Smarter Than the Average Bug - Life - 27 May 2006 - Print - New Scie
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Visual Perception in Jumping Spiders (Araneae,Salticidae)
Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods ..................................................................................................................................................................... -
Predatory Behavior of Jumping Spiders
Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies. -
Ra Ff Rayi (SIMON, 1891) Was Reported As a Social Spider in Singapore (Simon, 1891)
Acta arachnol., 41(1): 1-4, August 15, 1992 The Composition of a Colony of Philoponella ra ffrayi (Uloboridae) in Peninsular Malaysia Toshiya MASUMOTO' 桝 元 敏 也1):マ レ ー 半 島 に お け るP捌0ρ0η8伽 アα∬roy'の コ ロ ニ ー 構 成 Abstract A colony of Philoponella ra ffrayi (SIMON, 1891) was observed in the undergrowth of the secondary forest of the Forest Research Institute of Malaysia in Kuala Lumpur, Malaysia. The communal web was made up of 1) numerous females' orb-webs surrounding the colony, 2) strong sustainable silks which constitute irregular framework of the colony, and 3) irregular webs forming the center of the colony where males dominantly exist. The numbers of adult females, adult males, and juvenile females were 61, 15 and 2, respectively. The distribution of the developmental stages of the individuals in the colony indicates that the spiders have matured simultaneously. Three other species of spiders, Portia sp., Leucauge sp. and Argyrodes sp., were collected in the colony of P. ra ffrayi. Introduction Members of the genus Philoponella occur in South and Central America and in tropical Asia and the western Pacific (LuBIN, 1986). Many species in this genus are found in colonies consisting of numerous orb-webs built in a common, irregular framework (OPELL, 1979). Philoponella ra ff rayi (SIMON, 1891) was reported as a social spider in Singapore (SIMoN, 1891). However, there have been no reports on the composition of the colony of this species. In this report, the composition of a colony of P, raffrayi observed in Malaysia will be described. -
Representation of Different Exact Numbers of Prey by a Spider-Eating Predator Rsfs.Royalsocietypublishing.Org Fiona R
Representation of different exact numbers of prey by a spider-eating predator rsfs.royalsocietypublishing.org Fiona R. Cross1,2 and Robert R. Jackson1,2 1School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand 2International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, PO Box 30, Mbita Point, Kenya Research FRC, 0000-0001-8266-4270; RRJ, 0000-0003-4638-847X Our objective was to use expectancy-violation methods for determining Cite this article: Cross FR, Jackson RR. 2017 whether Portia africana, a salticid spider that specializes in eating other Representation of different exact numbers of spiders, is proficient at representing exact numbers of prey. In our exper- prey by a spider-eating predator. Interface iments, we relied on this predator’s known capacity to gain access to prey Focus 7: 20160035. by following pre-planned detours. After Portia first viewed a scene consist- http://dx.doi.org/10.1098/rsfs.2016.0035 ing of a particular number of prey items, it could then take a detour during which the scene went out of view. Upon reaching a tower at the end of the detour, Portia could again view a scene, but now the number of One contribution of 12 to a theme issue prey items might be different. We found that, compared with control trials ‘Convergent minds: the evolution of cognitive in which the number was the same as before, Portia’s behaviour was complexity in nature’. significantly different in most instances when we made the following changes in number: 1 versus 2, 1 versus 3, 1 versus 4, 2 versus 3, 2 versus 4 or 2 versus 6. -
Portia Perceptions: the Umwelt of an Araneophagic Jumping Spider
Portia Perceptions: The Umwelt of an Araneophagic Jumping 1 Spider Duane P. Harland and Robert R. Jackson The Personality of Portia Spiders are traditionally portrayed as simple, instinct-driven animals (Savory, 1928; Drees, 1952; Bristowe, 1958). Small brain size is perhaps the most compelling reason for expecting so little flexibility from our eight-legged neighbors. Fitting comfortably on the head of a pin, a spider brain seems to vanish into insignificance. Common sense tells us that compared with large-brained mammals, spiders have so little to work with that they must be restricted to a circumscribed set of rigid behaviors, flexibility being a luxury afforded only to those with much larger central nervous systems. In this chapter we review recent findings on an unusual group of spiders that seem to be arachnid enigmas. In a number of ways the behavior of the araneophagic jumping spiders is more comparable to that of birds and mammals than conventional wisdom would lead us to expect of an arthropod. The term araneophagic refers to these spiders’ preference for other spiders as prey, and jumping spider is the common English name for members of the family Saltici- dae. Although both their common and the scientific Latin names acknowledge their jumping behavior, it is really their unique, complex eyes that set this family of spiders apart from all others. Among spiders (many of which have very poor vision), salticids have eyes that are by far the most specialized for resolving fine spatial detail. We focus here on the most extensively studied genus, Portia. Before we discuss the interrelationship between the salticids’ uniquely acute vision, their predatory strategies, and their apparent cognitive abilities, we need to offer some sense of what kind of animal a jumping spider is; to do this, we attempt to offer some insight into what we might call Portia’s personality. