CSE 100: TREAPS and RANDOMIZED SEARCH TREES Midterm Review

Total Page:16

File Type:pdf, Size:1020Kb

CSE 100: TREAPS and RANDOMIZED SEARCH TREES Midterm Review CSE 100: TREAPS AND RANDOMIZED SEARCH TREES Midterm Review • Practice Midterm covered during Sunday discussion Today • Run time analysis of building the Huffman tree • AVL rotations and treaps Huffman’s algorithm 0. Determine the count of each symbol in the input message. 1. Create a forest of single-node trees containing symbols and counts for each non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take? N = number of distinct symbols Huffman’s algorithm K = number of symbols in the file 0. Determine the count of each symbol in the input message. 1. Create a forest of single-node trees containing symbols and counts for each non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take, using a heap-implemented Priority Queue? N = number of distinct symbols Huffman’s algorithm K = total number of symbols in the file 0. Determine the count of each symbol in the A. O(logN) input message. B. O(N) C. O(N*logN) 1. Create a forest of single-node trees D. O(N^2) containing symbols and counts for each E. other non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take, using a heap-implemented Priority Queue? N = number of distinct symbols Huffman’s algorithm K = number of symbols in the file 0. Determine the count of each symbol in the A. O(logN) input message. B. O(N) C. O(N*logN) 1. Create a forest of single-node trees D. O(N^2) containing symbols and counts for each E. O(K) non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take, using a heap-implemented Priority Queue? N = number of distinct symbols Huffman’s algorithm K = number of symbols in the file 0. Determine the count of each symbol in the A. O(logN) input message. B. O(N) C. O(N*logN) 1. Create a forest of single-node trees D. O(N^2) containing symbols and counts for each E. O(K) non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take, using a heap-implemented Priority Queue? N = number of distinct symbols Huffman’s algorithm K = number of symbols in the file 0. Determine the count of each symbol in the A. O(logN) input message. B. O(N) C. O(N*logN) 1. Create a forest of single-node trees D. O(N^2) containing symbols and counts for each E. O(K) non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take, using a heap-implemented Priority Queue? N = number of distinct symbols Huffman’s algorithm K = number of symbols in the file 0. Determine the count of each symbol in the A. O(logN) input message. B. O(N) C. O(N*logN) 1. Create a forest of single-node trees D. O(N^2) containing symbols and counts for each E. O(K) non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the Huffman code tree. How long do these steps take, using a heap-implemented Priority Queue? N = number of distinct symbols Huffman’s algorithm K = number of symbols in the file 0. Determine the count of each symbol in the O(K) input message. 1. Create a forest of single-node trees O(N*logN) containing symbols and counts for each non-zero-count symbol. 2. Loop while there is more than 1 tree in the forest: 2a. Remove the two lowest count trees O(N*logN) 2b. Combine these two trees into a new tree (summing their counts). 2c. Insert this new tree in the forest, and go to 2. 3. Return the one tree in the forest as the O(1) Huffman code tree. How long does the whole thing take, using a heap-implemented Priority Queue? Treap insert G 50 C H 35 29 D B 8 I 24 25 F 40 A L 21 16 E 33 J 13 I am midway in the insertion of F,40 into the treap. K Have my steps been correct so far? 9 A. Yes B. No C. Not enough information to comment Treap insert G 50 C H 35 29 B E I 24 33 25 A D F L 21 8 40 16 J 13 Insert (F,40) K 9 AVL rotation to the rescue! G 50 C H 35 29 B F I 24 40 25 A E L 21 33 16 J D 13 8 K 9 Step 1: Insert using BST insert Step 2: Fix heap ordering Insert (F, 40) AVL rotation to the rescue! G 50 rotate F H 40 29 C I 35 25 B E L 24 33 16 J A D 13 21 8 K 9 How would you delete in a treap? Rotate down! G 50 F H 