Marine Anthropogenic Litter

Total Page:16

File Type:pdf, Size:1020Kb

Marine Anthropogenic Litter See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/277584833 Marine Anthropogenic Litter BOOK · JUNE 2015 DOI: 10.1007/978-3-319-16510-3 READS 332 3 AUTHORS, INCLUDING: Melanie Bergmann Alfred Wegener Institute Hel… 59 PUBLICATIONS 748 CITATIONS SEE PROFILE Michael Klages University of Gothenburg 73 PUBLICATIONS 1,889 CITATIONS SEE PROFILE Available from: Melanie Bergmann Retrieved on: 09 December 2015 Melanie Bergmann Lars Gutow Michael Klages Editors Marine Anthropogenic Litter Marine Anthropogenic Litter Melanie Bergmann · Lars Gutow Michael Klages Editors Marine Anthropogenic Litter Editors Melanie Bergmann Michael Klages HGF-MPG Group for Deep-Sea Ecology Sven Lovén Centre for Marine Sciences and Technology University of Gothenburg Alfred-Wegener-Institut Fiskebäckskil Helmholtz-Zentrum für Polar- und Sweden Meeresforschung Bremerhaven Germany Lars Gutow Biosciences | Functional Ecology Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven Germany This publication is Eprint ID 37207 of the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung. Permission for photo on cover: Crab Paromola cuvieri walking over plastic litter at a deep-water coral reef off Santa Maria di Leuca (582 m depth), Italy. Also shown: the coral Madrepora oculata and a sponge carried by the fifth pereiopods of the crab as a defence. The image was recorded during dive 728 of the remotely operated vehicle QUEST (MARUM, Bremen University). Reprinted with permission from A. Freiwald, L. Beuck, A. Rüggeberg, M. Taviani, D. Hebbeln, and R/V Meteor Cruise M70-1 Participants. 2009. The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22(1):58–74, http://dx.doi.org/10.5670/oceanog.2009.06. ISBN 978-3-319-16509-7 ISBN 978-3-319-16510-3 (eBook) DOI 10.1007/978-3-319-16510-3 Library of Congress Control Number: 2015935215 Springer Cham Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and The Author(s) 2015. The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) For Rosa, Frida and Piet. Foreword Synthetic polymers, commonly known as plastics, have made themselves a perma- nent part of the marine environment for the first time in the long history of plane- tary seas. No sediment or ice core will reveal ancient deposits of these materials or the biological consequences associated with high concentrations of synthetic poly- mers in the planet’s prehistoric ocean. However, current ice and sediment cores do reveal an abundance of this material. Only a broad combination of traditional fields of scientific inquiry is adequate to uncover the effects of this new pollutant, and it seems a pity that a field of study, rather than springing from insights into natural phenomena, arises from new ways that natural phenomena are compromised. Reports of plastics in the marine environment began to appear in the early 1970s. At the time, Edward Carpenter of the Woods Hole Oceanographic Institution specu- lated that the problem was likely to get worse and that toxic, non-polymeric com- pounds in plastics known as plasticizers could be delivered to marine organisms as a potential effect. Carpenter’s speculations were correct and probably more so than he imagined. The quantity of plastics in ocean waters has increased enormously, and toxic plastic additives, as well as toxicants concentrated by plastics from the surrounding sea water, have been documented in many marine species. The rapid expansion of the use of synthetic polymers over the last half century has been such that the characterization of the current era as the “Age of Plastics”, seems appropriate. There is no real mystery as to why plastics have become the predominant material of the current epoch. The use value of the material is truly surprising. It can substitute for nearly every traditional material from millinery to metal and offers qualities unknown in naturally occurring substances, so that it now feeds a worldwide industry. The plastic industry creates new applications and products with growth trending sharply upward and showing no signs of slowing in the foreseeable future. Laser printing using plastic “ink” will guarantee expanded use of polymeric feedstocks. Although the majority of plastics produced today use petroleum resources which are finite, the carbon backbone of synthetic polymers can be fashioned from switchgrass, soya beans, corn, sugar cane or other renewable resources— price alone determines industry’s preference. The fact that synthetic polymers can vii viii Foreword be made from row crops (so-called biopolymers) need have nothing to do with their biodegradability. Olefins are still olefins and acrylates are still acrylates, and behave like their petroleum-fabricated counterparts. Furthermore, biodegradability