Unraveling the Structure of the Mycobacterial Envelope Mamadou Daffe, Hedia Marrakchi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategies for Cryo-Electron Tomography of the Mycobacterial Cell Envelope and Its Pore Proteins and Functional Studies of Porin Mspa from Mycobacterium Smegmatis
Technische Universität München Max-Planck-Institut für Biochemie Abteilung für Molekulare Strukturbiologie Strategies for cryo-electron tomography of the mycobacterial cell envelope and its pore proteins and functional studies of porin MspA from Mycobacterium smegmatis Christian Werner Hoffmann Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. – Prof. Dr. J. Buchner Prüfer der Dissertation: 1. Hon. – Prof. Dr. W. Baumeister 2. Univ. – Prof. Dr. S. Weinkauf 3. Univ. – Prof. Dr. W. Liebl Die Dissertation wurde am 28.04.2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 14.07.2010 angenommen. TABLE OF CONTENTS A Table of contents A Table of contents .................................................................................................................... I B Abbreviations ........................................................................................................................ V C Zusammenfassung............................................................................................................ VIII D Summary ................................................................................................................................ X 1 Introduction ........................................................................................................................... 1 1.1 The genus Mycobacterium ............................................................................................. -
Expression and Regulation of the Porin Gene Mspa of Mycobacterium Smegmatis
Expression and regulation of the porin gene mspA of Mycobacterium smegmatis Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Dietmar Hillmann aus Nürnberg Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 15.12.2006 Vorsitzender der Promotionskommission: Prof. Dr. E. Bänsch Erstberichterstatter: Prof. Dr. M. Niederweis Zweitberichterstatter: Prof. Dr. A. Burkovski Index Index 1 Zusammenfassung / Summary 1 2 Introduction 2 2.1 The genus Mycobacterium 2 2.1.1 Taxonomy 2 2.1.2 The architecture of the mycobacterial cell wall 3 2.2 Porins: Structure and function in gram-negative bacteria 5 2.3 Mycobacterial porins 7 2.4 Porin regulation 10 2.5 Expression of mspA of M. smegmatis 12 2.6 Scope of the thesis 13 3 Results 14 3.1 Screening system to monitor mycobacterial promoter activity 14 3.2 Transcriptional mechanisms affecting mspA expression 18 3.2.1 Identification of the mspA promoter 18 3.2.2 A very long upstream DNA element is required for full activity of pmspA 22 3.2.3 Influence of translation initiation signals of pmspA on lacZ expression 24 3.2.4 Influence of a distal DNA element on pmspA activation 25 3.2.5 Alignment of the 5’ regions of mspA, mspB, mspC and mspD 27 3.3 Post-transcriptional mechanisms affecting mspA expression 28 3.3.1 Detection of an antisense RNA to the mspA transcript 28 3.3.2 Secondary structure of the 5’ UTR of mspA 31 3.4 pH dependent mspA expression -
Infection at the Wildlife-Livestock-Human Interface: Three Systems
Infection at the Wildlife- livestock-human interface: three systems Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Elsa Sandoval Barron 12/4/2017 Abstract Zoonoses involve interactions between at least three species: the pathogen and two hosts, one of which is human and the other a non-human (vertebrate) animal. More than 60% of human infectious diseases are zoonotic, and many have a wildlife host. Urbanisation and human population growth have increased the demand for food and land resources, which have increased interaction between humans, domestic animals and wildlife and thus the potential for cross-species transmission of infections. Most studies of such systems take place in tropical and developing countries where population change and biodiversity makes the emergence of high profile infections (eg Ebola and SARS) more likely. This study, however, focuses on four well known infections within the UK: bovine tuberculosis, water-borne cryptosporidiosis and giardiasis, and campylobacteriosis. The aim of this study was to investigate, using four infectious diseases of economic and public health importance in the UK as study systems, the role of wildlife in the epidemiology of multihost, zoonotic infections. Bovine tuberculosis (bTB) is an important zoonosis in many parts of the world, but human infection is rare in the UK owing to a policy of ‘test and cull’ in cattle and pasteurisation of milk. However, there has been an epidemic of bTB in British cattle in recent decades, the control of which is complicated by infection in badgers (Meles meles) and controversy over the control of wildlife infection. -
