Expression and Regulation of the Porin Gene Mspa of Mycobacterium Smegmatis

Total Page:16

File Type:pdf, Size:1020Kb

Expression and Regulation of the Porin Gene Mspa of Mycobacterium Smegmatis Expression and regulation of the porin gene mspA of Mycobacterium smegmatis Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Dietmar Hillmann aus Nürnberg Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 15.12.2006 Vorsitzender der Promotionskommission: Prof. Dr. E. Bänsch Erstberichterstatter: Prof. Dr. M. Niederweis Zweitberichterstatter: Prof. Dr. A. Burkovski Index Index 1 Zusammenfassung / Summary 1 2 Introduction 2 2.1 The genus Mycobacterium 2 2.1.1 Taxonomy 2 2.1.2 The architecture of the mycobacterial cell wall 3 2.2 Porins: Structure and function in gram-negative bacteria 5 2.3 Mycobacterial porins 7 2.4 Porin regulation 10 2.5 Expression of mspA of M. smegmatis 12 2.6 Scope of the thesis 13 3 Results 14 3.1 Screening system to monitor mycobacterial promoter activity 14 3.2 Transcriptional mechanisms affecting mspA expression 18 3.2.1 Identification of the mspA promoter 18 3.2.2 A very long upstream DNA element is required for full activity of pmspA 22 3.2.3 Influence of translation initiation signals of pmspA on lacZ expression 24 3.2.4 Influence of a distal DNA element on pmspA activation 25 3.2.5 Alignment of the 5’ regions of mspA, mspB, mspC and mspD 27 3.3 Post-transcriptional mechanisms affecting mspA expression 28 3.3.1 Detection of an antisense RNA to the mspA transcript 28 3.3.2 Secondary structure of the 5’ UTR of mspA 31 3.4 pH dependent mspA expression 31 3.4.1 mspA expression is repressed at pH 4.5 31 3.4.2 The repression of mspA at pH 4.5 is a specific event 32 3.4.3 The regulation of mspA at pH 4.5 requires the original 5’ UTR 33 3.4.4 β-galactosidase based monitoring of pH dependent mspA expression 34 - i - Index 4 Discussion 40 4.1 Transcriptional control of mspA expression 40 4.2 Transcriptional control of mspA, mspB, mspC and mspD 42 4.3 Post-transcriptional control of mspA expression 44 4.3.1 Stability of the mspA transcript 44 4.3.2 The 5’ end of the mspA transcript 44 4.3.3 The 3’ end of the mspA transcript 46 4.3.4 Initiation of translation 46 4.3.5 Detection of an antisense RNA to the mspA transcripts 47 4.4 Adaptation of mspA regulation to low pH 48 4.5 Conclusions and perspectives 50 5 Material and Methods 51 5.1 Material 51 5.1.1 Chemicals, equipment and biological material 51 5.2 Media, buffers and solutions 56 5.2.1 Media 56 5.2.2 Buffers and solutions 57 5.3 General methods 60 5.4 Growth of bacteria 60 5.5 Transformation of bacteria 61 5.5.1 Transformation of chemically competent E. coli 61 5.5.2 Electroporation of M. smegmatis 61 5.6 Methods for nucleic acid purification, modification and analysis 61 5.6.1 Plasmid purification 61 5.6.2 Preparation of chromosomal DNA from mycobacteria 61 5.6.3 Polymerase chain reaction (PCR) 62 5.6.4 Site-directed mutagenesis by combined polymerase chain reaction (CCR) 62 5.6.5 Phosphorylation of oligonucleotides 63 5.6.6 Primer annealing 63 5.6.7 Restriction and ligation 63 5.6.8 Construction of plasmids 63 5.6.9 RNA preparation 64 5.6.10 Primer extension 65 5.6.11 Northern blot analysis 65 5.6.12 Dot blot analysis 66 - ii - Index 5.6.13 RNA probe synthesis for Northern and dot blots 66 5.7 Extraction and analysis of proteins 66 5.7.1 Selective extraction of porins of M. smegmatis 66 5.7.2 Western blot analysis 66 5.7.3 Alkaline phosphatase activity measurement 67 5.7.4 β-galactosidase activity measurement 67 5.8 Computer analyses 68 5.8.1 GeSTer 68 6 References 69 7 Appendix 79 7.1 Use of phoA for pH dependent mspA expression 79 7.2 C2FDG as an alternate substrate for the β-galactosidase 80 7.3 MspA amounts during growth at pH 4.5 83 7.4 List of predicted transcriptional terminators of M. tuberculosis 83 7.5 Abbreviation index 85 - iii - Zusammenfassung 