Constraints on Neutron Star Structure from Pulsar Glitches

Total Page:16

File Type:pdf, Size:1020Kb

Constraints on Neutron Star Structure from Pulsar Glitches Department of Physics PhD School in Physics, Astrophysics and Applied Physics Cycle XXXIII Constraints on neutron star structure from pulsar glitches Disciplinary Scientific Sector FIS/05 Supervisor: Prof. Pierre M. Pizzochero Co-supervisor: Dr. Marco Antonelli School Director: Prof. Matteo Paris PhD Thesis of: Alessandro Montoli Academic year 2020–2021 Final examination committee: External Referee: Doctor Cristóbal M. Espinoza, Universidad de Santiago de Chile, Departamento de Física External Referee: Professor Andrew Melatos, University of Melbourne, School of Physics External Member: Professor Francesca Gulminelli, Université Caen Normandie, LPC/ENSICAEN, CNRS/IN2P3 External Member: Professor Nils Andersson, University of Southampton, Mathematical Sciences and STAG Research Centre External Member: Professor Michał Bejger, Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences Final examination: Friday, December 18, 2020 Università degli Studi di Milano, Dipartimento di Fisica, Milano, Italy Cover illustration: Chart on which Jocelyn Bell Burnell first recognised evidence of PSR B1919+21, courtesy of the Churchill Archives Centre MIUR subjects: FIS/05 - Astronomia e Astrofisica PACS: 97.60.Gb Pulsars 97.60.Jd Neutron stars 26.60.-c Nuclear matter aspects of neutron stars Keywords: stars: neutron, pulsars: general, dense matter, gravitation, pulsars: indi- vidual: PSR J0835-4510, superfluidity, glitch, Vela Pulsar, neutron stars masses Abstract Neutron stars are among the densest objects in the Universe, making them a perfect laboratory to study nuclear matter under extreme conditions. Pulsars – rapidly rotating magnetised neutron stars – are one of their possible manifestations, being observed as an extremely regular periodic emission in the radio spectrum. This radiation is produced by converting their rotational energy and, because of this, pulsars are expected to spin down. Some of them, however, have been observed exhibiting sudden accelerations in their rotation, also known as glitches. Nowadays, pulsar glitches are interpreted as the manifestation of vortex dynamics in the internal neutron superfluid, which lags behind the observable charged component in spinning down, occasionally releasing angular momentum to it and giving rise to a glitch. In this work, we will present three different observational characteristics of a glitching pulsar – its largest glitch, its average acceleration due to glitches and its short-time evolution after a glitch – and we will try to extract information about the neutron star from each of them. In particular, we will try to set constraints on the mass of the star, the moment of inertia of its reservoir component and several other quantities tied to the glitch phenomenon, with the ultimate goal of increasing our knowledge about the properties of matter at densities above those of terrestrial nuclei. i Contents Introduction1 1 Neutron stars overview5 1.1 Brief history of neutron stars5 1.2 From main sequence to compact objects8 1.3 Structure 10 1.4 Equations of state 12 1.5 Neutron star phenomenology 17 1.6 Pulsar timing and pulsar glitches 22 2 Largest observed glitch 35 2.1 Analytical calculation 35 2.2 Numerical results 43 3 Activity parameter 53 3.1 Calculation of the activity parameter 53 3.2 Moment of inertia constraint 64 3.3 Revised maximum glitch mass constraint 69 4 Angular velocity evolution 93 4.1 Three-component model 94 4.2 Application to the 2016 Vela glitch: frequentist approach 104 4.3 Application to the 2016 Vela glitch: Bayesian approach 112 Future directions 125 iii iv Contents Appendices 129 A Moments of inertia in the slow rotation approximation 131 Bibliography 141 List of Publications 159 Introduction Since the first speculations about their existence in the Thirties and the first theoretical studies done until their discovery in the late Sixties, many advances have been made in the description of neutron stars, one of the possible remnants of an ordinary star, and more specifically its core after a core-collapse supernova. With a mass of approximately 1.5M , packed by gravity in a sphere of radius 10 km, neutron stars are among the densest objects in the Universe and can easily exceed≈ the nuclear saturation density, i.e. the density inside heavy atomic nuclei. In fact, it is not infrequent to come across models which predict central densities ten times larger than this value and claim the existence of exotic matter, like hyperons, meson condensates and quark-gluon plasma. As it is not possible to achieve such densities on Earth, these objects are arguably one of the few ways to study nuclear matter above the saturation density, making them the perfect playground for nuclear physics. One of the most important consequences of these extreme densities is the onset of nuclear superfluidity, which causes many phenomena observable at macroscopic scale, such as pulsar glitches. Moreover, due to their extreme compactness, neutron stars experience extreme gravitational forces, so a complete and thorough description should be carried out in a General Relativistic framework. Their Schwarzschild radius is, in fact, approxi- mately 0.2 0.4 times their radius, meaning that spacetime is curved around and inside neutron stars− and their physical description is affected by important general relativistic corrections. Finally, neutron stars present an extremely varied phenomenology. Their emission spans the entire electromagnetic spectrum, ranging from radio frequencies to gamma rays, with