The Clinical Anatomy of the Internal Thoracic Veins

Total Page:16

File Type:pdf, Size:1020Kb

The Clinical Anatomy of the Internal Thoracic Veins View metadata, citation and similar papers at core.ac.uk brought to you by CORE Foliaprovided Morphol. by Via Medica Journals Vol. 66, No. 1, pp. 25–32 Copyright © 2007 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The clinical anatomy of the internal thoracic veins M. Loukas1, 2, M.S. Tobola1, R.S. Tubbs3, R.G. Louis Jr.1, M. Karapidis1, I. Khan1, G. Spentzouris1, S. Linganna1, B. Curry1 1Department of Anatomical Sciences, St. George’s University, Grenada, West Indies 2Harvard Medical School, Department of Education and Development, Boston, MA, USA 3Department of Cell Biology and Section of Pediatric Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA [Received 17 October 2006; Accepted 25 January 2007] The branching pattern and adequacy of the internal thoracic veins (ITV) are impor- tant factors, providing useful information on the availability of vessels and their appropriateness as an option for anastomoses in plastic and reconstructive surgery. During 100 cadaveric examinations of the anterior thoracic wall it was observed that ITVs were formed by the venae commitantes of ITAs, which united to form a single vein (one for the right side and one for the left) draining into the right and left brachiocephalic veins. The tributaries of ITVs corresponded to the branches of ITA. The right internal thoracic vein bifurcated at the 2nd rib in 36% of the specimens, at the 3rd rib in 30% of the specimens, at the 4th rib in 10% of the specimens and in 24% of the specimens it remained a single vein. The left internal thoracic vein bifur- cated at the 3rd rib in 52% of specimens, at the 4th rib in 20% of specimens and in 28% of the specimens it remained as a single vein. In addition, it was observed that in 78% of specimens ITVs were connected to each other by a venous arch. This arch displayed four distinct morphologies: transverse (n = 7), oblique (n = 16), U-shaped (n = 51) and double-arched (n = 4). All 78 arches were posterior to the xiphisternal joint and no artery accompanied them. In the remaining specimens, RITV and LITV exhibited a venous plexus formation. The distance from the sternum to ITV gradually decreased as the vessel passed caudally; the diameter of the vessel similarly decreased along the vein’s caudal course. The frequent appearance of two concomitant veins on both sides of the thorax may offer the opportunity to reduce venous congestion by two vein anastomoses. More detailed knowledge of the anatomy of ITV may prove useful in planning surgical procedures in the anterior thorax in order to avoid unexpected bleeding. Key words: internal thoracic vein, free tissue transfer, venous drainage of the sternum, venous arch, xiphoid process INTRODUCTION attention in recent clinical literature. This stems large- Although descriptions of the right internal tho- ly from the discovery of their involvement in breast racic vein (RITV) and left internal thoracic vein (LITV) reconstruction with free flaps, free microvascular tis- are typically very brief and lacking in detail in anato- sue transfer or reconstruction of complex thoracic my textbooks, these vessels have received increased wall defects [1, 7, 11, 31]. Address for correspondence: Dr. M. Loukas, MD, PhD, Ass. Prof., Department of Anatomical Sciences, St George’s University, School of Medicine, Grenada, West Indies, tel: 473 444 4175 ¥ 2556, fax: 473 444 2887, e-mail: [email protected]; [email protected] 25 Folia Morphol., 2007, Vol. 66, No. 1 Standard anatomy textbooks describe the inter- A complete dissection along the course of ITV and nal thoracic veins (ITVs) as the principal veins on the ITA was performed in order to observe their origin, internal surface of the thorax, accompanying the complete distribution and termination. Regular dis- internal thoracic arteries (ITAs) [8, 21, 32]. More spe- section techniques were employed, but non-tradi- cifically, these veins are the venae commitantes to tional approaches were also used, some dissections the inferior half of ITAs, corresponding to the supe- intentionally deviating from the regular designs in rior epigastric veins that mainly receive the anterior order to expose the hidden details and intricate re- intercostal veins [22, 36]. At the point of the manu- lationships of the venous structures. briosternal joint RITV and LITV form a common trunk A preliminary examination was performed, after that ascends and joins the right and left brachio- which images from all the dissected specimens were cephalic veins respectively [8]. According to Romanes, recorded with a Sony digital camera (model: Nikon the number of RITVs or LITVs could vary from one to CoolpixS5) and studied using the Lucia software 5.0 two, but these veins will