1 Zusammenfassung Aufgrund ihrer einzigartigen und lipidreichen Zellwand sind Mycobakterien resistent gegenüber einer Vielzahl von Antibiotika. Die Diffusion hydrophiler Substanzen über diese Permeabilitätsschranke erfolgt mit Hilfe wassergefüllter Kanalproteine, der so genannten Porine. Die Anpassung an sich ändernde Umwelteinflüsse stellt einen Kompromiss zwischen der Aufnahme von Nährstoffen und dem Ausschluss toxischer Substanzen dar und wird in gram-negativen Bakterien durch ein komplexes Regulationsnetzwerk erzielt. Bisher war es jedoch unklar, wie die Expression der Poringene in Mycobakterien reguliert wird. Im Rahmen dieser Arbeit wurden transkriptionelle und post-transkriptionelle Mechanismen untersucht, die für die Expression von mspA, des Hauptporins in Mycobacterium smegmatis, verantwortlich sind. Die Verwendung eines Tandem-Terminators bestehend aus den aus Escherichia coli und dem Bakteriophagen T4 stammenden Terminatoren ttrrnBT2 und ttT4g32 reduzierte die Hintergrundaktivität der lacZ Reporterplasmide in M. smegmatis 14-fach. Die -10 Region des mspA Promotors wurde durch gezielte Punktmutationen in Verbindung mit lacZ Reportergenfusionen 142 Basenpaare oberhalb von mspA ermittelt und als einziger mspA Promotor identifiziert. 200 Basenpaare von Position -500 bis -700 erhöhten die β-Galaktosidase Aktivität 12-fach und wurden für eine maximale Aktivierung des Promotors benötigt. Die Insertion von 14 Basenpaaren an Position -500 führte zum Verlust dieser Aktivierung und deutet auf eine Phasenverschiebung der DNA Helix und auf die spezifische Bindung eines Aktivators hin. Transkripte, die antiparallel zur untranslatierten Region oberhalb des mspA Gens sind, wurden mittels Northern Blots detektiert und repräsentieren möglicherweise eine regulatorische, komplementäre RNA. Sequenzuntersuchungen des 5’ Endes der mspA mRNA deuten auf die Ausbildung einer Stammschlaufe hin. Diese trägt möglicherweise zu der langen Halbwertszeit der mspA Transkripte von 6 Minuten bei, vermutlich indem der Angriff von Ribonukleasen durch Ausbildung der Sekundärstruktur verhindert wird. Northern und Dot Blot Analysen zeigten, dass die Menge der mspA Transkripte mit sinkendem pH Wert abnahm und bei pH 4.5 nicht mehr detektiert werden konnte. Episomale Fusionen von mspA mit konstitutiven Promotoren führten zu gleich bleibenden Transkriptmengen, unabhängig vom pH Wert. Umgekehrt wurden keine lacZ Transkripte unter der Kontrolle des mspA Promotors bei pH 4.5 nachgewiesen, was darauf schließen lässt, dass der mspA Promotor spezifisch durch den pH Wert reguliert und dieser Effekt durch die 5’ untranslatierte Region von mspA vermittelt wird. Die potentiell komplementäre RNA wurde in gleicher Weise vom pH Wert reguliert wie mspA. Das deutet auf Stabilisierung der mspA Transkripte oder Begünstigung der Ribosomenbindung durch die RNA hin. Somit liefert diese Arbeit erste Erkenntnisse über die transkriptionelle und post- transkriptionelle Regulation der Genexpression von Porinen in M. smegmatis. - 1 - Summary 1 Summary Mycobacteria possess a unique, lipid-rich cell envelope which strongly contributes to their intrinsic resistance against many antibiotics. Hydrophilic compounds cross this permeability barrier by diffusion through transmembrane channel proteins, the so called porins. The balance of nutrient acquisition and blockade of toxic molecules is crucial for adaptation to changing environmental conditions and in gram-negative bacteria it is achieved by a complex network of regulatory circuits. However, it was unknown how expression of porin genes is regulated in mycobacteria. In this study, transcriptional and post-transcriptional factors controlling the expression of the major porin gene mspA of Mycobacterium smegmatis were determined. Background transcription of the lacZ gene of the reporter plasmids in M. smegmatis was reduced 14-fold by