standards are not applicable in the marine environment and marine degradability requires a separate standard. Marine degradable plastics have a negligible market share and are not poised to make headway into the consumer plastics market at the present time. The difficulty of recycling plastics has made their profitable recovery a problem, which in turn results in failure to provide take-back infrastructure and results in accelerated pollution. Given the proliferation of plastics into all spheres of human activity, and their increasing use value in the developing world, the phenomena associated with plas- tic pollution of the marine environment will continue to merit scientific investi- gation. These studies, however, are hampered by the lack of basic geospatial and quantitative data. Estimates abound based on limited sampling and modeling, but the ocean is the biggest habitat on the planet by far and knowledge of its plas- tic pollution will require new methods of data acquisition. The role of citizens in the monitoring of plastic pollution will increase in the coming years, and the truly “big” data they document must become part of the science of plastic pollution. For the present, it is fortunate that a few pioneering scientists around the world are engaged in attempting to understand the consequences of the plague of plastic that contaminates our precious ocean. Long Beach Captain Charles James Moore http://www.algalita.org Preface The ocean is of eminent importance to mankind. Twenty-three per cent of the world’s population (~1.2 billion people) live within 100 km of the coast (Small and Nicholls 2003), a figure, which is likely to rise up to 50 % by 2030 (Adger et al. 2005). Furthermore, the ocean sustains nearly half of the global primary pro- duction (Field et al. 1998), a great share of which fuels global fisheries (Pauly and Christensen 1995). The marine environment hosts a substantial biodiversity, and tourism is an important and constantly growing economic sector for many coastal countries. Although human welfare is intricately linked with the sea and its natural resources, people have substantially altered the face of the ocean within only a few centuries. Fisheries, pollution, eutrophication, deep-sea hydrocarbon exploration, ocean acidification and global ocean warming accompanied by sea-level rise as a consequence of rapid glacier melting and thermal expansion of sea water (IPCC 2014) are prominent examples of man-made pressures exerted on the oceans with severe ecological and socio-economic repercussions. As a result, marine environ- mental protection and management have become integral political and societal issues in many countries worldwide. However, effective environmental manage- ment requires a proper understanding of the ecological implications of human activities and should, therefore, be accompanied by sound multidisciplinary research, scientific advice, education and public outreach. In recent decades, the pollution of the oceans by anthropogenic litter has been recognized as a serious global environmental concern. Marine litter is defined as “any persistent, manufactured or processed solid material discarded, disposed of or abandoned in
Recommended publications
  • Geological Survey
    DEPABTMENT OF THE INTEKIOR BULLETIN OF THE UNITED STATES GEOLOGICAL SURVEY N~o. 151 WASHINGTON GOVERNMENT PRINTING OFFICE 1898 UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIEECTOR THE LOWER CRETACEOUS GRYPMAS OF THK TEX.AS REGION ROBERT THOMAS HILL THOMAS WAYLA'ND VAUGHAN WASHINGTON GOVERNMENT FEINTING OFFICE 18.98 THE LOWER CRETACEOUS GRYPHJ1AS OF THE TEXAS REGION. BY I EOBEET THOMAS HILL and THOMAS WAYLAND VAUGHAN. CONTENTS. Page. Letter of transmittal....._..........._....._ ............................ 11 Introduction ...---._._....__................._....._.__............._...._ 13 The fossil oysters of the Texas region.._._.._.___._-..-._._......-..--.... 23 Classification of the Ostreidae. .. ...-...---..-.......-.....-.-............ 24 Historical statement of the discovery in the Texas region of the forms referred to Gryphsea pitcher! Morton ................................ 33 Gryphaea corrugata Say._______._._..__..__...__.,_._.________...____.._ 33 Gryphsea pitcheri Morton............................................... 34 Roemer's Gryphsea pitcheri............................................ 35 Marcou's Gryphsea pitcheri............................................ 35 Blake's Gryphaea pitcheri............................................. 36 Schiel's Gryphsea pitcheri...........................,.:................ 36 Hall's Gryphsea pitcheri (= G. dilatata var. tucumcarii Marcou) ...... 36 Heilprin's Gryphaea pitcheri.....'..................................... 37 Gryphaea pitcheri var. hilli Cragin...................................