both continuous and discontinuous emissions, both regular and sporadic. We can indirectly observe neutrino emission during the first stage of their lives, by measuring the cooling of their surface temperature over the years (see, e.g., the neutron star in the Cassiopeia supernova remnant, Heinke and Ho, 2010; Yakovlev et al., 2011), and directly detect it during the supernova phase (so far only in SN 1987A). They are also good candidates for emitting continuous gravitational waves, and it has also been possible to detect gravitational waves from neutron stars in binary systems. All these three lines of research about neutron stars – the nuclear one, the 1 2 Introduction one related to General Relativity and the observational one – are highly intertwined. In fact, it is not possible to obtain serious theoretical constraints or observational predictions on a neutron star phenomenon without keeping into account all these three aspects. As an example, the observation of a neutron star of about two solar masses (Demorest et al., 2010; Antoniadis et al., 2013; Fonseca et al., 2016; Linares et al., 2018; Cromartie et al., 2020) has put a serious constraint on the physics of nuclear matter over saturation density, and ruled out several models. One of the possible manifestations of neutron stars are pulsars, which are rapidly rotating neutron stars emitting a collimated beam of radiation. When this beam is pointed in the direction of Earth, we observe a pulse in the radio spectrum, much like a lighthouse. On average, this pulsation is extremely stable, even more stable than atomic clocks (Milner et al., 2019). These objects slow down, due to a hydromagnetic torque exerted by the pulsar wind they emit, except for sudden accelerations of their pulsation frequency. These phenomena are called glitches. The current interpretation of glitches is related to the presence of a neutron superfluid in the star interior, which lags behind the observable charged component in spinning down, effectively storing angular momentum. This angular momentum reservoir is occasionally released, giving rise to a glitch. It is clear that an accurate modelling of the glitch phenomenon is necessary in order to explain the observed glitch behaviour. On the other hand, the latter can be an important test for the input variables of the model. In other words, it is possible to constrain some of the characteristics of a neutron star with its glitching behaviour. This is the leitmotif of this thesis: each Chapter presents a different observational feature of pulsar glitches which can be employed to provide new information about the internal structure of neutron stars. With this in mind, we divide this thesis into four Chapters: Chapter1 We present here some key features of neutron stars, talking about structure, Equations of State, phenomenology and the basic modelling of pulsar glitches. Chapter2 Glitch modelling can be employed to find the maximum angular momen- tum reservoir that can be stored in a neutron star between glitches and, as a consequence, the largest glitch achievable by a pulsar. This value can be easily compared with the largest observed glitch of a particular object, and some con- straints can be set on the microphysical inputs of the model and on the mass of the star. All the modelling have been performed in the general relativistic framework. This Chapter is based on the work published in Antonelli et al. (2018). Chapter3 Pulsar activity is a well-known and widely used parameter in the field of pulsar glitches. It summarises the average acceleration of a neutron star’s rotation due to the presence of glitches. After some considerations about the calculation of this parameter, we present two different models. The first one (studied in a general relativistic framework and already well-known in the literature, see Link et al. 1999) constrains the moment of inertia of the superfluid component, and Introduction 3 the mass of a star as a consequence. The second one is an extension of the model presented in the preceding
Recommended publications
  • Mode Changing and Giant Pulses Found in a Millisecond Pulsar 17 July 2018, by Tomasz Nowakowski
    Mode changing and giant pulses found in a millisecond pulsar 17 July 2018, by Tomasz Nowakowski between two or more quasi-stable modes of emission. To date, mode changing has been only observed in normal pulsars. However, a recent study conducted by a team of astronomers led by Nikhil Mahajan of the University of Toronto in Canada, shows the mode changing process could be also present in millisecond pulsars, as they observed that the pulse profile of pulsar PSR B1957+20 switches between two modes. Discovered in 1988, PSR B1957+20, also known as the "Black Widow Pulsar", is a 1.6 ms eclipsing binary millisecond pulsar in the constellation Sagitta. It orbits with a brown dwarf companion with a period of 9.2 hours with an eclipse duration of approximately 20 minutes. Mahajan's team observed this pulsar for over nine hours in four daily sessions between June 13 and 16, 2014 at the Arecibo Observatory in Puerto Rico, what Chandra image of PSR B1957+20. The blue and green resulted in uncovering new insights into its are optical images of the field in which the pulsar is behavior. found, the green indicating the H-alpha bow shock. The red and white are secondary shock structures "Here, we show that the millisecond pulsar PSR discovered in x-ray by the Chandra X-ray Observatory. B1957+20 shows mode changing, and that the Credit: X-ray: NASA/CXC/ASTRON/B.Stappers et al.; properties of the giant pulses that we found earlier Optical: AAO/J.Bland-Hawthorn & H.Jones (in the same data; Main et al.