a tandem terminator consisting of ttrrnBT2 and ttT4g32 of Escherichia coli and bacteriophage T4, respectively. The -10 region of the promoter of the mspA gene was identified -142 base pairs upstream of mspA by single base pair substitutions in a transcriptional fusion with the lacZ reporter gene. This promoter solely drives transcription of mspA. A 200 base pair fragment at position -500 to -700 was required for full activity of the promoter and induced transcription 12-fold as determined by β-galactosidase activity. Activation was abolished upon insertion of 14 base pairs at position -500 indicating phasing of the DNA helix and factor-dependent promoter activation. Transcripts anti-parallel to the upstream untranslated region of mspA were detected in Northern blots, suggesting the existence of an antisense RNA as a regulator of mspA expression. Sequence analysis revealed a hairpin structure at the 5’ end of the mspA mRNA that likely contributes to the high stability of the mspA transcripts with an average half-life of 6 minutes, probably by blocking access of ribonucleases. The amounts of mspA transcripts were reduced by decreasing pH and were absent at pH 4.5 as detected by Northern and dot blot analyses. Episomal fusions of mspA with constitutive promoters yielded the same amounts of transcripts independent on the pH, whereas no mRNA was detected from lacZ under the control of the mspA promoter at pH 4.5. These results demonstrated that the pH sensitivity is specific for the mspA promoter and is mediated by the untranslated region upstream of mspA. This mechanism can be exploited to subject other genes to pH dependent regulation in fusion with the mspA promoter. The antisense RNA was regulated by pH in the same manner as mspA. This indicated a stabilizing or activating role for the antisense RNA by hybridizing to mspA transcripts and either inducing ribosome binding or preventing RNA degradation. This work revealed first insights into both transcriptional and post-transcriptional mechanisms of regulation of porin gene expression in M. smegmatis. - 1 - Introduction 2 Introduction 2.1 The genus Mycobacterium 2.1.1 Taxonomy Mycobacteria are aerophilic bacteria with a high G+C content of between 62 to 70%.
Recommended publications
  • Strategies for Cryo-Electron Tomography of the Mycobacterial Cell Envelope and Its Pore Proteins and Functional Studies of Porin Mspa from Mycobacterium Smegmatis
    Technische Universität München Max-Planck-Institut für Biochemie Abteilung für Molekulare Strukturbiologie Strategies for cryo-electron tomography of the mycobacterial cell envelope and its pore proteins and functional studies of porin MspA from Mycobacterium smegmatis Christian Werner Hoffmann Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. – Prof. Dr. J. Buchner Prüfer der Dissertation: 1. Hon. – Prof. Dr. W. Baumeister 2. Univ. – Prof. Dr. S. Weinkauf 3. Univ. – Prof. Dr. W. Liebl Die Dissertation wurde am 28.04.2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 14.07.2010 angenommen. TABLE OF CONTENTS A Table of contents A Table of contents .................................................................................................................... I B Abbreviations ........................................................................................................................ V C Zusammenfassung............................................................................................................ VIII D Summary ................................................................................................................................ X 1 Introduction ........................................................................................................................... 1 1.1 The genus Mycobacterium .............................................................................................