Some English Terms Used in Microbiology 1
Some English terms used in Microbiology 1 Shapes & Structures General terms Antibiotics and related Bacillus (pl. bacilli) Acid fast (acid fastness) ácido-alcohol resistente Acetylases Capsule Bacterial (adj.) Ampicillin Cell wall pared celular Bacterium (pl., bacteria): Beta-lactamase Coccus (cocci; and hence Staphylococcus, Bench: poyata Beta-lactamic Staphylococci) Biofilm Cephalosporin Core oligosaccharide núcleo oligosacarídico Burner (Bunsen Burner): mechero (Bunsen) Chloramphenicol Cortex Colony: colonia Colistin Fimbria (pl. fimbriae) Coverslip: (vidrio) cubreobjetos D-Cycloserine Flagellum (pl. flagella) Dye colorante DNA-gyrase Glycocalix Eukaryote or eucaryote Erythromycin Lipid A Incubator: estufa de incubación Ethambuthol Lipopolysaccharide Inoculating loop asa de siembra Fluoroquinolone Murein mureína Inoculum (inocula): Gentamicin (formerly gentamycin) Omp: outer membrane major protein proteína To flame: flamear Isoniazide de membrane externa Flask (Erlenmeyer flask): matraz Methicillin Outer membrane membrana externa Volumetric flask: matraz aforado Methylases PAMP (pathogen associated molecular pattern): Microorganism Nalidixic acid patrón molecular asociado a patógeno Motility movilidad Penicillin Peptidoglycan peptidoglucano Mycoplasm Penicillin binding protein (PBP) Periplasm periplasma Negative staining tinción negativa Phosphonomycin Periplasmic space espacio periplásmico Petri dish: placa de Petri Phosphorylases Permeability barrier barrera de permeabilidad Prokaryote or procaryote Polymyxin Pilus (pl. pili) Rack: -
MYCOBACTERIA.Pdf
MYCOBACTERIA Mycobacteria are widespread organisms, typically living in and food sources. Tuberculosis and the leprosy organisms are obligate parasites and are not found as free-living members of the genus. Mycobacteria are aerobic and nonmotile bacteria (except for the species Mycobacterium marinum, which has been shown to be motile within macrophages) that are characteristically acid fast. Mycobacteria have an outer membrane. They do not have capsules, and most do not form endospores. The distinguishing characteristic of all Mycobacterium species is that the cell wall is thicker than in many other bacteria, which is hydrophobic, waxy, and rich in mycolic acids/mycolates. The cell wall consists of the hydrophobic mycolate layer and a peptidoglycan layer held together by a polysaccharide, arabinogalactan. The cell wall makes a substantial contribution to the hardiness of this genus. The biosynthetic pathways of cell wall components are potential targets for new drugs for tuberculosis. Fig. 1 Mycobacterial cell wall: 1-outer lipids, 2-mycolic acid, 3-polysaccharides (arabinogalactan), 4-peptidoglycan, 5-plasma membrane, 6-lipoarabinomannan (LAM), 7- phosphatidylinositol mannoside, 8-cell wall skeleton. NONTUBERCULOUS MYCOBACTERIA – RUNYON CLASSIFICATION Runyon classification is a system of identifying mycobacteria on the basis of pigmentation and growth condition of the organisms. The Runyon classification of nontuberculous mycobacteria based on the rate of growth, production of yellow pigment and whether this pigment was produced in the dark or only after exposure to light. It was introduced by Ernest Runyon in 1959 (Fig. 111). On these bases, the nontuberculous mycobacteria are divided into four groups: Photochromogens (Group I) - produce nonpigmented colonies when grown in the dark and pigmented colonies only after exposure to light and reincubation (1M. -
The Regulation of Arsenic Metabolism in Rhizobium Sp. NT-26
The regulation of arsenic metabolism in Rhizobium sp. NT-26 Paula Corsini Madeira University College London Thesis submitted for the degree of Doctor of Philosophy 2016 I, Paula Corsini Madeira, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Date: Signed: II Abstract Arsenic (As) is a toxic metalloid and a major contaminant in terrestrial and aquatic environments. The two soluble forms, arsenite (AsIII) and arsenate (AsV) are toxic to most organisms. A range of phylogenetically distant bacteria are able to oxidize AsIII to the less toxic form, arsenate AsV using the periplasmic arsenite oxidase (AioBA). The two-component signal transduction system AioS/AioR and the AsIII-binding periplasmic protein AioX are required for AsIII oxidation and are involved in the transcriptional regulation of the aioBA operon. Most AsIII oxidisers can also