40 29 C I 35 25 B E L 24 33 16 J A D 13 21 8 K To delete C, rotate it? 9 A. Left B. Right C. None of these How would you delete in a treap? Rotate down! G 50 F H 40 29 E I 33 25 C L 35 16 B D 24 8 J 13 K A 9 21 Delete C How would you delete in a treap? Rotate down! G 50 F H 40 29 E I 33 25 B L 24 16 J A C 13 21 35 K D 9 8 Delete C How would you delete in a treap? Rotate down! G 50 F H 40 29 E I 33 25 B L 24 16 J D A 13 21 8 K C 9 35 Delete C How would you delete in a treap? Rotate down! G 50 F H 40 29 E I 33 25 B L 24 16 J D A 13 21 8 K 9 Delete C Why Treaps? • Treaps are worth studying because... • they permit very easy implementations of split and join operations, as well as pretty simple implementations of insert, delete, and find • they are the basis of randomized search trees, which have performance comparable to balanced search trees but are simpler to implement • they also lend themselves well to more advanced tree concepts, such as weighted trees, interval trees, etc. • We will look at the first two of these points Tree splitting • The tree splitting problem is this: • Given a tree and a key value K not in the tree, create two trees: One with keys less than K, and one with keys greater than K L Insert (K, Inf) 50 Try with K=‘K’ C M 35 29 B 24 Tree splitting • This is easy to solve with a treap, once the insert operation has been implemented: • Insert (K,INFINITY) in the treap • Since this has a higher priority than any node in the heap, it will become the root of the treap after insertion • Because of the BST ordering property, the left subtree of the root will be a treap with keys less than K, and the right subtree of the root will be a treap with keys greater than K. These subtrees then are the desired result of the split • Since insert can be done in time O(H) where H is the height of the treap, splitting can also be done in time O(H) • (yes, this same idea could be used in an ordinary BST as well...) How could you do a join? For the answer, see http://cseweb.ucsd.edu/users/kube/cls/100/Lectures/lec5/lec5.pdf Worst case time to find in a treap • The worst case time to find an element in a treap is O(H), where H is the height of the treap.
Recommended publications
  • CSE 326: Data Structures Binary Search Trees
    Announcements (1/23/09) CSE 326: Data Structures • HW #2 due now • HW #3 out today, due at beginning of class next Binary Search Trees Friday. • Project 2A due next Wed. night. Steve Seitz Winter 2009 • Read Chapter 4 1 2 ADTs Seen So Far The Dictionary ADT • seitz •Data: Steve • Stack •Priority Queue Seitz –a set of insert(seitz, ….) CSE 592 –Push –Insert (key, value) pairs –Pop – DeleteMin •ericm6 Eric • Operations: McCambridge – Insert (key, value) CSE 218 •Queue find(ericm6) – Find (key) • ericm6 • soyoung – Enqueue Then there is decreaseKey… Eric, McCambridge,… – Remove (key) Soyoung Shin – Dequeue CSE 002 •… The Dictionary ADT is also 3 called the “Map ADT” 4 A Modest Few Uses Implementations insert find delete •Sets • Unsorted Linked-list • Dictionaries • Networks : Router tables • Operating systems : Page tables • Unsorted array • Compilers : Symbol tables • Sorted array Probably the most widely used ADT! 5 6 Binary Trees Binary Tree: Representation • Binary tree is A – a root left right – left subtree (maybe empty) A pointerpointer A – right subtree (maybe empty) B C B C B C • Representation: left right left right pointerpointer pointerpointer D E F D E F Data left right G H D E F pointer pointer left right left right left right pointerpointer pointerpointer pointerpointer I J 7 8 Tree Traversals Inorder Traversal void traverse(BNode t){ A traversal is an order for if (t != NULL) visiting all the nodes of a tree + traverse (t.left); process t.element; Three types: * 5 traverse (t.right); • Pre-order: Root, left subtree, right subtree 2 4 } • In-order: Left subtree, root, right subtree } (an expression tree) • Post-order: Left subtree, right subtree, root 9 10 Binary Tree: Special Cases Binary Tree: Some Numbers… Recall: height of a tree = longest path from root to leaf.