    [Show full text]
  • Structure of the Mycobacterium Tuberculosis Ompatb Protein: a Model of an Oligomeric Channel in the Mycobacterial Cell Wall
    proteins STRUCTURE O FUNCTION O BIOINFORMATICS Structure of the Mycobacterium tuberculosis OmpATb protein: A model of an oligomeric channel in the mycobacterial cell wall Yinshan Yang,1,2 Daniel Auguin,1,2,3 Ste´phane Delbecq,4 Emilie Dumas,1,2 Ge´rard Molle,1,2 Virginie Molle,5 Christian Roumestand,1,2* and Nathalie Saint1,2 1 Centre de Biochimie Structurale, CNRS UMR 5048, Universite´ Montpellier 1 et 2, F34090 Montpellier, France 2 INSERM U554 F34090 Montpellier, France 3 INRA, USC2030 ‘Arbres et Re´ponses aux Contraintes Hydrique et Environnementales’ (ARCHE), F-45067 Orle´ans Cedex 02, France 4 Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, Universite´ Montpellier 2, F34095 Montpellier Cedex 5, France 5 Institut de Biologie et de Chimie des Prote´ines, Universite´ de Lyon, CNRS UMR 5086, F69367 Lyon, France ABSTRACT INTRODUCTION The pore-forming outer membrane protein The etiological agent of tuberculosis (TB), Mycobacterium OmpATb from Mycobacterium tuberculosis is a viru- tuberculosis, causing nearly 2 million deaths per year, is presently lence factor required for acid resistance in host one of the most important infectious agents implicated in mortal- phagosomes. In this study, we determined the 3D ity worldwide. TB has emerged as a major public health threat structure of OmpATb by NMR in solution. We because of a significant increase in multiple-drug-resistant TB and found that OmpATb is composed of two independ- synergism between human immunodeficiency virus and M. tuber- ent domains separated by a proline-rich hinge culosis infection.1,2 One of the principle problems in TB therapy region.
    [Show full text]
  • COMPARISON of FUNCTIONAL and STRUCTURAL PROPERTIES of an OUTER MEMBRANE PORIN BETWEEN Burkholderia Pseudomallei and Burkholderia
    COMPARISON OF FUNCTIONAL AND STRUCTURAL PROPERTIES OF AN OUTER MEMBRANE PORIN BETWEEN Burkholderia pseudomallei AND Burkholderia thailandensis Miss Jaruwan Siritapetawee A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry Suranaree University of Technology Academic Year 2004 ISBN 974-533-325-5 การเปรียบเทียบสมบัติเชิงหนาที่และเชิงโครงสรางของโปรตีนพอรินใน ผนังเซลลผิวนอกระหวางเชื้อ Burkholderia pseudomallei และ Burkholderia thailandensis นางสาวจารุวรรณ ศิริเทพทว ี วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาชีวเคม ี มหาวิทยาลัยเทคโนโลยีสุรนาร ี ปการศึกษา 2547 ISBN 974-533-325-5 Acknowledgements I would like to express my sincere thank to my thesis advisor, Dr. Wipa Suginta for providing guidance, support, considerable and kind help. I am deeply grateful to my co-advisor, Dr. Richard, H. Ashley, Department of Biomedical Sciences, University of Edinburgh, UK, who gave me the useful guidance, valuable advice and provided the bacterium, Burkholderia thailandensis type strain ATCC700388. I would like to thank PD. Dr. Heino Prinz, Max Planck Institute for Molecular Physiology, Dortmund, Germany who helped with MALDI-TOF MS and ESI MS and peptide mass analysis, and Prof. Dieter Naumann, Robert-Koch Institute, Berlin, Germany with FTIR measurements. I also appreciate Miss Worada Samosornsuk, Faculty of Allied Health Science, Thammasat University, Thailand, for providing essential facilities for Burkholderia pseudomallei culture and drug susceptibility tests, and Dr. Chartchai Krittanai, Institute of Molecular Biology and Genetics, Mahidol University, Thailand, who kindly provided the CD spectropolarimeter for secondary structure determination. I would like to thank Shell studentship grant and Suranaree University of Technology grant for financial support throughout the project. Special thanks are extended to all friends, scientist and technician in the School of Biochemistry for their kind help and made me happy to work.