    [Show full text]
  • Tayside, Central and Fife Tayside, Central and Fife
    Detail of the Lower Devonian jawless, armoured fish Cephalaspis from Balruddery Den. © Perth Museum & Art Gallery, Perth & Kinross Council Review of Fossil Collections in Scotland Tayside, Central and Fife Tayside, Central and Fife Stirling Smith Art Gallery and Museum Perth Museum and Art Gallery (Culture Perth and Kinross) The McManus: Dundee’s Art Gallery and Museum (Leisure and Culture Dundee) Broughty Castle (Leisure and Culture Dundee) D’Arcy Thompson Zoology Museum and University Herbarium (University of Dundee Museum Collections) Montrose Museum (Angus Alive) Museums of the University of St Andrews Fife Collections Centre (Fife Cultural Trust) St Andrews Museum (Fife Cultural Trust) Kirkcaldy Galleries (Fife Cultural Trust) Falkirk Collections Centre (Falkirk Community Trust) 1 Stirling Smith Art Gallery and Museum Collection type: Independent Accreditation: 2016 Dumbarton Road, Stirling, FK8 2KR Contact: [email protected] Location of collections The Smith Art Gallery and Museum, formerly known as the Smith Institute, was established at the bequest of artist Thomas Stuart Smith (1815-1869) on land supplied by the Burgh of Stirling. The Institute opened in 1874. Fossils are housed onsite in one of several storerooms. Size of collections 700 fossils. Onsite records The CMS has recently been updated to Adlib (Axiel Collection); all fossils have a basic entry with additional details on MDA cards. Collection highlights 1. Fossils linked to Robert Kidston (1852-1924). 2. Silurian graptolite fossils linked to Professor Henry Alleyne Nicholson (1844-1899). 3. Dura Den fossils linked to Reverend John Anderson (1796-1864). Published information Traquair, R.H. (1900). XXXII.—Report on Fossil Fishes collected by the Geological Survey of Scotland in the Silurian Rocks of the South of Scotland.
    [Show full text]
  • Variability of the Senonian Species Oscillopha Dichotoma (Bayle, 1849)
    Časopis Národního muzea, Řada přírodovědná (J. Nat. Mus., Nat. Hist. Ser.) Vol. 172 (1–4):71–74, 2003 Palaeozoology VARIABILITY OF THE SENONIAN SPECIES OSCILLOPHA DICHOTOMA (BAYLE, 1849) Bořivoj Záruba Department of Palaeontology, National Museum, 115 79 Praha 1, Czech Republic Received December 12, 2002 Accepted January 20, 2003 Abstract. Revision of the collection of Upper Cretaceous molluscs of northern Africa included the study of Senonian oyster Oscillopha dichotoma. The high number of individuals permitted to discuss vari- ability and stratigraphic range of this species. Hereat, forms showing a number of differences in their mor- phology and having a different distribution were defined. They represent a new taxonomic unit, which will be featured in a separate study. I Upper Cretaceous, Senonian, Santonian, Mollusca, Bivalvia, Ostreacea, Oscillopha dichotoma, vari- ability, North Africa, Libya. The author gathered a large collection of fossil evertebrates during his extensive mapping activities in central Libya. This collection is now housed in the Palaeontological Depart- ment of the National Museum in Prague. The dominant element of its faunal content is a va- riety of different species of Senonian oysters. These oysters are exceptional in their high number and, in many cases, also perfect state of preservation. This fact permitted a detailed study of some species. One of them was Oscillopha dichotoma (BAYLE, 1849), (syn. Ostrea dichotoma, Lopha dichotoma, Alectryonia dichotoma). The large set of specimens collect- ed, containing both left and right valves of this species, permitted the study of its morpho- logical variability. The set also included individuals hitherto equally attributed to Oscillopha dichotoma which, however, showed differences from this species in a number of morphological features and its distribution, as revealed by the detailed study.