    [Show full text]
  • X-Ray Observations of Black Widow Pulsars
    UvA-DARE (Digital Academic Repository) X-Ray Observations of Black Widow Pulsars Gentile, P.A.; Roberts, M.S.E.; McLaughlin, M.A.; Camilo, F.; Hessels, J.W.T.; Kerr, M.; Ransom, S.M.; Ray, P.S.; Stairs, I.H. DOI 10.1088/0004-637X/783/2/69 Publication date 2014 Document Version Final published version Published in Astrophysical Journal Link to publication Citation for published version (APA): Gentile, P. A., Roberts, M. S. E., McLaughlin, M. A., Camilo, F., Hessels, J. W. T., Kerr, M., Ransom, S. M., Ray, P. S., & Stairs, I. H. (2014). X-Ray Observations of Black Widow Pulsars. Astrophysical Journal, 783(2), 69. https://doi.org/10.1088/0004-637X/783/2/69 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 The Astrophysical Journal, 783:69 (8pp), 2014 March 10 doi:10.1088/0004-637X/783/2/69 C 2014.
    [Show full text]
  • Searching for New Millisecond Pulsars with the Gbt in Fermi Unassociated Sources
    SEARCHING FOR NEW MILLISECOND PULSARS WITH THE GBT IN FERMI UNASSOCIATED SOURCES Siraprapa Sanpa-arsa Khon Kaen, Thailand B.A. Physics, Kasetsart University, 2009 M.S. Astronomy, University of Virginia, 2011 A Dissertation Presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Astronomy University of Virginia July 2016 Committee Members: Prof. Scott M. Ransom Vanderbilt Prof. Craig Sarazin VITA Assoc. Prof. Phil Arras Prof. Brad Cox c Copyright by Siraprapa Sanpa-arsa All rights reserved July 13, 2016 ii Abstract The launch of the Fermi satellite in 2008 revolutionized γ-ray pulsar astronomy by enabling the discovery of many new millisecond pulsars (MSPs). The Fermi Pulsar Search Consortium (PSC) has organized hundreds of radio observations of pulsar-like Large Area Telescope (LAT) unassociated sources. Over the past seven years, the PSC has discovered more than 70 new MSPs, compared to the 75 MSPs found in the 25 years prior to Fermi. The National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope (GBT) has played the key role in the project by discovering almost half (34) of the new MSPs. In this thesis, I present the discovery and analysis of 16 new MSPs, 10 of which were uncovered by me personally. The pulsars were found in GBT searches within the positional error boxes of 266 Fermi LAT sources, both at high Galactic latitudes and closer to the Galactic plane. All new pulsars have phase-connected radio timing solutions, and for 12 of them, γ-ray pulsations were detected.