    [Show full text]
  • BMC Bioinformatics Biomed Central
    BMC Bioinformatics BioMed Central Software Open Access TMB-Hunt: An amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins Andrew G Garrow, Alison Agnew and David R Westhead* Address: School of Biochemistry and Microbiology, University of Leeds, Leeds, LS2 9JT, UK Email: Andrew G Garrow - [email protected]; Alison Agnew - [email protected]; David R Westhead* - [email protected] * Corresponding author Published: 15 March 2005 Received: 01 November 2004 Accepted: 15 March 2005 BMC Bioinformatics 2005, 6:56 doi:10.1186/1471-2105-6-56 This article is available from: http://www.biomedcentral.com/1471-2105/6/56 © 2005 Garrow et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Beta-barrel transmembrane (bbtm) proteins are a functionally important and diverse group of proteins expressed in the outer membranes of bacteria (both gram negative and acid fast gram positive), mitochondria and chloroplasts. Despite recent publications describing reasonable levels of accuracy for discriminating between bbtm proteins and other proteins, screening of entire genomes remains troublesome as these molecules only constitute a small fraction of the sequences screened. Therefore, novel methods are still required capable of detecting new families of bbtm protein in diverse genomes. Results: We present TMB-Hunt, a program that uses a k-Nearest Neighbour (k-NN) algorithm to discriminate between bbtm and non-bbtm proteins on the basis of their amino acid composition.
    [Show full text]
  • Actividad Formadora De Canales Transmembrana En La Superficie De Gordonia Jacobaea
    Actividad formadora de canales transm embrana en la superficie de Gordonia jacobaea Mª Guadalupe Jiménez Galisteo ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tdx.cat ) i a través del Dipòsit Digital de la UB ( diposit.ub.edu ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposici ó des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB . No s’autoritza la presentació del seu contingut en un a finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona auto ra. ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tdx.cat ) y a través del Repositorio Digital de la UB ( diposit.ub.edu ) ha sido au torizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB .
    [Show full text]
  • Transport Across the Outer Membrane Porin of Mycolic Acid Containing Actinomycetales: Nocardia Farcinica
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1848 (2015) 654–661 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Transport across the outer membrane porin of mycolic acid containing actinomycetales: Nocardia farcinica Pratik Raj Singh, Harsha Bajaj, Roland Benz, Mathias Winterhalter, Kozhinjampara R. Mahendran ⁎ School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany article info abstract Article history: The role of the outer-membrane channel from a mycolic acid containing Gram-positive bacteria Nocardia Received 12 August 2014 farcinica, which forms a hydrophilic pathway across the cell wall, was characterized. Single channel electrophys- Received in revised form 11 November 2014 iology measurements and liposome swelling assays revealed the permeation of hydrophilic solutes including Accepted 17 November 2014 sugars, amino acids and antibiotics. The cation selective N. farcinica channel exhibited strong interaction with Available online 23 November 2014 the positively charged antibiotics; amikacin and kanamycin, and surprisingly also with the negatively charged Keywords: ertapenem. Voltage dependent kinetics of amikacin and kanamycin interactions were studied to distinguish Nocardia farcinica binding from translocation. Moreover, the importance of charged residues inside the channel was investigated Antibiotic resistance using mutational studies that revealed rate limiting interactions during the permeation. Mycolata © 2014 Elsevier B.V. All rights reserved. Porin Single channel electrophysiology 1. Introduction recent years the importance of the role of porins in the uptake of antibi- otics has been recognized in Gram-negative bacteria [21].