    [Show full text]
  • Edward Lhwyd
    Learning more... Edward Lhwyd Edward Lhwyd those things that they might discover, and the The earliest documented book could easily be taken into the field and used geological specimens to there because of its handy octavo size. survive in the Museum’s As an appendix at the end of the book were six collections are those letters to friends, dealing with geological described by Lhwyd in his subjects. The sixth, addressed to John Ray and Lithophylacii Britannici dated 29 July 1698, extends to twelve pages, and ichnographia of 1699. sets out Lhwyd’s views on the origin of fossils. One hundred and twenty copies were “He suggested a sequence in which mists and published in February of that year; a vapours over the sea were impregnated with the second, posthumous, Editio Altera was ‘seed’ of marine animals. These were raised and published in 1760. A selection of Lhwyd’s carried for considerable distances before they surviving specimens, and the plates of the descended over land in rain and fog. The 1760 edition are figured here. ‘invisible animacula’ then penetrated deep into the earth and there germinated; and in this way Who was Edward Lhwyd? complete replicas of sea organisms, or sometimes Edward Lhwyd was born in 1660, the illegitimate only parts of individuals, were reproduced in son of Edward Lloyd of Llandforda, near stone. Lhwyd also suggests that fossil plants Oswestry, Shropshire, and Bridget Pryse of known to him only as resembling leaves of ferns Gogerddan, Cardiganshire. In 1682 he entered and mosses which have minute ‘seed’, were Jesus College, Oxford, where he studied for five formed in the same manner.
    [Show full text]
  • Turonian Bivalves from the Coastal Basin of Gabon, South of Libreville Les Bivalves Du Turonien Du Bassin Côtier Du Gabon, Sud De Libreville
    Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre, 2013, n° 35, 1–8. Turonian bivalves from the Coastal Basin of Gabon, South of Libreville Les bivalves du Turonien du bassin côtier du Gabon, Sud de Libreville Benjamin MUSAVU MOUSSAVOU*, Simplice Marin NDONG ONDO & Makaya M’VOUBOU Université des Sciences et Techniques de Masuku et URESTE, Faculté des Sciences, Département de Géologie, B.P. 913 Franceville, Gabon *([email protected]). Abstract. The taxonomy and palaeo-ecology of the Turonian marine bivalve fauna from the geological section ‘Gabon Store’ (South of Libreville, Gabon) are here discussed. Seven species are recognized: Aphrodina angustosinuosa (Riedel), Aphrodina dutrugei (Coquand), Aphrodina sp., Granocardium productum (Sowerby), Lopha cf. lombardi (Dartevelle & Freneix), Pholadomya cf. adversa Riedel and Rastellum sp. The composition of the bivalve fauna and the sedimentary characteristics indicate a low-energy littoral paleo-environment at the ‘Gabon Store’ section. Two types of depositional environment are suggested: (1) an intertidal zone, represented by silty limestone and (2) a shallow subtidal zone, such as a bay or lagoon, represented by calcareous sandstone. Keywords: Turonian, bivalves, coastal basin, Libreville, Gabon. Résumé. La taxonomie et la paléoécologie de la faune des bivalves marins d’âge Turonien de la coupe de ‘Gabon Store’ (Sud de Libreville, Gabon) sont ici discutées. Sept espèces sont reconnues : Aphrodina angustosinuosa (Riedel), A. dutrugei (Coquand), Aphrodina sp., Granocardium productum (Sowerby), Lopha cf. lombardi (Dartevelle & Freneix), Pholadomya cf. adversa Riedel et Rastellum sp. La composition de la faune des bivalves et les caractéristiques sédimentologiques de la coupe de ‘Gabon Store’ indiquent un environnement de type littoral de basse énergie.
    [Show full text]
  • University of Nevada Reno Paleoecology of Upper Triassic
    University of Nevada Reno Paleoecology of Upper Triassic Bioherms in the Pilot Mountains, Mineral County, West-Central Nevada A tiles is submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Diane Elinor Cornwall May 1979 University of Nevada Reno ACKNOWLEDGEMENTS I would like to thank Dr. James R. Firby for his supervision, support and for his guidance through those difficult "rough spots." Dan Howe was a constant source of interesting ideas and enthusiasm, especially during the early stages of the thesis project. Throughout my research Fred Gustafson and I worked together, he always being an interested and understanding coworker and friend throughout the lonely weeks of research. Dr. Joseph Lintz, Jr. was invaluable in his assistance in procurement of materials and equipment and in his unselfish desire to solve any problem. I thank Dr. Mead for joining my committee. I greatly appreciate those hearty souls who ventured out into the desert with me and braved the hazards and extremes; these include Barbara Foster, Mickie Dunn, Micheal Judge and my parents who spent all their vacations in my field area. I would also like to acknowledge the moral support given by my parents, special and other friends. i n ABSTRAC In the Pilot Mountains, Mineral County, Nevada, up to five horizons of bioherms are present within the top 76 meters of the lower member of the Upper Triassic (Karnian) Luning Formation. These bio­ herms are located in the carbonate portions of small terrigenous- carbonate rhythms. The biohermal mounds, less than 15 meters high^exhibit four of Wilson's (1975) seven facies.