typically unite at the third computer-assisted image analysis system (2000, edi- costal cartilage medial to ITA [27]. tion for Windows XP) made by Nikon (Laboratory The ITVs represent an important and, at times, Imaging Ltd.). The digital camera was connected to superior, alternative to other recipient vessels of the an image processor (Nvidia GeForce 6800 GT) and region, especially in delayed reconstruction after linked to a computer. Digitised images of ITVs, to- mastectomy [30]. The importance of such knowledge gether with their surrounding structures, were stored lies in the fact that the use of ITVs in breast recon- in the Lucia program (2048 ¥ 1536 pixels) and con- struction has numerous advantages. The ITVs are verted to grey levels in the intensity range of 0 (dark- better than the thoracodorsal vessels with regard to est) to 32 bit (lightest). After applying a standard flap positioning, as well as positioning for the vas- 1 mm scale to all pictures, the program was able to cular anastomoses. The field of dissection is not vio- use this information to calculate pixel differences lated and there is no perivascular scarring in the between two selected points, such as origin and ter- delayed reconstruction scenario [7]. mination of a given vein, as previously described [19]. Although ITAs have been investigated anatomi- The purpose of the software was to allow easy and cally [15, 16, 26] because of their frequent use in accurate translation of pixel differences into metric cardiac surgery [2, 5, 35] or for diagnosis in breast measurements. Specifically, we measured the dis- cancer lymphadenopathy [4, 9, 17, 29], detailed tance from the origin of ITVs to their termination anatomical descriptions of ITVs are still rare [8, 21, (the xiphosternal joint to right and left brachioceph- 22, 27, 34]. Therefore the aim of this study was to alic veins). Additionally, at the xiphosternal joint and investigate the surgical anatomy of RITV and LITV at the third intercostal space, the vessels were and provide useful data to surgeons operating in transected, the lumen photographed, and the diam- this area. eter (diametrically opposite endothelial surfaces) measured. MATERIAL AND METHODS We examined 50 adult human cadavers during the RESULTS “Human Body” course at Harvard Medical School During 100 cadaveric examinations of the ante- throughout the academic semesters of 2004–2005 rior thoracic wall it was observed that all the speci- and 50 cadavers from St George’s Medical School mens possessed an ITA and an ITV. The ITVs were during 2005–2006. The cadavers derived from female formed by the venae commitantes of ITAs that unit- and male subjects (24 female and 76 male) with an ed to form a single vein (one for the right side and age range of 55 to 86 years and a mean age of one for the left side) draining to the right and left 72 years. All the cadavers were fixed in formalin-phe- brachiocephalic veins. The tributaries of ITVs corre- nol-alcohol solution. The cadavers examined did not sponded to the branches of ITA. have any gross anatomical anomalies or traumatic The RITV bifurcated at the 2nd rib in 36% of the lesions of the thoracic wall. Furthermore, no signs of specimens, at the 3rd rib in 30% of the specimens, at surgical procedures involving the thoracic cavity (such the 4th rib in 10% of the specimens and in 24% of as coronary artery bypass grafting) were observed. the specimens it remained a single vein. The LITV In order to obtain a clear field for visualisation, bifurcated at the 3rd rib in 52% of specimens, at the the anterior thoracic walls, together with the corre- 4th rib in 20% of specimens and in 28% of the spe- sponding clavicles, were removed from the cadavers. cimens it remained a single vein. 26 M. Loukas et al., Internal thoracic veins Figure 1. Right double internal thoracic veins and a left single internal thoracic vein. Figure 2. Right and left double internal thoracic veins forming a venous arch under the xiphoid process. The bifurcated RITV and LITV formed by the ve- It was observed that in 78% of specimens the nae commitantes showed considerable variation. In ITVs were connected to each other by a venous arch 56 (56%) specimens there were two concomitant (Fig. 2–4). This arch displayed four distinct morpholo- veins on each side of the sternum. In 20% of speci- gies in the study: transverse (n = 7), oblique (n = 16), mens there were two concomitant veins on the right U-shaped (n = 51) and double-arched (n = 4) (Fig. 5). side and one concomitant vein on the left side of All 78 arches were anterior to the xiphisternal joint the sternum (Fig. 1). In 16% of specimens there were and no artery accompanied them. In the remaining two concomitant veins on the left side and one con- specimens RITV and LITV exhibited a venous plexus comitant vein on the right side of the sternum.