    [Show full text]
  • Unraveling the Structure of the Mycobacterial Envelope Mamadou Daffe, Hedia Marrakchi
    Unraveling the structure of the Mycobacterial Envelope Mamadou Daffe, Hedia Marrakchi To cite this version: Mamadou Daffe, Hedia Marrakchi. Unraveling the structure of the Mycobacterial Envelope. Micro- biology Spectrum, American Society for Microbiology, 2019. hal-02400597 HAL Id: hal-02400597 https://hal.archives-ouvertes.fr/hal-02400597 Submitted on 9 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Unraveling the structure of the Mycobacterial Envelope Mamadou Daffé* and Hedia Marrakchi Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Department of Tuberculosis and Infection Biology, BP 64182, 205 Route de Narbonne, 31077 Toulouse cedex 04 (France) * [email protected] Running title: The Mycobacterial cell envelope 1 The mycobacterial cell envelope consists of a typical plasma membrane of lipid and protein, surrounded by a complex cell wall composed of carbohydrate and lipid. In pathogenic species, such as Mycobacterium tuberculosis, an outermost ‘capsule’ layer surrounds the cell wall. This wall embraces a fundamental, covalently linked ‘cell-wall skeleton’ composed of peptidoglycan, solidly attached to arabinogalactan whose penta-saccharide termini are esterified by very long-chain fatty acids (mycolic acids). These fatty acids form the inner leaflet of an outer membrane, called mycomembrane, whose outer leaflet consists of a great variety of non-covalently linked lipids and glycolipids.
    [Show full text]
  • Pathogen-Specific De Novo Antimicrobials Engineered Through Membrane Porin Biomimicry Andrew W. Simonson1, Agustey S. Mongia1, M
    Pathogen-specific de novo antimicrobials engineered through membrane porin biomimicry Andrew W. Simonson1, Agustey S. Mongia1, Matthew R. Aronson1, John N. Alumasa2, Dennis C. Chan1,3,4, Adam Bolotsky5,6, Aida Ebrahimi1,5,6,7, Elizabeth A. Proctor1,3,4, Kenneth C. Keiler2 & Scott H. Medina1,* 1Department of Biomedical Engineering, Penn State University, University Park, PA, USA. 2Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA. 3Departments of Neurosurgery and Pharmacology, Penn State College of Medicine, Hershey, PA, USA. 4Center for Neural Engineering, Penn State University, University Park, PA, USA. 5Department of Materials Science and Engineering, Penn State University, University Park, PA, USA. 6Materials Research Institute, Penn State University, University Park, PA, USA. 7Department of Electrical Engineering, Penn State University, University Park, PA, USA. Abstract Precision antimicrobials that can kill pathogens without damaging host commensals hold potential to cure disease without antibiotic-associated dysbiosis. Here we report the de novo design of host defense peptides that have been rationally engineered to precisely target specific pathogens by mimicking key molecular features of the target microbe’s unique channel-forming membrane proteins, or porins. This biomimetic strategy exploits physical and structural motifs of the pathogen envelope, rather than targeting resistance-susceptible protein biochemical pathways, to construct fast-acting precision bacteriolytics. Utilizing this approach, we design an antitubercular sequence that undergoes instructed, tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensals or host tissue. These mycomembrane-templated mechanisms are rapid and synergistically enhance the potency of antibiotics that otherwise poorly diffuse across the rigid Mtb envelope, particularly those that exploit porins for antimycobacterial activity.
