Lactam Antibiotics in Water

Total Page:16

File Type:pdf, Size:1020Kb

Lactam Antibiotics in Water antibiotics Article Pitfalls in the Immunochemical Determination of β-Lactam Antibiotics in Water Alexander Ecke 1,2 and Rudolf J. Schneider 1,3,* 1 BAM Federal Institute for Materials Research and Testing, 12205 Berlin, Germany; [email protected] 2 Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany 3 Faculty III Process Sciences, Technische Universität Berlin, 10623 Berlin, Germany * Correspondence: [email protected]; Tel.: +49-30-8104-1151 Abstract: Contamination of waters with pharmaceuticals is an alarming problem as it may support the evolution of antimicrobial resistance. Therefore, fast and cost-effective analytical methods for potential on-site analysis are desired in order to control the water quality and assure the safety of its use as a source of drinking water. Antibody-based methods, such as the enzyme-linked immunosorbent assay (ELISA), can be helpful in this regard but can also have certain pitfalls in store, depending on the analyte. As shown here for the class of β-lactam antibiotics, hydrolysis of the β-lactam ring is a key factor in the immunochemical analysis as it influences antibody recognition. With the antibody used in this study, the limit of detection (LOD) in the immunoassay could be significantly reduced by hydrolysis for the five tested penicillins, with the lowest LOD for carbenicillin (0.2 nmol/L) and the greatest impact on penicillins G and V (reduction by 85%). In addition to enhanced quantification, our strategy also provides access to information about the degree of hydrolysis in water samples as shown for the most abundant penicillin amoxicillin. Keywords: β-lactams; penicillins; hydrolysis; ELISA; immunoassay Citation: Ecke, A.; Schneider, R.J. Pitfalls in the Immunochemical Determination of β-Lactam Antibiotics in Water. Antibiotics 2021, 1. Introduction 10, 298. https://doi.org/10.3390/ The overuse of antibiotics in human and veterinary medicine contributes to an increas- antibiotics10030298 ing discharge of pharmaceuticals and their metabolites into the environment via excretion and disposal [1–4]. The major concern about antibiotics in the environment and especially Academic Editor: Nicholas Dixon in (drinking) water is the potential evolution of antibiotic resistance, which poses a severe health risk to humans and animals [5–9]. From all classes of antibiotics, β-lactam antibiotics Received: 20 January 2021 are prescribed most frequently, and particularly the aminopenicillin amoxicillin (AMX, Accepted: 9 March 2021 Figure1) is found among the top 25 of all prescribed drugs per year in each of the past Published: 12 March 2021 20 years [10–13]. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. Figure 1. Chemical structure of amoxicillin (AMX). Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. As a consequence, AMX is traceable in many countries in hospital effluents, wastewa- This article is an open access article ter treatment plant influents as well as effluents, and eventually in surface waters which of- distributed under the terms and ten serve as a source of drinking water [14–21]. In addition to the parent drug, further risk conditions of the Creative Commons arises from the hydrolysis products of β-lactams, which can be formed after prolonged Attribution (CC BY) license (https:// residence time in water. Even though antibiotic activity is lost upon hydrolysis, the formed creativecommons.org/licenses/by/ hydrolysis products may still cause biological effects, e.g., allergenicity or ecotoxicity, 4.0/). that have not yet been investigated in detail [22,23]. Nevertheless, studies to identify Antibiotics 2021, 10, 298. https://doi.org/10.3390/antibiotics10030298 https://www.mdpi.com/journal/antibiotics Antibiotics 2021, 10, 298 2 of 12 those compounds and elucidate the mechanisms and kinetics of their formation have been carried out for the example of AMX [23–28]. In view of the numerous potential harmful metabolites that can be formed from β-lactams in the aquatic environment, effective screening for these compounds together with the unaltered parent antibiotic is required, especially since the Commission of the European Union has added AMX to a watch list of substances for Union-wide monitoring in the field of water policy [29]. Generally, mass spectrometry (MS)-based methods can be useful for this purpose as they enable highly accurate and sensitive determination of pharmaceutical compounds in water [30–34]. However, facing a large number of analytes, i.e., hydrolysis products of β-lactams, MS-based