    [Show full text]
  • Assignment 3: Kdtree ______Due June 4, 11:59 PM
    CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension.
    [Show full text]
  • Binary Search Tree
    ADT Binary Search Tree! Ellen Walker! CPSC 201 Data Structures! Hiram College! Binary Search Tree! •" Value-based storage of information! –" Data is stored in order! –" Data can be retrieved by value efficiently! •" Is a binary tree! –" Everything in left subtree is < root! –" Everything in right subtree is >root! –" Both left and right subtrees are also BST#s! Operations on BST! •" Some can be inherited from binary tree! –" Constructor (for empty tree)! –" Inorder, Preorder, and Postorder traversal! •" Some must be defined ! –" Insert item! –" Delete item! –" Retrieve item! The Node<E> Class! •" Just as for a linked list, a node consists of a data part and links to successor nodes! •" The data part is a reference to type E! •" A binary tree node must have links to both its left and right subtrees! The BinaryTree<E> Class! The BinaryTree<E> Class (continued)! Overview of a Binary Search Tree! •" Binary search tree definition! –" A set of nodes T is a binary search tree if either of the following is true! •" T is empty! •" Its root has two subtrees such that each is a binary search tree and the value in the root is greater than all values of the left subtree but less than all values in the right subtree! Overview of a Binary Search Tree (continued)! Searching a Binary Tree! Class TreeSet and Interface Search Tree! BinarySearchTree Class! BST Algorithms! •" Search! •" Insert! •" Delete! •" Print values in order! –" We already know this, it#s inorder traversal! –" That#s why it#s called “in order”! Searching the Binary Tree! •" If the tree is
    [Show full text]
  • Search Trees for Strings a Balanced Binary Search Tree Is a Powerful Data Structure That Stores a Set of Objects and Supports Many Operations Including
    Search Trees for Strings A balanced binary search tree is a powerful data structure that stores a set of objects and supports many operations including: Insert and Delete. Lookup: Find if a given object is in the set, and if it is, possibly return some data associated with the object. Range query: Find all objects in a given range. The time complexity of the operations for a set of size n is O(log n) (plus the size of the result) assuming constant time comparisons. There are also alternative data structures, particularly if we do not need to support all operations: • A hash table supports operations in constant time but does not support range queries. • An ordered array is simpler, faster and more space efficient in practice, but does not support insertions and deletions. A data structure is called dynamic if it supports insertions and deletions and static if not. 107 When the objects are strings, operations slow down: • Comparison are slower. For example, the average case time complexity is O(log n logσ n) for operations in a binary search tree storing a random set of strings. • Computing a hash function is slower too. For a string set R, there are also new types of queries: Lcp query: What is the length of the longest prefix of the query string S that is also a prefix of some string in R. Prefix query: Find all strings in R that have S as a prefix. The prefix query is a special type of range query. 108 Trie A trie is a rooted tree with the following properties: • Edges are labelled with symbols from an alphabet Σ.