    [Show full text]
  • (Bajocian-Oxfordian) Sundance Seaway in the Bighorn Basin Of
    COMMUNITY PALEOECOLOGY AND BIOGEOGRAPHY OF THE JURASSIC (BAJOCIAN-OXFORDIAN) SUNDANCE SEAWAY IN THE BIGHORN BASIN OF WYOMING AND MONTANA, U.S.A. by KRISTOPHER MICHAEL KUSNERIK (Under the Direction of Steven M. Holland) ABSTRACT The composition of marine communities is controlled by colonization of newly available habitat, development of community associations, and community variation in response to a gradient of environmental conditions. The Jurassic Sundance Seaway of the Bighorn Basin, Wyoming and Montana provides an ideal case study for determining the role of these factors on community composition and variation. The global provenance of taxa found in the Seaway support reconstructions depicting a single, northern entranceway. This, along with the Seaway’s length and shallow depth, likely caused restrictions on taxa able to enter the Seaway under normal conditions, leading to communities with low diversity and low evenness. Ordination analysis suggests the primary factor controlling community composition was a complex gradient related to water depth. Secondary factors include substrate, salinity, and a carbonate to siliciclastic transition. These patterns are typical of Jurassic marine communities globally. INDEX WORDS: Sundance Formation, Gypsum Spring Formation, fossils, quantitative analysis, ordination analysis COMMUNITY PALEOECOLOGY AND BIOGEOGRAPHY OF THE JURASSIC (BAJOCIAN-OXFORDIAN) SUNDANCE SEAWAY IN THE BIGHORN BASIN OF WYOMNG AND MONTANA, U.S.A. by KRISTOPHER MICHAEL KUSNERIK BS, The College of William & Mary, 2013 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2015 © 2015 Kristopher Michael Kusnerik All Rights Reserved COMMUNITY PALEOECOLOGY AND BIOGEOGRAPHY OF THE JURASSIC (BAJOCIAN-OXFORDIAN) SUNDANCE SEAWAY IN THE BIGHORN BASIN OF WYOMING AND MONTANA by KRISTOPHER MICHAEL KUSNERIK Major Professor: Steven M.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Rep. Lundy Fld. Soc., 31 (1981) the MARINE FAUNA of LUNDY CRUSTACEA: EUPHAUSIACEA and DECAPODA R
    Rep. Lundy Fld. Soc., 31 (1981) THE MARINE FAUNA OF LUNDY CRUSTACEA: EUPHAUSIACEA and DECAPODA R. J. A. ATKINSON and P. J. SCHEMBRI* University Marine Biological Station, Millport, Isle of Cumbrae Scotland. KA28 OEG INTRODUCTION Only two species of euphausids, Nyctiphanes couchii and Meganyctiphanes norvegica are recorded from Lundy though the plankton has not been thoroughly sampled in these studies. These species and one other are recorded in both the Plymouth Marine Fauna (Marine Biological Association, 1957) and the Dale Fort Marine Fauna (Crothers, 1966). Harvey (1950) recorded at Lundy only M. norvegica which has not been recorded since. Its occurrence was atypical, being littoral - Hydrological conditions and other details are unknown. Information on Lundy decapods has been slow to accumulate and compari­ sons with the Plymouth Marine Fauna (Marine Biological Association, 1957) and Dale Fort Marine Fauna (Crothers, 1966) indicate that an extension of the list is to be expected (see below). Of the 21 species identified at Lundy by Harvey (1950, 1951), 4 have not been recorded since (Palaemon elegans, Athanas nitescens, Xantho pilipes, Xantho incisus). Restricted collections and observations have been made almost annually since the late 1960's (see name list for those involved) and by the end of 1979, 49 species had been recorded plus a Processa zoea not identified to species. Intensive collections in June and July 1980 yielded 40 species including many previously reported but unsupported by preserved specimens and the list is now extended to 53 species including the processid. Two of the species collected in 1980 had not been reported since Harvey's spring and summer investgations mainly between 1948 and 1950 (Porcellanaplatycheles and Hyas coarctatus).