reduce AsV to AsIII via the As (Ars) resistance system. The focus of this work was to understand the regulation of genes involved in AsIII oxidation and As resistance together with those involved in phosphate metabolism in the facultative chemolithoautotrophic AsIII oxidiser NT-26 grown under different conditions. Gene expression was studied by quantitative PCR in cells grown heterotrophically with and without AsIII or AsV in late-log and stationary phases. qPCR was optimised and suitable reference genes were chosen. The expression of genes involved in phosphate transport, sensing As and the genes aioX, aioS, aioR (AsIII-sensing and regulation) and aioB, aioA (AsIII oxidation) and cytC (cytochrome c) were also analysed in NT-26 grown heterotrophically in the presence or absence of AsIII or AsV at different growth stages (i.e., late-log and stationary phases). -
Streptococcus Pneumoniae Capsular Polysaccharide Is Linked to Peptidoglycan Via a Direct Glycosidic Bond to Β-D-N-Acetylglucosamine
Streptococcus pneumoniae capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β-D-N-acetylglucosamine Thomas R. Larsona and Janet Yothera,1 aDepartment of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170 Edited by Emil C. Gotschlich, The Rockefeller University, New York, NY, and approved April 14, 2017 (received for review December 20, 2016) For many bacteria, including those important in pathogenesis, (Und-P). In S. pneumoniae serotype 2 CPS, Glcp-1-P is trans- expression of a surface-localized capsular polysaccharide (CPS) can ferred from UDP-Glcp (11), and this is followed by addition of be critical for survival in host environments. In Gram-positive the remaining sugars (12, 13) to form the complete repeat unit bacteria, CPS linkage is to either the cytoplasmic membrane or the (Fig. 1). Und-P-P-oligosaccharide repeat units are translocated cell wall. Despite the frequent occurrence and essentiality of these to the outer face of the cytoplasmic membrane by Wzx and po- polymers, the exact nature of the cell wall linkage has not been lymerized into high molecular weight (MW) polysaccharide by described in any bacterial species. Using the Streptococcus pneu- Wzy. Growth occurs at the reducing end, with single or multiple moniae serotype 2 CPS, which is synthesized by the widespread repeat units being transferred en bloc from Und-P-P to an ac- Wzy mechanism, we found that linkage occurs via the reducing ceptor Und-P-P-oligosaccharide repeat unit. Hydrolysis of the β N- end glucose of CPS and the -D- acetylglucosamine (GlcNAc) res- donor Und-P-P that remains after transfer yields Und-P, which is idues of peptidoglycan (PG). -
Structure of the Mycobacterium Tuberculosis Ompatb Protein: a Model of an Oligomeric Channel in the Mycobacterial Cell Wall
proteins STRUCTURE O FUNCTION O BIOINFORMATICS Structure of the Mycobacterium tuberculosis OmpATb protein: A model of an oligomeric channel in the mycobacterial cell wall Yinshan Yang,1,2 Daniel Auguin,1,2,3 Ste´phane Delbecq,4 Emilie Dumas,1,2 Ge´rard Molle,1,2 Virginie Molle,5 Christian Roumestand,1,2* and Nathalie Saint1,2 1 Centre de Biochimie Structurale, CNRS UMR 5048, Universite´ Montpellier 1 et 2, F34090 Montpellier, France 2 INSERM U554 F34090 Montpellier, France 3 INRA, USC2030 ‘Arbres et Re´ponses aux Contraintes Hydrique et Environnementales’ (ARCHE), F-45067 Orle´ans Cedex 02, France 4 Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, Universite´ Montpellier 2, F34095 Montpellier Cedex 5, France 5 Institut de Biologie et de Chimie des Prote´ines, Universite´ de Lyon, CNRS UMR 5086, F69367 Lyon, France ABSTRACT INTRODUCTION The pore-forming outer membrane protein The etiological agent of tuberculosis (TB), Mycobacterium OmpATb from Mycobacterium tuberculosis is a viru- tuberculosis, causing nearly 2 million deaths per year, is presently lence factor required for acid resistance in host one of the most important infectious agents implicated in mortal- phagosomes. In this study, we determined the 3D ity worldwide. TB has emerged as a major public health threat structure of OmpATb by NMR in solution. We because of a significant increase in multiple-drug-resistant TB and found that OmpATb is composed of two independ- synergism between human immunodeficiency virus and M. tuber- ent domains separated by a proline-rich hinge culosis infection.1,2 One of the principle problems in TB therapy region. -
Cell Structure and Function in the Bacteria and Archaea
4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth. -
Antibitoic Treatment for Tuberculosis Induces a Profound Dysbiosis of the Gut Microbiome That Persists Long After Therapy Is Completed