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
How Jumping Spiders (Araneae: Salticidae) Find and Use Indirect Routes to Reach Their Sighted Objectives
Peckhamia 184.1 How jumping spiders use indirect routes 1 PECKHAMIA 184.1, 10 May 2019, 1―13 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:1987105E-0056-4FCD-87EF-C29F74073AB9 (registered 08 MAY 2019) ISSN 1944―8120 (online) How jumping spiders (Araneae: Salticidae) find and use indirect routes to reach their sighted objectives David E. Hill 1 1 213 Wild Horse Creek Drive, Simpsonville SC 29680, USA, email [email protected] Abstract. Jumping spiders (Salticidae) are not limited to planning their route at the onset of pursuit, but dynamically collect and use new information as they complete an indirect route or detour. There is strong support for the hypothesis that selection of the immediate route is based on the presence of a visible connection leading to the objective. In turn salticids can use these visible connections as secondary (or intermediate) objectives. Salticids can compute the expected direction and distance of their primary objective after they move to a new location, and frequently turn (reorient) to face their original objective to begin a new segment of pursuit. Completion of a sequence of these pursuit segments allows the salticid to successfully complete a complicated and indirect route of pursuit even when this is not visible at the onset. Key words. Anasaitis, cognition, Colonus, detour, direction information, distance information, gravity information, Habronattus, Hentzia, landmarks, Lyssomanes, Maevia, map direction, orientation, Phidippus, Platycryptus, Portia, reorientation, route selection, secondary objectives, segmented pursuit, Spartaeinae, spatial integration, visual cues The ability of salticid spiders to complete detoured or indirect pursuits of visual objectives has been known for some time (e.g., Bilsing 1920; Heil 1936; Hill 1977, 2008, 2018a; Jackson & Wilcox 1993). -
Aggressive Spiders Are Quick at Making Accurate Decisions, Good at Hunting Unpredictable Prey 28 July 2017
Aggressive spiders are quick at making accurate decisions, good at hunting unpredictable prey 28 July 2017 Spiders, like humans and many other animals, spiders. The findings demonstrated that the have distinct personalities. Two studies by personalities of the jumping spiders are related to scientists from the National University of Singapore their cognitive styles. Results of this study were (NUS) unveiled interesting findings about the reported in scientific journal Behavioral Ecology in relationship between personality traits of spiders December 2016. and their decision making, as well as hunting styles. Assoc Prof Li explained, "The outcome is rather surprising, as our team had initially thought that decision making styles of spiders spiders that make quick decisions are more likely to make the wrong choices, similar to humans. This Studies have shown that when humans make new knowledge provides us with a better decisions in a haste, they tend to make more understanding of ecological processes like foraging mistakes. To investigate if the same holds true for and predator-prey interactions in the animal spiders, the NUS research team, led by Associate kingdom." Professor Li Daiqin from the Department of Biological Sciences at the NUS Faculty of Science, Foraging performance of spiders conducted studies on Portia labiata, a species of jumping spider. Portia labiata is known for its high When predators hunt for food, they will usually cognitive ability and complicated foraging consider the prey's size, speed of movement, and strategies, but its personality is unexplored. strength. While the predator's personality may not be ranked high on the list of factors, it has a The researchers first tested the aggressiveness of significant influence on the predator's hunting Portia labiata spiders by observing their responses strategy, according to another study conducted by when they are touched by a small soft brush. -
Aranei: Salticidae)