    [Show full text]
  • I This Copy of the Thesis Has Been Supplied on Condition That Anyone
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2012 An analysis of the meroplankton assemblages of Station L4 and the development and application of molecular techniques to aid taxonomic resolution. Highfield, James http://hdl.handle.net/10026.1/1171 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior consent. I II An analysis of the meroplankton assemblages of Station L4 and the development and application of molecular techniques to aid taxonomic resolution. James Mark Highfield ABSTRACT Zooplankton data from the 1988-2007 Station L4 time-series were used to determine inter-and intra-annual patterns of meroplankton community change at Station L4, Plymouth, UK. Abundances were calculated for five groups: Cirripedia, Decapoda, Polychaeta, Echinodermata and Bivalvia. Analyses showed that, while there is some annual variability, seasonal variation accounts for the major changes in the meroplanktonic community composition throughout the time-series. Cirripedia were the only group to show any significant change in abundance over the time-series.
    [Show full text]
  • Taxonomic Atlas
    r r r TAXONOMIC ATLAS OF THE BENTHIC FAUNA OF THE SANTA MARIA BASES AND WESTERN SANTA BARBARA CHANNEL - - Volume 11 — The Crustacea Part 2 The Isopoda, Cumacea and Tanaidacea " ^ V* SANTA BARBARA MUSEUM OF NATURAL HISTORY Santa Barbara, California " Research Published in this Volume was Supported by U.S. Department of the Interior Minerals Management Service Pacific OCS Region 770 Paseo Camarillo Camarillo, California 93010 Under Contract No. 14-35-0001-30484 TAXONOMIC ATLAS OF THE BENTHIC FAUNA OF THE SANTA MARIA BASIN AND WESTERN SANTA BARBARA CHANNEL VOLUME 11 The Crustacea Part 2 The Isopoda, Cumacea and Tanaidacea Edited by James A. Blake and Paul H. Scott SANTA BARBARA MUSEUM OF NATURAL HISTORY Santa Barbara, California <jQ \_ NATURAL HISTORY | IGM § libsary § , fs ~2_ gANGF.U=-R BOUNTY 3 V.I I TAXONOMIC ATLAS OF THE BENTHIC FAUNA OF THE SANTA MARIA BASIN AND WESTERN SANTA BARBARA CHANNEL Volume 11 The Crustacea Part 2 - The Isopoda, Cumacea and Tanaidacea ©1997 Santa Barbara Museum of Natural History 2559 Puesta del Sol Road Santa Barbara, California 93105-2936 Original Date of Publication: 20 May 1997 All rights reserved. This book may not be reproduced in whole or in part for any purpose whatever, without written permission from the publisher (Santa Barbara Museum of Natural History). Printed and bound by Alternative Graphics, Goleta, California Production editor, Adele Smith Layout by Marie Murphy Cover photograph by Ron McPeak: An undescribed species of Idoteidae from central California. Photograph digitally enhanced by Marie
    [Show full text]
  • Extraordinary New Subterranean Isopods (Peracarida: Crustacea) from the Kimberley Region, Western Australia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Wilson, George D. F., and Winston F. Ponder, 1992. Extraordinary new subterranean isopods (Peracarida: Crustacea) from the Kimberley Region, Western Australia. Records of the Australian Museum 44(3): 279–298. [5 December 1992]. doi:10.3853/j.0067-1975.44.1992.36 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1992) Vo1.44: 279-298. ISSN 0067-1975 279 Extraordinary New Subterranean Isopods (Peracarida: Crustacea) from the Kimberley Region, Western Australia GEORGE D.F. WILSON & WINSTON F. PONDER Australian Museum, PO Box A285, Sydney South, NSW 2000, Australia ABSTRACT. A new genus and two new species of fresh water isopods from ground waters of the Kimberley region of West Australia are described. This new genus cannot be immediately assigned to an isopod suborder or family because its unique combination of characters encompass many plesiomorphies, as well as synapomorphies with the 'Flabellifera' sensu lata. These features include free pleonites that are subequal except for an enlarged fifth pleonite, broad natatory pleopods, genital pores on medial extensions of the coxae, five pairs of oostegites, true coxal plates, an antennal protopod of three articles, and a rudimentary second flagellum on the antennula. One of the new species, well represented in one sample, is iteroparous and breeds continuously during the winter months. Because the type localities are from limestone fossil reefs not exposed to the marine environment since the Devonian period, these isopods may be remnants of an ancient freshwater stock.
    [Show full text]