    [Show full text]
  • Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke
    Trees Trees, Binary Search Trees, Heaps & Applications Dr. Chris Bourke Department of Computer Science & Engineering University of Nebraska|Lincoln Lincoln, NE 68588, USA [email protected] http://cse.unl.edu/~cbourke 2015/01/31 21:05:31 Abstract These are lecture notes used in CSCE 156 (Computer Science II), CSCE 235 (Dis- crete Structures) and CSCE 310 (Data Structures & Algorithms) at the University of Nebraska|Lincoln. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 1 Contents I Trees4 1 Introduction4 2 Definitions & Terminology5 3 Tree Traversal7 3.1 Preorder Traversal................................7 3.2 Inorder Traversal.................................7 3.3 Postorder Traversal................................7 3.4 Breadth-First Search Traversal..........................8 3.5 Implementations & Data Structures.......................8 3.5.1 Preorder Implementations........................8 3.5.2 Inorder Implementation.........................9 3.5.3 Postorder Implementation........................ 10 3.5.4 BFS Implementation........................... 12 3.5.5 Tree Walk Implementations....................... 12 3.6 Operations..................................... 12 4 Binary Search Trees 14 4.1 Basic Operations................................. 15 5 Balanced Binary Search Trees 17 5.1 2-3 Trees...................................... 17 5.2 AVL Trees..................................... 17 5.3 Red-Black Trees.................................. 19 6 Optimal Binary Search Trees 19 7 Heaps 19
    [Show full text]
  • CMSC 420: Lecture 7 Randomized Search Structures: Treaps and Skip Lists
    CMSC 420 Dave Mount CMSC 420: Lecture 7 Randomized Search Structures: Treaps and Skip Lists Randomized Data Structures: A common design techlque in the field of algorithm design in- volves the notion of using randomization. A randomized algorithm employs a pseudo-random number generator to inform some of its decisions. Randomization has proved to be a re- markably useful technique, and randomized algorithms are often the fastest and simplest algorithms for a given application. This may seem perplexing at first. Shouldn't an intelligent, clever algorithm designer be able to make better decisions than a simple random number generator? The issue is that a deterministic decision-making process may be susceptible to systematic biases, which in turn can result in unbalanced data structures. Randomness creates a layer of \independence," which can alleviate these systematic biases. In this lecture, we will consider two famous randomized data structures, which were invented at nearly the same time. The first is a randomized version of a binary tree, called a treap. This data structure's name is a portmanteau (combination) of \tree" and \heap." It was developed by Raimund Seidel and Cecilia Aragon in 1989. (Remarkably, this 1-dimensional data structure is closely related to two 2-dimensional data structures, the Cartesian tree by Jean Vuillemin and the priority search tree of Edward McCreight, both discovered in 1980.) The other data structure is the skip list, which is a randomized version of a linked list where links can point to entries that are separated by a significant distance. This was invented by Bill Pugh (a professor at UMD!).
    [Show full text]
  • Red-Black Trees
    Red-Black Trees 1 Red-Black Trees balancing binary search trees relation with 2-3-4 trees 2 Insertion into a Red-Black Tree algorithm for insertion an elaborate example of an insert inserting a sequence of numbers 3 Recursive Insert Function pseudo code MCS 360 Lecture 36 Introduction to Data Structures Jan Verschelde, 20 April 2020 Introduction to Data Structures (MCS 360) Red-Black Trees L-36 20 April 2020 1 / 36 Red-Black Trees 1 Red-Black Trees balancing binary search trees relation with 2-3-4 trees 2 Insertion into a Red-Black Tree algorithm for insertion an elaborate example of an insert inserting a sequence of numbers 3 Recursive Insert Function pseudo code Introduction to Data Structures (MCS 360) Red-Black Trees L-36 20 April 2020 2 / 36 Binary Search Trees Binary search trees store ordered data. Rules to insert x at node N: if N is empty, then put x in N if x < N, insert x to the left of N if x ≥ N, insert x to the right of N Balanced tree of n elements has depth is log2(n) ) retrieval is O(log2(n)), almost constant. With rotation we make a tree balanced. Alternative to AVL tree: nodes with > 2 children. Every node in a binary tree has at most 2 children. A 2-3-4 tree has nodes with 2, 3, and 4 children. A red-black tree is a binary tree equivalent to a 2-3-4 tree. Introduction to Data Structures (MCS 360) Red-Black Trees L-36 20 April 2020 3 / 36 a red-black tree red nodes have hollow rings 11 @ 2 14 @ 1 7 @ 5 8 Four invariants: 1 A node is either red or black.