Arthropoda Selecta 29(1): 87–96 © ARTHROPODA SELECTA, 2020 A contribution to the knowledge of jumping spiders from Thailand (Aranei: Salticidae) Ê ïîçíàíèþ ïàóêîâ-ñêàêóí÷èêîâ Òàèëàíäà (Aranei: Salticidae) R.R. Seyfulina1, G.N. Azarkina2*, V.M. Kartsev3 Ð.Ð. Ñåéôóëèíà1, Ã.Í. Àçàðêèíà2*, Â.Ì. Êàðöåâ3 1 Prioksko-Terrasnyi State Biosphere Reserve, Danki, Moscow Area 142200, Russia. E-mail: [email protected] Приокско-Террасный государственный природный биосферный заповедник, Московская область, м. Данки 142200, Россия. 2 Laboratory of Systematics of Invertebrate Animals, Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Frunze street 11, Novosibirsk 630091, Russia. Лаборатория систематики беспозвоночных животных, Институт систематики и экологии животных СО РАН, ул. Фрунзе, 11, Новосибирск 630091, Россия. 3 Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia. Кафедра энтомологии Биологического факультета Московского государственного университета имени М.В. Ломоносова, Ленин- ские Горы, Москва 119234, Россия. * Corresponding author KEY WORDS: Araneae, Arachnida, fauna, Oriental Region, Tarutao National Park. КЛЮЧЕВЫЕ СЛОВА: Araneae, Arachnida, фауна, Ориентальная область, Национальный парк Тару- тао. ABSTRACT. Jumping spiders of 10 species col- brachygnathus (Thorell, 1887), Plexippus paykulli lected from Satun, Sukhotai and Kanchanaburi Prov- (Audouin, 1826) и P. setipes Karsch, 1879 — отмече- inces of Thailand are studied. Six species are reported ны самые южные точки распространения в Таилан- from the country for the first time: Evarcha bulbosa де, для Stenaelurillus abramovi Logunov, 2008 — Żabka, 1985, Phintella vittata (C.L. Koch, 1846), Phin- самая южная точка ареала. Приводятся фотогра- telloides versicolor (C.L. Koch, 1846), and Portia la- фии живых особей для восьми видов, для H. -
Clark Thesis.Pdf (8.256Mb)
THE ROLE OF CHEMICAL CUES , IN THE PREDATORY AND ANTI-PREDATORY BEHAVIOUR OF JU~PING SPIDERS (ARANEAE, SAL TICIDAE) A Thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy in, Zoology at the University of Canterbury by Robert John Clark 2000 CONTENTS Abstract 1· Chapter 1: Introduction 3 Chapter 2: Theoretical background 9 Chapter 3: Chemical cues elicit prey capture in P. fimbriata 56 Chapter 4: Web use during predatory encounters between P. fimbriata, an araneophagic 91 jumping spider, and its preferred prey, other jumping spiders Chapter 5: Speculative hunting by an araneophagic jumping spider 108 Chapter 6: Chemical cues from ants influence predatory behaviour in Habrocestum pulex 125 (Hentz), an ant eating jumping spider (Araneae, Salticidae) Chapter 7: Reactions of Habrocestum pulex, a myrmecophagic salticid, to potential 147 kairomones from ants Chapter 8: Dragllnes and assessment of fighting ability in cannibalistic jumping spiders 160 Chapter 9: Relationship between violent aggression in saltlcids and use of pheromones to 178 obtain information on conspeclfics Chapter10: Discussion 189 Acknowledgements 198 References 199 2 9 MAR 2000 1 ABSTRACT The role of chemical cues in prey-capture behaviour is studied in jumping spiders (Salticldae). Prior to this study, little attention has been given to how chemical cues influence the predatory behaviour of these spiders with complex eyes and visual acuity unrivalled In any other animals of comparable size. Three categories of predation are considered: salticids preying on conspecifics (cannibalism), salticids preying on non-conspecific spiders (araneophagy) and salticids preying on ants (myrmecophagy). Primary study animals are Portia spp. -
Araneae: Salticidae: Spartaeini), a New Record for the Andaman Islands
Peckhamia 213.1 Phaeacius in the Andaman Islands 1 PECKHAMIA 213.1, 12 July 2020, 1―6 ISSN 2161―8526 (print) LSID urn:lsid:zoobank.org:pub:A87F4AB1-7C21-430D-A91B-DBAAFAC50830 (registered 11 JUL 2020) ISSN 1944―8120 (online) Hunting and brooding behaviour in Phaeacius sp. indet. (Araneae: Salticidae: Spartaeini), a new record for the Andaman Islands Samuel J. John 1 1 DIVEIndia Scuba and Resort, Beach no. 5, Havelock Island, 744211, email [email protected] Abstract. This paper documents the first record of Phaeacius (Simon 1900) from the Andaman Islands, as well as observations of their behaviour in nature over a period of two months. Observations included predation and feeding on both ants (Technomyrmex albipes) and a salticid ant mimic (Myrmarachne plataleoides), and the maintenance of long, vertical silk lines above an attended egg-sac covered with debris. Introduction Phaeacius (Simon 1900) is a genus of jumping spiders in the subfamily Spartaeinae (Wanless 1984). Many spartaeines are known to be araneophagic (Li 2000) and differ from other salticids in their use of silk to build platforms and simple web structures that aid them in prey capture. Spiders in the genera Portia and Spartaeus, for example, build prey-capture webs while most other salticid spiders typically only build silken retreats to rest, moult and oviposit. Spiders in the genus Phaeacius are not known to build webs or silken retreats, but lay down small, thin sheets of silk above the substrate when moulting or ovipositing (Jackson 1990). Unlike other genera of Salticidae that actively move about in search of prey, Phaeacius is an ambush predator that waits stealthily on the trunks of trees.