    [Show full text]
  • Transport and Catabolism of Murein Tripeptide in Escherichia Coli K-12
    Transport and catabolism of murein tripeptide in Escherichia coli K-12 Abbas Maqbool PhD University of York Department of Biology December 2011 Abstract In bacteria, extracellular peptides are not only a source of nutrients but also play important roles in cell-cell communication. The primary mode of uptake of these peptides in bacteria is via ATP Binding Cassette (ABC) transporters. The substrate- binding protein (SBP) of these transporters captures extracellular peptides and delivers them to membrane-bound components for transport. Bacterial peptide- binding SBPs that function in ABC transporters have evolved predominantly to function as generalists, recognising peptides of particular lengths but with low or no sequence specificity. However, within the peptide-specific SBPs are examples that appear to have evolved subsequently to recognise specific peptides. Here we have provided the first biophysical evidence, using native electrospray mass spectrometry, for the binding of a specific peptide to an Escherichia coli SBP. This peptide is a cell wall component named murein tripeptide (Mtp, L-Ala- -D-Glu- meso-Dap) and is transported by an ABC transporter containing the SBP MppA. We demonstrate that MppA recognises Mtp specifically and with high affinity (KD ~ 250 nM), as determined by protein fluorescence spectroscopy and isothermal titration calorimetry. The crystal structure of MppA in complex with Mtp has been solved in order to understand the structural basis of specific binding of Mtp to MppA. Comparison of the structure of MppA-Mtp with structures of general tripeptides bound to oligopeptide binding protein OppA, reveals close similarity in the protein chains which fold to form an enclosed interdomain pocket in which the respective peptides reside.
    [Show full text]
  • Complete Dissertation
    VU Research Portal PPE's and the ESX-5 secretion system Ates, L.S. 2016 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Ates, L. S. (2016). PPE's and the ESX-5 secretion system: Shining light on the dark matter of mycobacteria. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 30. Sep. 2021 PPE’S AND THE ESX 5 SECRETION SYSTEM SHINING LIGHT ON THE DARK MATTER OF MYCOBACTERIA Louis Simon Ates ISBN: 978-94-6182-658-9 Copyright © 2016 by L.S. Ates. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system without written permission from the author, or from publishers of the publications.
    [Show full text]
  • Toxin-Antitoxin
    201 9 Biofilms: A Phenotypic Mechanism of Bacteria Conferring Tolerance Against 18 Stress and Antibiotics Anwar Alam, Ashutosh Kumar, Prajna Tripathi, Nasreen Z. Ehtesham, and Seyed E. Hasnain Abstract Biofilm, as a heterogenous congregation of microbial cells enclosed within a pellicle, has largely gained attention due to their historical importance in environ- ment as sludges, flocs, slimes, etc. Biofilms in medical research have been an active area of research in periodontics, in wounds, and in surgical implants. With the availability of whole genome sequences, it is now evident that the mechanisms that control biofilm formation have largely remained conserved during the course of evolution, pointing to the fact that biofilm formation is an Anwar Alam, Ashutosh Kumar and Prajna Tripathi have contributed equally to this chapter. A. Alam JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi, India Inflammation Biology and Cell Signaling Laboratory, ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, Delhi, India A. Kumar Department of Microbiology, Tripura University (A Central University), Agartala, Tripura, India P. Tripathi National Institute of Immunology, New Delhi, Delhi, India JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi, India N. Z. Ehtesham Inflammation Biology and Cell Signaling Laboratory, ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, Delhi, India e-mail: [email protected] S. E. Hasnain (*) JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi, India Dr Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India e-mail: [email protected] # Springer Nature Singapore Pte Ltd. 2019 315 S. E.
    [Show full text]
  • Proquest Dissertations
    The Structure, Function and Regulation of Mycobacterial Porin-Encoding Genes Richard Alan Speight A thesis submitted in partial fulfilment of the requirements of University College London for the degree of Doctor of Philosophy Division of Mycobacterial Research National Institute for Medical Research Mill Hill London October 2000 ProQuest Number: U642571 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642571 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Index of Contents INDEX OF FIGURES..............................................................................................................................V INDEX OF TABLES______________________________________________________________ VII ABBREVIATIONS...............................................................................................................................VIII ABSTRACT.............................................................................................................................................. X 1. INTRODUCTION...............................................................................................................................1
    [Show full text]