemical reaction engineering, short time ago. During the decade of the 1940's (not or CRE. The above chronology led to the establish­ even half a century ago!) a transition was made from ment of CRE as an accepted discipline over the span descriptive industrial chemistry to the conceptual un­ of a decade and a half. This does not imply that all the ification of reaction processes and reactor types. The principles important in CRE were discovered then. pioneering work in this area of industrial practice was The foundation for CRE had already been established done by Denbigh [1] in England. Then in 1947, by the early work of Frank-Kamenteski, Damkohler, Hougen and Watson [2] published the first textbook Zeldovitch, etc., but at that time they represented in the U.S.
    [Show full text]
  • The New Formula That Replaces Van't Hoff Osmotic Pressure Equation
    New Osmosis Law and Theory: the New Formula that Replaces van’t Hoff Osmotic Pressure Equation Hung-Chung Huang, Rongqing Xie* Department of Neurosciences, University of Texas Southwestern Medical Center, Dallas, TX *Chemistry Department, Zhengzhou Normal College, University of Zhengzhou City in Henan Province Cheng Beiqu excellence Street, Zip code: 450044 E-mail: [email protected] (for English communication) or [email protected] (for Chinese communication) Preamble van't Hoff, a world-renowned scientist, studied and worked on the osmotic pressure and chemical dynamics research to win the first Nobel Prize in Chemistry. For more than a century, his osmotic pressure formula has been written in the physical chemistry textbooks around the world and has been generally considered to be "impeccable" classical theory. But after years of research authors found that van’t Hoff osmotic pressure formula cannot correctly and perfectly explain the osmosis process. Because of this, the authors abstract a new concept for the osmotic force and osmotic law, and theoretically derived an equation of a curve to describe the osmotic pressure formula. The data curve from this formula is consistent with and matches the empirical figure plotted linearly based on large amounts of experimental values. This new formula (equation for a curved relationship) can overcome the drawback and incompleteness of the traditional osmotic pressure formula that can only describe a straight-line relationship. 1 Abstract This article derived a new abstract concept from the osmotic process and concluded it via "osmotic force" with a new law -- "osmotic law". The "osmotic law" describes that, in an osmotic system, osmolyte moves osmotically from the side with higher "osmotic force" to the side with lower "osmotic force".
    [Show full text]
  • Transport Phenomena: Mass Transfer
    Transport Phenomena Mass Transfer (1 Credit Hour) μ α k ν DAB Ui Uo UD h h Pr f Gr Re Le i o Nu Sh Pe Sc kc Kc d Δ ρ Σ Π ∂ ∫ Dr. Muhammad Rashid Usman Associate professor Institute of Chemical Engineering and Technology University of the Punjab, Lahore. Jul-2016 The Text Book Please read through. Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena. 2nd ed. John Wiley & Sons, Inc. Singapore. 2 Transfer processes For a transfer or rate process Rate of a quantity driving force Rate of a quantity area for the flow of the quantity 1 Rate of a quantity Area driving force resistance Rate of a quantity conductance Area driving force Flux of a quantity conductance driving force Conductance is a transport property. Compare the above equations with Ohm’s law of electrical 3 conductance Transfer processes change in the quanity Rate of a quantity change in time rate of the quantity Flux of a quantity area for flow of the quantity change in the quanity Gradient of a quantity change in distance 4 Transfer processes In chemical engineering, we study three transfer processes (rate processes), namely •Momentum transfer or Fluid flow •Heat transfer •Mass transfer The study of these three processes is called as transport phenomena. 5 Transfer processes Transfer processes are either: • Molecular (rate of transfer is only a function of molecular activity), or • Convective (rate of transfer is mainly due to fluid motion or convective currents) Unlike momentum and mass transfer processes, heat transfer has an added mode of transfer called as radiation heat transfer.