    [Show full text]
  • Balanced Binary Search Trees – AVL Trees, 2-3 Trees, B-Trees
    Balanced binary search trees – AVL trees, 2‐3 trees, B‐trees Professor Clark F. Olson (with edits by Carol Zander) AVL trees One potential problem with an ordinary binary search tree is that it can have a height that is O(n), where n is the number of items stored in the tree. This occurs when the items are inserted in (nearly) sorted order. We can fix this problem if we can enforce that the tree remains balanced while still inserting and deleting items in O(log n) time. The first (and simplest) data structure to be discovered for which this could be achieved is the AVL tree, which is names after the two Russians who discovered them, Georgy Adelson‐Velskii and Yevgeniy Landis. It takes longer (on average) to insert and delete in an AVL tree, since the tree must remain balanced, but it is faster (on average) to retrieve. An AVL tree must have the following properties: • It is a binary search tree. • For each node in the tree, the height of the left subtree and the height of the right subtree differ by at most one (the balance property). The height of each node is stored in the node to facilitate determining whether this is the case. The height of an AVL tree is logarithmic in the number of nodes. This allows insert/delete/retrieve to all be performed in O(log n) time. Here is an example of an AVL tree: 18 3 37 2 11 25 40 1 8 13 42 6 10 15 Inserting 0 or 5 or 16 or 43 would result in an unbalanced tree.
    [Show full text]
  • Binary Heaps
    Binary Heaps COL 106 Shweta Agrawal and Amit Kumar Revisiting FindMin • Application: Find the smallest ( or highest priority) item quickly – Operating system needs to schedule jobs according to priority instead of FIFO – Event simulation (bank customers arriving and departing, ordered according to when the event happened) – Find student with highest grade, employee with highest salary etc. 2 Priority Queue ADT • Priority Queue can efficiently do: – FindMin (and DeleteMin) – Insert • What if we use… – Lists: If sorted, what is the run time for Insert and FindMin? Unsorted? – Binary Search Trees: What is the run time for Insert and FindMin? – Hash Tables: What is the run time for Insert and FindMin? 3 Less flexibility More speed • Lists – If sorted: FindMin is O(1) but Insert is O(N) – If not sorted: Insert is O(1) but FindMin is O(N) • Balanced Binary Search Trees (BSTs) – Insert is O(log N) and FindMin is O(log N) • Hash Tables – Insert O(1) but no hope for FindMin • BSTs look good but… – BSTs are efficient for all Finds, not just FindMin – We only need FindMin 4 Better than a speeding BST • We can do better than Balanced Binary Search Trees? – Very limited requirements: Insert, FindMin, DeleteMin. The goals are: – FindMin is O(1) – Insert is O(log N) – DeleteMin is O(log N) 5 Binary Heaps • A binary heap is a binary tree (NOT a BST) that is: – Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right – Satisfies the heap order property • every node is less than or equal to its children
    [Show full text]
  • Exercises for Algorithms and Data Structures
    Exercises for Algorithms and Data Structures Antonio Carzaniga Faculty of Informatics USI (Università della Svizzera italiana) Edition 2.10 April 2021 (with some solutions) ◮Exercise 1. Answer the following questions on the big-oh notation. Question 1: Explain what g(n) O(f (n)) means. (5’) = Question 2: Explain why it is meaningless to state that “the running time of algorithm A is at least O(n2).” (5’) Question 3: Given two functions f (log n) and g O(n), consider the following statements. = = For each statement, write whether it is true or false. For each false statement, write two functions f and g that show a counter-example.Ω (5’) g(n) O(f (n)) • = f (n) O(g(n)) • = f (n) (log (g(n))) • = f (n) (log (g(n))) • = Ω f (n) g(n) (log n) • + Θ = Question 4: For eachΩ one of the following statements, write two functions f and g that satisfy the given condition. (5’) f (n) O(g2(n)) • = f (n) ω(g(n)) • = f (n) ω(log (g(n))) • = f (n) (f (n)g(n)) • = f (n) (g(n)) (g2(n)) • = Ω + ◮Exercise 2. ΘWrite an algorithmΩ called Find-Largest that finds the largest number in an array using a divide-and-conquer strategy. Also, write the time complexity of your algorithm in terms of big-oh notation. Briefly justify your complexity analysis. (20’) ◮Exercise 3. Illustrate the execution of the merge-sort algorithm on the array A 3, 13, 89, 34, 21, 44, 99, 56, 9 =h i For each fundamental iteration or recursion of the algorithm, write the content of the array.