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • The Digestive System
    69 chapter four THE DIGESTIVE SYSTEM THE DIGESTIVE SYSTEM The digestive system is structurally divided into two main parts: a long, winding tube that carries food through its length, and a series of supportive organs outside of the tube. The long tube is called the gastrointestinal (GI) tract. The GI tract extends from the mouth to the anus, and consists of the mouth, or oral cavity, the pharynx, the esophagus, the stomach, the small intestine, and the large intes- tine. It is here that the functions of mechanical digestion, chemical digestion, absorption of nutrients and water, and release of solid waste material take place. The supportive organs that lie outside the GI tract are known as accessory organs, and include the teeth, salivary glands, liver, gallbladder, and pancreas. Because most organs of the digestive system lie within body cavities, you will perform a dissection procedure that exposes the cavities before you begin identifying individual organs. You will also observe the cavities and their associated membranes before proceeding with your study of the digestive system. EXPOSING THE BODY CAVITIES should feel like the wall of a stretched balloon. With your skinned cat on its dorsal side, examine the cutting lines shown in Figure 4.1 and plan 2. Extend the cut laterally in both direc- out your dissection. Note that the numbers tions, roughly 4 inches, still working with indicate the sequence of the cutting procedure. your scissors. Cut in a curved pattern as Palpate the long, bony sternum and the softer, shown in Figure 4.1, which follows the cartilaginous xiphoid process to find the ventral contour of the diaphragm.
    [Show full text]
  • Lab #2: Organs of the Thoracic and Abdominal Cavities. Important: All Dissections of the Thoracic and Abdominal Cavities Will Be Done As a Class
    Lab #2: Organs of the thoracic and abdominal cavities. Important: All dissections of the thoracic and abdominal cavities will be done as a class. Do Not get ahead of the class for you may cut into something that we will want to examine later. Goals: Be able to …. Locate and explain the functions of the structures listed below: Neck Region: Abdominal Cavity: thymus gland umbilical chord thyroid gland peritoneum larynx mesenteries trachea liver esophagus stomach thoracic Cavity: spleen right and left pleural cavities small intestine (locate duodenum) right and left lungs pancreas pericardial cavity large intestines heart cecum Thoracic/Abdominal Division: colon diaphragm 13.3 Thoracic and Abdominal Incisions Pp. 164 – 165 Make incisions with class and instructor!!! 13.4 Neck Region, Thoracic Cavity and Abdominal Cavity Pp. 166-170 – Read all introductions, follow the procedures to locate the organs specified and answer all the questions. Pp. 172 – Answer questions #6-8, 11-17, 19 Arrange the organs in order by the way food travels through them: Stomach, esophagus, large intestines, mouth, small intestines, anus, rectum The inhalation of a breath of travels through several organs. Put the following organs in their proper order: Bronchi, nasal passages, bronchioles, larynx, pharynx, alveoli, trachea II. Respiration and Digestion Stations Goals: After this lab you should be able to………….. 1. Describe the appearance of villi and explain how the structure of villi supports their function. 2. Describe the internal structure of the lungs and explain the process of gas exchange. 3. Explain the difference in appearance and function between healthy alveoli and diseased alveoli.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • GROSS ANATOMY Lecture Syllabus 2008
    GROSS ANATOMY Lecture Syllabus 2008 ANAT 6010 - Gross Anatomy Department of Neurobiology and Anatomy University of Utah School of Medicine David A. Morton K. Bo Foreman Kurt H. Albertine Andrew S. Weyrich Kimberly Moyle 1 GROSS ANATOMY (ANAT 6010) ORIENTATION, FALL 2008 Welcome to Human Gross Anatomy! Course Director David A. Morton, Ph.D. Offi ce: 223 Health Professions Education Building; Phone: 581-3385; Email: [email protected] Faculty • Kurt H. Albertine, Ph.D., (Assistant Dean for Faculty Administration) ([email protected]) • K. Bo Foreman, PT, Ph.D, (Gross and Neuro Anatomy Course Director in Dept. of Physical Therapy) (bo. [email protected]) • David A. Morton, Ph.D. (Gross Anatomy Course Director, School of Medicine) ([email protected]. edu) • Andrew S. Weyrich, Ph.D. (Professor of Human Molecular Biology and Genetics) (andrew.weyrich@hmbg. utah.edu) • Kerry