    [Show full text]
  • Download the Chemical Engineering Major Handbook
    2020 - 2021 Undergraduate Handbook DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING INFORMATION FOR MAJORS IN CHEMICAL ENGINEERING Fall 2020 Updated July 2020 Quick Reference Guide Chemical Engineering Curriculum - Prerequisite Flowchart *Sophomore year has two variants; ChE 210 may be taken in sophomore or freshman year. Total Requirements - 48 classes Basic Courses: A. Mathematics - 4 classes D. Design and Communication - 3 classes Chemical Engineering Curriculum - Prerequisite Flowchart q MATH 220-1 (220) q MATH 228-1 (230) q q ENGLISH & DSGN 106-1,2 q MATH 220-2 (224) q MATH 228-2 (234) q COMM ST (Speech) 102, or B. Engineering Analysis - 4 classes PERF ST (Performance) 103 or 203 q q q q GEN ENG 205-1,2,3,4 E. Basic Engineering - 5 classes C. Basic Sciences - 4 classes q CHEM ENG 210 q q PHYSICS 135-2,3 (plus labs) q CHEM ENG 211 q q CHEM 131,132, or 151,152, q MAT SCI 301 or 171,172 (plus labs) q CHEM ENG 312 or IEMS 303 q CHEM ENG 321 Distribution Requirements: F. q Social Sci/Humanities (Theme) - 7 classes G. q Unrestricted Electives - 5 classes Core Curriculum: H. Major Program – 11 required classes + 5 technical electives q CHEM 210-1: Organic Chemistry q CHEM ENG 322: Heat Transfer q CHEM 210-2: Organic Chemistry (plus lab) q CHEM ENG 323: Mass Transfer q CHEM ENG 212: Phase Equilibrium and q CHEM ENG 341: Dynamics and Control Staged Separations of Chemical and Biological Processes q CHEM ENG 275: Cell & Molecular Biology q CHEM ENG 342: Chemical Engineering Lab for Engineers or BIOL SCI 215 or 291 or q CHEM ENG 351: Process Economics, 201 or 202 Design & Evaluation q CHEM ENG 307: Kinetics & Reactor q CHEM ENG 352: Chemical Engineering Engineering Design Projects q Technical Electives - 5 classes You may choose an area of specialization: (OR follow technical elective guidelines - Section IIIB) Bioengineering, Chemical Process Engineering, Design, Environmental Engineering and Sustainability, Nanotechnology and Molecular Engineering, or Polymer Science and Engineering Table of Contents I.
    [Show full text]
  • Modes of Mass Transfer Chapter Objectives
    MODES OF MASS TRANSFER CHAPTER OBJECTIVES - After you have studied this chapter, you should be able to: 1. Explain the process of molecular diffusion and its dependence on molecular mobility. 2. Explain the process of capillary diffusion 3. Explain the process of dispersion in a fluid or in a porous solid. 4. Understand the process of convective mass transfer as due to bulk flow added to diffusion or dispersion. 5. Explain saturated flow and unsaturated capillary flow in a porous solid 6. Have an idea of the relative rates of the different modes of mass transfer. 7. Explain osmotic flow. KEY TERMS diffusion, diffusivity, and. diffusion coefficient dispersion and dispersion coefficient hydraulic conductivity capillarity osmotic flow mass and molar flux Fick's law Darcy's law 1. A Primer on Porous Media Flow Physical Interpretation of Hydraulic Conductivity K and Permeability k Figure 1. Idealization of a porous media as bundle of tubes of varying diameter and tortuosity. Capillarity and Unsaturated Flow in a Porous Media Figure 2.Capillary attraction between the tube walls and the fluid causes the fluid to rise. Osmotic Flow in a Porous Media Figure 3.Osmotic flow from a dilute to a concentrated solution through a semi-permeable membrane. 2. Molecular Diffusion • In a material with two or more mass species whose concentrations vary within the material, there is tendency for mass to move. Diffusive mass transfer is the transport of one mass component from a region of higher concentration to a region of lower concentration. Physical interpretation of diffusivity Figure 4. Concentration profiles at different times from an instantaneous source placed at zero distance.
    [Show full text]