methods would be highly time-consuming and costly. Moreover, these instrumental methods require specially trained personnel as well as they are immobile and therefore not suitable for on-site testing. In contrast to this, immunochemical methods using specific antibodies allow for cost-effective on-site analysis with high throughput of samples and ease of experimentation. The standard technique in immunoassays can be considered the enzyme-linked immunosorbent assay (ELISA) which often serves as reference method for other assay formats. ELISAs for the determination of β-lactam antibiotics and particularly AMX have been developed previously but these studies focused on the determination of the unaltered drug and did not comprise studies on degradation products [35–37], even though the influence of β-lactam hydrolysis on antibody recognition has been reported before [38,39]. In this work, we present the first example of utilizing hydrolysis of β-lactams for the improved immunochemical determination of these compounds and their hydrolysis products, providing a method for the quick evaluation of drinking water safety and quality in terms of contamination with pharmaceuticals and therefore the risk of potential microbiological resistance development. 2. Results and Discussion 2.1. Hydrolysis of AMX While developing and optimizing an indirect competitive ELISA for the determination of AMX, we observed a significant shift in the calibration curves obtained for differently aged standard solutions (calibrators) of AMX in water. Interestingly, the curves for aged standard solutions were shifted to lower IC50 values, tantamount to a lower limit of detection. This shift reached its end point after two months of storage at 4 ◦C and could be ascribed to hydrolysis of the parent drug by hydrolyzing standard solutions of AMX in 0.1 M NaOH, which yielded a similar calibration curve in the ELISA (see Figure2). Under these conditions (pH 12.5), it was found that hydrolysis had proceeded to a certain level because no further shift in the calibration curve was observable after reaction times of 18 h at 4 ◦C or 3 h at RT, respectively. In order to discover the species that is recognized better by the antibody and therefore leads to the decreased IC50, several known hydrolysis products of AMX were synthesized or purchased as pure compounds and tested in the ELISA to compare their calibration curves. It was found that only the primary hydrolysis product amoxicilloic acid (HP1), which is formed by hydrolytic cleavage of the β-lactam ring, yields a complete inhibition curve in the examined concentration range (Figure3). It is noteworthy that the IC 50 of HP1 (7.48 ± 0.58 nM) is lower compared to hydrolyzed AMX, indicating that at least one additional species is formed in the hydrolyzed standards which shifts the calibration curve to an increased IC50 value again. Under the applied basic conditions, the formation of amoxicillin piperazine-2,5-dione (HP2, IC50 = 28,700 ± 1400 nM) by intramolecular ring closure of HP1 is feasible as well. The generation of the decarboxylation product amoxilloic acid (HP3) and 3-(4-hydroxyphenyl)-pyrazine-2-ol (HP4), which is considered a stable end product of AMX hydrolysis, are rather unlikely as their formation is favored under acidic conditions and elevated temperatures [23]. Antibiotics 2021, 10, 298 3 of 12 Figure 2. ELISA calibration curves obtained for standard solutions series of AMX after different treatments, (a) freshly prepared (reference), (b) aged for 2 months at 4 ◦C in a refrigerator, and (c) ◦ hydrolyzed during 24 h at 4 C, also in a fridge. IC50 values: (a) 1470 ± 120 nM, (b) 52.2 ± 4.4 nM, and (c) 38.1 ± 3.6 nM. Figure 3. ELISA calibration curves of selected AMX hydrolysis products and their structures. Given that the employed anti-AMX antibody shows an approximately 200-fold higher affinity towards HP1 than to the parent drug AMX, it appears probable that this antibody had been raised against HP1 rather than AMX. Depending on the immunogen synthesis strategy, i.e., the coupling of AMX to a carrier protein, the β-lactam ring could have been hydrolyzed prior to the immunization procedure. The producer of the antibody was contacted for details on the immunogen synthesis but classified this information as proprietary. However, as known from other immunogen syntheses, the coupling is often performed at alkaline pH allowing hydrolysis of the β-lactam ring to occur [36,38,40,41]. 