    [Show full text]
  • Millisecond Pulsars, Their Evolution and Applications
    J. Astrophys. Astr. (September 2017) 38:42 © Indian Academy of Sciences DOI 10.1007/s12036-017-9469-2 Review Millisecond Pulsars, their Evolution and Applications R. N. MANCHESTER CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710, Australia. E-mail: [email protected] MS received 15 May 2017; accepted 28 July 2017; published online 7 September 2017 Abstract. Millisecond pulsars (MSPs) are short-period pulsars that are distinguished from “normal” pulsars, not only by their short period, but also by their very small spin-down rates and high probability of being in a binary system. These properties are consistent with MSPs having a different evolutionary history to normal pulsars, viz., neutron-star formation in an evolving binary system and spin-up due to accretion from the binary companion. Their very stable periods make MSPs nearly ideal probes of a wide variety of astrophysical phenomena. For example, they have been used to detect planets around pulsars, to test the accuracy of gravitational theories, to set limits on the low-frequency gravitational-wave background in the Universe, and to establish pulsar-based timescales that rival the best atomic-clock timescales in long-term stability. MSPs also provide a window into stellar and binary evolution, often suggesting exotic pathways to the observed systems. The X-ray accretion- powered MSPs, and especially those that transition between an accreting X-ray MSP and a non-accreting radio MSP, give important insight into the physics of accretion on to highly magnetized neutron stars. Keywords. Pulsars—general—stars: evolution—gravitation. 1. Introduction pulsar was found in September 1982 at Arecibo Obser- vatory in a very high time-resolution search of the The first pulsars discovered (Hewish et al.
    [Show full text]
  • High Energy Radiation from Spider Pulsars
    Article High Energy Radiation from Spider Pulsars Chung Yue Hui 1,∗ and Kwan Lok Li 2 1 Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134, Korea 2 Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan; [email protected] * Correspondence: [email protected] Received: 30 June 2019; Accepted: 4 December 2019; Published: date Abstract: The population of millisecond pulsars (MSPs) has been expanded considerably in the last decade. Not only is their number increasing, but also various classes of them have been revealed. Among different classes of MSPs, the behaviours of black widows and redbacks are particularly interesting. These systems consist of an MSP and a low-mass companion star in compact binaries with an orbital period of less than a day. In this article, we give an overview of the high energy nature of these two classes of MSPs. Updated catalogues of black widows and redbacks are presented and their X-ray/g-ray properties are reviewed. Besides the overview, using the most updated eight-year Fermi Large Area Telescope point source catalog, we have compared the g-ray properties of these two MSP classes. The results suggest that the X-rays and g-rays observed from these MSPs originate from different mechanisms. Lastly, we will also mention the future prospects of studying these spider pulsars with the novel methodologies as well as upcoming observing facilities. Keywords: pulsars; neutron stars; binaries; X-ray; g-ray 1. What Are Millisecond Pulsars? Rotation-powered pulsars, which act as unipolar inductors by coupling the strong magnetic field and fast rotation, radiate at the expense of their rotational energy.
    [Show full text]
  • 1 Are Radio Pulsars Extraterrestrial Communication Beacons? Paul A
    Are Radio Pulsars Extraterrestrial Communication Beacons? Paul A. LaViolette The Starburst Foundation 1176 Hedgewood Lane Niskayuna, New York, 12309 [email protected] February 6, 2016 Accepted for publication March 1, 2016 J. of Astrobiology and Outreach Abstract: Evidence is presented that radio pulsars may be artificially engineered beacons of extraterrestrial intelligence (ETI) origin. It is proposed that they are beaming signals to various targeted Galactic locations including our solar system and that their primary purpose may be for interstellar navigation. More significantly, about half a dozen pulsars appear to be marking key sky locations that convey a message intended for our Galactic locale. One of these, the Millisecond Pulsar (PSR1937+21), appears to make reference to the center of our Galaxy, which would be a logical shared reference point for any interstellar communication. It is noted that of all pulsars, this one comes closest to the point that lies one-radian from the Galactic center along the galactic plane. The chance that a pulsar would be positioned at this key location, as seen from our viewing perspective, and also display the highly unique attention-getting characteristics of the Millisecond Pulsar is estimated to be one chance in 7.6 trillion. Other pulsars that appear to be involved in conveying this Galactic center message include the Eclipsing Binary Millisecond pulsar (1957+20) and PSR 1930+22, both of which make highly improbable alignments relative to the Millisecond Pulsar position, the Crab and Vela pulsars, and PSR 0525+21. All display one or more unusual attention-getting characteristics. A method is proposed whereby a civilization might magnetically modulates the cosmic ray flux of a neutron star to produce one or more stationary, broadband, targeted synchrotron beams having pulsar-like signal characteristics.