ANTIBITOIC TREATMENT FOR TUBERCULOSIS INDUCES A PROFOUND DYSBIOSIS OF THE GUT MICROBIOME THAT PERSISTS LONG AFTER THERAPY IS COMPLETED A Thesis Presented to the Faculty of the Weill Cornell Graduate School of Medical Sciences in Partial Fulfillment of the Requirements for the Degree of Masters of Science by Matthew F. Wipperman May 2017 © 2017 Matthew F. Wipperman ABSTRACT Mycobacterium tuberculosis, the cause of Tuberculosis (TB), infects one third of the world’s population and causes substantial mortality worldwide. In its shortest format, treatment of drug sensitive TB requires six months of multidrug therapy with a mixture of broad spectrum and mycobacterial specific antibiotics, and treatment of multidrug resistant TB is much longer. The widespread use of this regimen worldwide makes this one the largest exposures of humans to antimicrobials, yet the effects of antimycobacterial agents on intestinal microbiome composition and long term stability are unknown. We compared the microbiome composition, assessed by both 16S rDNA and metagenomic DNA sequencing, of Haitian TB cases during antimycobacterial treatment and following cure by 6 months of TB therapy. TB treatment does not perturb overall diversity, but nonetheless dramatically depletes multiple immunologically significant commensal bacteria. The perturbation by TB therapy lasts at least 1.5 years after completion of treatment, indicating that the effects of TB treatment are long lasting and perhaps permanent. These results demonstrate that TB treatment has dramatic and durable effects on the intestinal microbiome and highlight unexpected extreme consequences of treatment for the world’s most common infection on human ecology. BIOGRAPHICAL SKETCH NAME POSITION TITLE Wipperman, Matthew Frederick Postdoctoral Researcher at eRA COMMONS USER NAME Memorial Sloan Kettering Cancer Center MFWIPPERMAN DEGREE INSTITUTION AND (if MM/YY FIELD OF STUDY LOCATION applicable) Franklin & Marshall College B.A. -
Chemical Probes to Visualize Bacterial Cell Structure and Physiology
molecules Review From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology Jonathan Hira 1, Md. Jalal Uddin 1 , Marius M. Haugland 2 and Christian S. Lentz 1,* 1 Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] (J.H.); [email protected] (M.J.U.) 2 Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; [email protected] * Correspondence: [email protected] Academic Editor: Steven Verhelst Received: 30 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways. Keywords: activity-based probe; antibiotic conjugate; bacterial imaging; bacterial uptake; fluorogenic substrate; metabolic labeling; phenotypic heterogeneity 1. Introduction—From 19th Century Microbiology to Modern Day Chemical Biology If chemical biology can be defined as the ‘interrogation of biological systems with chemical approaches’ [1], we must acknowledge some of the first microbiologists as chemical biologists. -
Mapping Interactions of Microbial Metabolites and Human Receptors
bioRxiv preprint doi: https://doi.org/10.1101/614537; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Classification: Biological Sciences - Microbiology Title: Mapping interactions of microbial metabolites and human receptors Authors: 1Dominic A. Colosimo, 1Jeffrey A. Kohn, 1Peter M. Luo, 3Sun M. Han, 2AmanDa J. PickarD, 2Arka Rao, 2Justin R. Cross, 3Louis J. Cohen, 1Sean F. BraDy* Author affiliation: 1Laboratory of Genetically EncoDeD Small Molecules, The Rockefeller University, 1230 York Avenue, New York City, NY 10065. 2DonalD B. anD Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York City NY 10065, USA. 3Division of Gastroenterology, Department of MeDicine, Icahn School of MeDicine at Mount Sinai, New York City, NY 10029, USA. *Corresponding Authors Sean F. BraDy Contact: Laboratory of Genetically EncoDeD Small Molecules The Rockefeller University 1230 York Avenue New York, NY 10065 Phone: 212-327-8280 Fax: 212-327-8281 Email: [email protected] Acknowledgements: All bacterial strains were generously proviDeD by Daniel MuciDa. High-resolution mass spectrometry of purifieD compounDs was performeD by Rockefeller University Proteomics Core. We are grateful to C. Fermin, E. Vazquez, anD G. Escano in the Precision Immunology Institute at the Icahn School of MeDicine at Mount Sinai (PrIISM) Gnotobiotic facility anD Microbiome Translational Center for their help with gnotobiotic experiments. FunDing was proviDeD by the Bill anD MelinDa Gates FounDation (OPP1168674) anD the National Institutes of Health (5R01AT009562–02). Keywords: primary metabolites, human microbiome, G-protein coupleD receptors Author Contributions: D.A.C., L.J.C.