2.2. Cross-Reactivity of Related Penicillins A similar trend was observed for related penicillins that were tested for cross-reactivity. Regarding their structure, the following β-lactams were chosen: (1) ampicillin (AMP) which is lacking the aromatic hydroxyl group of AMX; (2) carbenicillin (CRB) with the α-amino group of AMP exchanged for a carboxyl group; (3) penicillin G (PenG) lacking any functional group in α-position; and (4) penicillin V (PenV) with an additional oxygen atom linking the phenyl ring to the α-carbon. ELISA calibration curves were recorded Antibiotics 2021, 10, 298 4 of 12 for each compound before and after alkaline hydrolysis of the respective standards and compared to fresh and hydrolyzed AMX standards (see Figure4). Figure 4. (a) ELISA calibration curves of structurally similar β-lactams before, and (b) after hy- drolysis, and their structures (right). IC50 values (before; after hydrolysis): AMP (1350 ± 130 nM; 36.2 ± 3.7 nM), CRB (11.0 ± 0.4 nM; 3.8 ± 0.5 nM), PenG (700 ± 70 nM; 11.1 ± 1.7 nM), and PenV (702 ± 66 nM; 11.6 ± 2.5 nM).
Recommended publications
  • Simultaneous Determination of Amoxicillin and Clavulanic Acid in Pharmaceutical Preparations by Capillary Zone Electrophoresis
    Brazilian Journal of Pharmaceutical Sciences vol. 52, n. 2, apr./jun., 2016 Article http://dx.doi.org/10.1590/S1984-82502016000200006 Simultaneous determination of amoxicillin and clavulanic acid in pharmaceutical preparations by capillary zone electrophoresis Gabriel Hancu1,*, Anamaria Neacşu1, Lajos Attila Papp1, Adriana Ciurba2 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, TîrguMureş, Romania, 2Department of PharmaceuticalTechnology, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania Clavulanic acid enhances the antibacterial spectrum of amoxicillin by rendering most β-lactamase producing isolates susceptible to the drug. A fast, simple and efficient capillary electrophoresis method was developed for the simultaneous determination of amoxicillin and clavulanic acid from complex mixtures. Using a 25 mM sodium tetraborate as background electrolyte at a pH of 9.30, + 25 kV applied voltage, 25 °C system temperature, UV determination at 230 nm; we succeeded in simultaneous separation of amoxicillin and clavulanic acid in approximately 2 minutes. The analytical performance of the method was evaluated in terms of reproducibility, precision, accuracy, and linearity. The optimized analytical method was applied for the determination of the two analytes from combined commercial pharmaceutical preparations. This CE method is fast, inexpensive, efficient, and environmentally friendly when compared with the more frequently used high performance liquid chromatography methods described in the literature. Uniterms: Amoxicillin/determination. Clavulanic acid/determination. Capillary electrophoresis/ quantitative analysis. Antibacterials/quantitative analysis. O ácido clavulânico acentua o espectro antibacteriano de amoxicilina, tornando a maioria dos isolados produtores de β-lactamase sensíveis ao fármaco. Desenvolveu-se um método rápido, simples e eficiente de electroforese capilar (EC) para a determinação simultânea de amoxicilina e de ácido clavulânico a partir de misturas complexas.
    [Show full text]
  • Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update
    Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update Aline Fuchsa, Julia Bielickia,b, Shrey Mathurb, Mike Sharlandb, Johannes N. Van Den Ankera,c a Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland b Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom c Division of Clinical Pharmacology, Children’s National Health System, Washington, DC, USA WHO-Reviews 1 TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................................... 3 1.1. Aims ......................................................................................................................................... 3 1.2. Background ............................................................................................................................. 3 1.2.1. Definition and diagnosis ................................................................................................. 3 Neonatal Sepsis ............................................................................................................................... 3 Paediatric Sepsis ............................................................................................................................. 4 Community versus hospital acquired sepsis .................................................................................. 5 1.2.2. Microbiology ..................................................................................................................