D. Peterson, L.F.P. (Body Donor Program Director) Cadaver Laboratory staff Jordan Barker, Blake Dowdle, Christine Eckel, MS (Ph.D.), Nick Gibbons, Richard Homer, Heather Homer, Nick Livdahl, Kim Moyle, Neal Tolley, MS, Rick Webster Course Objectives The study of anatomy is akin to the study of language. Literally thousands of new words will be taught through- out the course. Success in anatomy comes from knowing the terminology, the three-dimensional visualization of the structure(s) and using that knowledge in solving problems. The discipline of anatomy is usually studied in a dual approach: • Regional approach - description of structures regionally
    [Show full text]
  • Thymectomy with an Endoscopic Approach
    Review Article on Thoracic Surgery Page 1 of 6 Thymectomy with an endoscopic approach Takashi Suda Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Aichi, Japan Correspondence to: Takashi Suda, MD. Department of Thoracic Surgery, Fujita Health University School of Medicine, 1-98 Dengakugakubo Kutsukake, Toyoake, Aichi 470-1192, Japan. Email: [email protected]. Abstract: Various surgical approaches, including endoscopic surgery, are used when operating on tumors of the anterior mediastinum. Accordingly, surgical approaches for anterior mediastinal tumors include conventional median sternotomy, transcervical thymectomy from the cervical region, lateral thoracic intercostal approach, and the subxiphoid approach. Recently, robot-assisted surgery and single-port surgery are now performed as new forms of endoscopic surgery in the field of thoracic surgery and are now being adapted for anterior mediastinal tumors. We review current endoscopic surgical approaches for anterior mediastinal tumors and describe surgical techniques for thymectomy by a lateral thoracic intercostal approach, which is currently widely performed, as well as thymectomy by a subxiphoid approach. Keywords: Video-assisted thoracoscopic surgery (VATS); subxiphoid approach; thymectomy; robotic thymectomy; uniportal; single-port Received: 17 February 2019; Published: 07 March 2019; Published: 15 March 2019. doi: 10.21037/jovs.2019.03.09 View this article at: http://dx.doi.org/10.21037/jovs.2019.03.09 Introduction Median sternotomy Various surgical approaches, including endoscopic surgery, Median sternotomy is a classic method that was first reported are used when operating on tumors of the anterior by Milton et al. in 1897. This technique is still the standard mediastinum. Surgical methods involving an anterior surgical approach for anterior mediastinal tumors (8).
    [Show full text]
  • 2.05 Remember the Structures of the Respiratory System 2.05 Remember the Structures of the Respiratory System
    2.05 Remember the structures of the respiratory system 2.05 Remember the structures of the respiratory system Essential question What are the structures of the respiratory system? 2.05 Remember the structures of the respiratory system 2 Structures of the respiratory system Upper Respiratory System Nose Sinuses Pharynx Epiglottis Larynx Lower Respiratory System Trachea Lungs 2.05 Remember the structures of the respiratory system 3 Structures of the Upper Respiratory System Nose Nasal cavity – space behind the nose Vestibular region Olfactory region Respiratory region Nasal septum – cartilage that divides the nose into right and left sides Turbinates – scroll-like bones in the respiratory region Cilia – nose hairs 2.05 Remember the structures of the respiratory system 4 Structures of the Upper Respiratory System Sinuses - Cavities in the skull. Ducts connect sinuses to the nasal cavity Lined with mucous membrane to warm and moisten the air Provide resonance to the voice 2.05 Remember the structures of the respiratory system 5 Structures of the Upper Respiratory System Pharynx Throat Nasopharynx Oropharynx Laryngopharynx About 5” long 2.05 Remember the structures of the respiratory system 6 Structures of the Upper Respiratory System Epiglottis A flap or lid that closes over the opening to the larynx when food is swallowed 2.05 Remember the structures of the respiratory system 7 Structures of the Upper Respiratory System Larynx Voice Box Triangular chamber below pharynx Within the larynx are vocal cords, the glottis Also called the Adam’s Apple 2.05 Remember the structures of the respiratory system 8 Structures of the Lower Respiratory System Trachea Windpipe Approximately 4 ½” long The walls are composed of alternate bands of membrane and C-shaped rings of hyaline cartilage.