    [Show full text]
  • Rt0 RANGE TREES and PRIORITY SEARCH TREES Hanan Samet
    rt0 RANGE TREES AND PRIORITY SEARCH TREES Hanan Samet Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: [email protected] Copyright © 1998 Hanan Samet These notes may not be reproduced by any means (mechanical or elec- tronic or any other) without the express written permission of Hanan Samet rt1 RANGE TREES • Balanced binary search tree • All data stored in the leaf nodes • Leaf nodes linked in sorted order by a doubly-linked list • Searching for [B : E] 1. find node with smallest value ≥B or largest ≤B 2. follow links until reach node with value >E • O (log2 N +F ) time to search, O (N · log2 N ) to build, and O (N ) space for N points and F answers • Ex: sort points in 2-d on their x coordinate value 55 ≤ ≥ 30 83 15 43 70 88 5 25355060808590 Denver Omaha Chicago Mobile Toronto Buffalo Atlanta Miami (5,45) (25,35) (35,40) (50,10) (60,75) (80,65) (85,15) (90,5) Copyright © 1998 by Hanan Samet rt2 2-D RANGE TREES • Binary tree of binary trees • Sort all points along one dimension (say x) and store them in the leaf nodes of a balanced binary tree such as a range tree (single line) • Each nonleaf node contains a 1-d range tree of the points in its subtrees sorted along y (double lines) • Ex: 55 A AA38 A' 13 55 8 25 43 70 30 B 83 C 5 10 15 35 40 45 65 75 38 40 B' C' (5,45) (90,5) (60,75) (25,35) (50,10) (35,40) (80,65) 23 43 (85,15) 10 70 10 35 40 45 5 15 65 75 15 D 43 E 70 F 88 G (90,5) (5,45) (60,75) (35,40) (85,15) (80,65) (50,10) (25,35) 40 D' 25 E' 70 F' 10 G' 5 HI25 35 JK50 60 LM80 85 NO90 (5,45) (25,35) (35,40) (50,10) (60,75) (80,65) (85,15) (90,5) 35 45 10 40 65 75 5 15 (25,35) (5,45) (50,10)(35,40) (80,65)(60,75) (90,5) (85,15) • Actually, don’t need the 1-d range tree in y at the root and at the sons of the root Copyright © 1998 by Hanan Samet 5 4 3 21 rt3 v g z rb SEARCHING 2-D RANGE TREES ([BX:EX],[BY:EY]) 1.
    [Show full text]
  • B-Trees and 2-3-4 Trees Reading
    B-Trees and 2-3-4 Trees Reading: • B-Trees 18 CLRS • Multi-Way Search Trees 3.3.1 and (2,4) Trees 3.3.2 GT B-trees are an extension of binary search trees: • They store more than one key at a node to divide the range of its subtree's keys into more than two subranges. 2, 7 • Every internal node has between t and 2t children. Every internal node has one more child than key. • 1, 0 3, 6 8, 9, 11 • All of the leaves must be at same level. − We will see shortly that the last two properties keep the tree balanced. Most binary search tree algorithms can easily be converted to B-trees. The amount of work done at each node increases with t (e.g. determining which branch to follow when searching for a key), but the height of the tree decreases with t, so less nodes are visited. Databases use high values of t to minimize I/O overhead: Reading each tree node requires a slow random disk access, so high branching factors reduce the number of such accesses. We will assume a low branching factor of t = 2 because our focus is on balanced data structures. But the ideas we present apply to higher branching factors. Such B-trees are often called 2-3-4 trees because their branching factor is always 2, 3, or 4. To guarantee a branching factor of 2 to 4, each internal node must store 1 to 3 keys. As with binary trees, we assume that the data associated with the key is stored with the key in the node.
    [Show full text]