    [Show full text]
  • X-Ray Studies of the Black Widow Pulsar PSR B1957+20
    Neutron Stars and Pulsars: Challenges and Opportunities after 80 years Proceedings IAU Symposium No. 291, 2012 c International Astronomical Union 2013 J. van Leeuwen, ed. doi:10.1017/S1743921312024295 X-ray studies of the black widow pulsar PSR B1957+20 R. H. H. Huang1,A.K.H.Kong1, J. Takata2,C.Y.Hui3, L. C. C. Lin4 and K. S. Cheng2 1 Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan email: [email protected] 2 Department of Physics, University of Hong Kong, Hong Kong 3 Department of Astronomy and Space Science, Chungnam National University, Daejeon, Korea 4 General Education Center of China Medical University, Taichung, Taiwan Abstract. We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evi- dence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is deter- mined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock is dominated by synchrotron cooling. Keywords. binaries: eclipsing, pulsars: individual (PSR B1957+20) 1. Introduction The widely accepted scenario for the formation of a millisecond pulsar (MSP) is that an old neutron star has been spun up to millisecond periods in a past accretion phase by mass and angular momentum transfer from a binary late-type companion (Alpar et al.
    [Show full text]
  • Timing of PSR J2055+3829, an Eclipsing Black Widow Pulsar Discovered with the Nançay Radio Telescope
    A&A 629, A92 (2019) Astronomy https://doi.org/10.1051/0004-6361/201936015 & c L. Guillemot et al. 2019 Astrophysics Timing of PSR J2055+3829, an eclipsing black widow pulsar discovered with the Nançay Radio Telescope L. Guillemot1,2, F. Octau1,2, I. Cognard1,2, G. Desvignes3, P. C. C. Freire3, D. A. Smith4, G. Theureau1,2,5 , and T. H. Burnett6 1 Laboratoire de Physique et Chimie de l’Environnement et de l’Espace – Université d’Orléans/CNRS, 45071 Orléans Cedex 02, France e-mail: [email protected] 2 Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, 18330 Nançay, France 3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4 Centre d’Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, 33175 Gradignan Cedex, France 5 LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 92195 Meudon, France 6 Department of Physics, University of Washington, Seattle, WA 98195-1560, USA Received 4 June 2019 / Accepted 23 July 2019 ABSTRACT We report on the timing observations of the millisecond pulsar PSR J2055+3829 originally discovered as part of the SPAN512 survey conducted with the Nançay Radio Telescope. The pulsar has a rotational period of 2.089 ms and is in a tight 3.1 h orbit around a very low mass (0:023 ≤ mc . 0:053 M , 90% c.l.) companion. Our 1.4 GHz observations reveal the presence of eclipses of the radio signal of the pulsar, caused by the outflow of material from the companion, for a few minutes around superior conjunction of the pulsar.
    [Show full text]
  • NEUTRON STARS 1934: Baade and Zwicky Proposed That Supernovae
    NEUTRON STARS . but, at high densities, degenerate neutrons are ener- getic enough to produce new particles (hyperons and 1934: Baade and Zwicky proposed that supernovae repre- pions) ! the pressure is reduced because the new par- sented the transition of normal stars to neutron stars ticles only produce a small pressure 1939: Oppenheimer and Volko® published the ¯rst ² theoretical model E®ect of gravity (gravitational binding energy of neu- tron star is comparable with rest mass): 1967: discovery of pulsars by Bell and Hewish ² Gravity is strengthened at very high densities and Maximum mass of a neutron star: pressures. Consider the pressure gradient: ² dP Gm Neutrons are fermions: degenerate neutrons are un- Newton: = ¡ able to support a neutron star with a mass above a dr r2 certain value (c.f. Chandrasekhar mass limit for white 2 3 2 ¡ dP Gm (1 + P=( c ))(1 + 4 r P=(mc )) dwarfs). Einstein: = ¡ £ dr r2 1 ¡ 2Gm=(rc2) ² Important di®erences from white dwarf case: ² Pressure P occurs on RHS. Increase of pressure, (i) interactions between neutrons are very important needed to oppose gravitational collapse, leads to at high densities strengthening of gravitational ¯eld ii) very strong gravitational ¯elds (i.e. use General ² need an equation of state P( ) that takes account of Relativity) n ¡ n interactions N.B. There is a maximum mass but the calculation ² Oppenheimer and Volko® (1939) calculated M for is very di±cult; the result is very important for max a star composed of non-interacting neutrons. black-hole searches in our Galaxy Result: Mmax = 0:7 M¯ ² Crude estimate{ ignore interactions and General Rel- ² Enhanced gravity leads to collapse at ¯nite density ativity { apply same theory as for white dwarfs: when neutrons are just becoming relativistic { not ul- Mmax ' 6 M¯ trarelativistic ² interactions between neutrons increase the theoretical ² Various calculations, using di®erent compressibilities maximum mass for neutron star matter, predict » .