    [Show full text]
  • Internal Medicine Diagnostics-Thoracic Cavity
    Internal Medicine Diagnostics-Thoracic Cavity Sheila M. McGuirk, D. V.M., M.Sc. Department of Veterinary Physiology and Pharmacology College of Veterinary Medicine The Ohio State University Columbus, Ohio 432 JO The most valuable tools of the trained veterinarian are the tic evaluation is based in part on the acoustic accuracy of the ability to perform a complete physical examination, inter­ stethoscope. However, the acoustics of any stethoscope will pret the findings, make some logical conclusions based on reflect the acoustics of the human ear when it is worn. 1 The these findings, and design a course of therapy to return the diaphragm of the stethoscope amplifies high frequency patient to normal function. The successful diagnostician sounds while attenuating low frequencies. 2 Poor quality or may perfect his clinical exam by perfecting his ability to cracked diaphragms will attenuate all frequencies. The bell is interpret what he finds or by employing more sensitive used to amplify low frequency sounds. The shallow, bowl­ diagnostic tools in order to gain more specificity in defining shaped bells have no useful high frequency response at all. and treating the problems he sees. Diagnosis of problems in The tu bing of the currently available stethoscopes are either the thoracic cavity are often overlooked. More often than single or double. Although the single tube is more compact not the problem stems from the failure to perform a good and subject to less extraneous noise, it is subject to examination of the chest. Avoidance of the thoracic cavity, irregular distortion patterns and suffers from considerable however, is the result of confusion over i~terpretation of loss of output at high frequencies.
    [Show full text]
  • Anatomy of the Breast Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Anatomy of the Breast Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives By the end of the lecture, the student should be able to: ✓ Describe the shape and position of the female breast. ✓ Describe the structure of the mammary gland. ✓ List the blood supply of the female breast. ✓ Describe the lymphatic drainage of the female breast. ✓ Describe the applied anatomy in the female breast. Highly recommended Introduction 06:26 Overview of the breast: • The breast (consists of mammary glands + associated skin & Extra connective tissue) is a gland made up of lobes arranged radially .around the nipple (شعاعيا) • Each lobe is further divided into lobules. Between the lobes and lobules we have fat & ligaments called ligaments of cooper • These ligaments attach the skin to the muscle (beneath the breast) to give support to the breast. in shape (مخروطي) *o Shape: it is conical o Position: It lies in superficial fascia of the front of chest. * o Parts: It has a: 1. Base lies on muscles, (حلمة الثدي) Apex nipple .2 3. Tail extend into axilla Extra Position of Female Breast (حلقة ملونة) Base Nipple Areola o Extends from 2nd to 6th ribs. o It extends from the lateral margin of sternum medially to the midaxillary line laterally. o It has no capsule. o It lies on 3 muscles: • 2/3 of its base on (1) pectoralis major* Extra muscle, • inferolateral 1/3 on (2) Serratus anterior & (3) External oblique muscles (muscle of anterior abdominal wall). o Its superolateral part sends a process into the axilla called the axillary tail or axillary process.
    [Show full text]
  • CVM 6100 Veterinary Gross Anatomy
    2010 CVM 6100 Veterinary Gross Anatomy General Anatomy & Carnivore Anatomy Lecture Notes by Thomas F. Fletcher, DVM, PhD and Christina E. Clarkson, DVM, PhD 1 CONTENTS Connective Tissue Structures ........................................3 Osteology .........................................................................5 Arthrology .......................................................................7 Myology .........................................................................10 Biomechanics and Locomotion....................................12 Serous Membranes and Cavities .................................15 Formation of Serous Cavities ......................................17 Nervous System.............................................................19 Autonomic Nervous System .........................................23 Abdominal Viscera .......................................................27 Pelvis, Perineum and Micturition ...............................32 Female Genitalia ...........................................................35 Male Genitalia...............................................................37 Head Features (Lectures 1 and 2) ...............................40 Cranial Nerves ..............................................................44 Connective Tissue Structures Histologic types of connective tissue (c.t.): 1] Loose areolar c.t. — low fiber density, contains spaces that can be filled with fat or fluid (edema) [found: throughout body, under skin as superficial fascia and in many places as deep fascia]
    [Show full text]
  • Blood Vessels and Circulation
    19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4.
    [Show full text]