    [Show full text]
  • Annual Report 2011
    ANNUAL REPORT 2011 ON THE COVER: HEADQUARTERS LOCATION: FY2011 Ace summit operations team Kamuela, Hawai’i, USA Number of Full Time members, from left: Arnold Employees: 115 Matsuda, John Baldwin and MANAGEMENT: Mike Dahler, focus their California Association for Number of Observing attention to removing a Research in Astronomy Astronomers FY2011: 464 single segment from the PARTNER INSTITUTIONS: Number of Keck Science Keck Telescope primary California Institute of Investigations: 400 mirror in the first major step Technology (CIT/Caltech), in the segment recoating Number of Refereed Articles process. University of California (UC), FY2011: 278 National Aeronautics and Fiscal Year begins October 1 BELOW: Space Administration (NASA) The newly commissioned Federal Identification Keck I Laser penetrates the OBSERVATORY DIRECTOR: Number: 95-3972799 night sky from the majestic Taft E. Armandroff landscape of Mauna Kea. DEPUTY DIRECTOR: The laser is part of Keck’s Hilton A. Lewis world leading adaptive optics systems, a technology used to remove the effects of turbulence in Earth’s atmosphere and provides unprecedented image clarity of cosmic targets near and distant. VISION A world in which all humankind is inspired and united by the pursuit of knowledge of the infinite CONTENTS variety and richness of the Universe. Director’s Report . 3 Cosmic Visionaries . 6 Science Highlights . 8 MISSION Finances . 16 To advance the frontiers of astronomy and share Philanthropic Support . .18 our discoveries, inspiring the imagination of all. Reflections . .20 Education & Outreach . .22 Observatory Groundbreaking: 1985 Honors & Recognition . .26 First light Keck I telescope: 1992 Science Bibliography . 28 First light Keck II telescope: 1996 DIRECTOR’s REPORT Taft E.
    [Show full text]
  • Eight Millisecond Pulsars Discovered in the Arecibo PALFA Survey
    The University of Manchester Research Eight Millisecond Pulsars Discovered in the Arecibo PALFA Survey DOI: 10.3847/1538-4357/ab4f85 Document Version Final published version Link to publication record in Manchester Research Explorer Citation for published version (APA): Lyne, A., Stappers, B., & et al. (2020). Eight Millisecond Pulsars Discovered in the Arecibo PALFA Survey. The Astrophysical Journal, 886(2), 148. [148]. https://doi.org/10.3847/1538-4357/ab4f85 Published in: The Astrophysical Journal Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:24. Sep. 2021 The Astrophysical Journal, 886:148 (17pp), 2019 December 1 https://doi.org/10.3847/1538-4357/ab4f85 © 2019. The American Astronomical Society. All rights reserved. Eight Millisecond Pulsars Discovered in the Arecibo PALFA Survey E. Parent1 , V. M. Kaspi1 , S. M. Ransom2 , P. C. C. Freire3 , A. Brazier4, F.
    [Show full text]
  • Pos(MULTIF2019)023
    Super-Massive Neutron Stars and Compact Binary Millisecond Pulsars PoS(MULTIF2019)023 Manuel Linares∗ab aDepartament de Física, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 16, E-08019 Barcelona, Spain. bInstitute of Space Studies of Catalonia (IEEC), E-08034 Barcelona, Spain. E-mail: [email protected] The maximum mass of a neutron star has important implications across multiple research fields, including astrophysics, nuclear physics and gravitational wave astronomy. Compact binary mil- lisecond pulsars (with orbital periods shorter than about a day) are a rapidly-growing pulsar pop- ulation, and provide a good opportunity to search for the most massive neutron stars. Applying a new method to measure the velocity of both sides of the companion star, we previously found that the compact binary millisecond pulsar PSR J2215+5135 hosts one of the most massive neutron stars known to date, with a mass of 2.27±0.16 M⊙ (Linares, Shahbaz & Casares, 2018). We reexamine the properties of the 0.33 M⊙ companion star, heated by the pulsar, and argue that irradiation in this “redback” binary is extreme yet stable, symmetric and not necessarily produced by an extended source. We also review the neutron star mass distribution in light of this and more recent discoveries. We compile a list of all (nine) systems with published evidence for super- massive neutron stars, with masses above 2 M⊙. We find that four of them are compact binary millisecond pulsars (one black widow, two redbacks and one redback candidate). This shows that compact binary millisecond pulsars are key to constraining the maximum mass of a neutron star.
    [Show full text]