    [Show full text]
  • Clinical Pharmacology of Ampicillin in Infants and Children
    Central Journal of Drug Design and Research Bringing Excellence in Open Access Review Article *Corresponding author Gian Maria Pacifici,Associate professorof Pharmacology,via Sant’Andrea 32,56127 Pisa,Italy. Clinical Pharmacology of Email: [email protected] Submitted: 19 April 2021 Accepted: 25 April 2021 Ampicillin in Infants and Published: 27 April 2021 ISSN: 2379-089X Children Copyright © 2021 Pacifici GM Gian Maria Pacifici* OPEN ACCESS Associate professorof Pharmacology, Italy Keywords Abstract • Ampicillin • Dosing Ampicillin is an aminopenicillin and is more active than penicillin G. Ampicillin is destroyed by β-lactamase • Treatment and is co-formulated with sulbactam an inhibitor of β-lactamase. Ampicillin is bactericidal and it is active • Trials against meningococci, Listeria monocytogenes, enterococci, and the co-administration with sulbactam markedly • Placental-transfer expands the spectrum of activity against Haemophilus influenzae, Escherichia coli, Proteus, and Bacillus fragilis. • Breast-milk Ampicillin may be administered intravenously and orally and the intravenous dose is 50 mg twice-daily and • Meningitis thrice-daily in preterm and term infants, respectively. The oral dose in children ranges from 125 to 500 mg 4 times-daily and increases with the chid age. Ampicillin has been found efficacy and safe in infants and children but may cause adverse-effects. In infants, the ampicillin elimination half-life ranges between 2.4 to 5.0 hours and decreases with infant maturation and in children it is about 0.8 hours. Ampicillin interacts with drugs, the treatment and the trials with ampicillin have been extensively studied in infants and children. This antibiotic freely crosses the human placenta but poorly migrates into the breast-milk.
    [Show full text]
  • Evaluation of the Coverage of 3 Antibiotic Regimens for Neonatal Sepsis in the Hospital Setting Across Asian Countries
    Original Investigation | Global Health Evaluation of the Coverage of 3 Antibiotic Regimens for Neonatal Sepsis in the Hospital Setting Across Asian Countries Julia A. Bielicki, MD; Mike Sharland, MD; Paul T. Heath, FRCPCH; A. Sarah Walker, PhD; Ramesh Agarwal, MD; Paul Turner, PhD; David A. Cromwell, PhD Abstract Key Points Question What is the antibiotic IMPORTANCE High levels of antimicrobial resistance in neonatal bloodstream isolates are being coverage offered by empirical neonatal reported globally, including in Asia. Local hospital antibiogram data may include too few isolates to sepsis treatment with aminopenicillin- meaningfully examine the expected coverage of antibiotic regimens. gentamicin, third-generation cephalosporins (cefotaxime or OBJECTIVE To assess the coverage offered by 3 antibiotic regimens for empirical treatment of ceftriaxone), and meropenem in Asian neonatal sepsis in Asian countries. countries? DESIGN, SETTING, AND PARTICIPANTS A decision analytical model was used to estimate coverage Findings In this decision analytical of 3 prespecified antibiotic regimens according to a weighted-incidence syndromic combination model based on a decision tree, 8376 antibiogram. Relevant data to parameterize the models were identified from a systematic search of isolates from 10 countries were used to Ovid MEDLINE and Embase. Data from Asian countries published from 2014 onward were of interest. estimate coverage. Meropenem Only data on blood culture isolates from neonates with sepsis, bloodstream infection, or bacteremia generally had the highest coverage reported from the relevant setting were included. Data analysis was performed from April 2019 to (from 64.0% in India to 90.6% in July 2019. Cambodia) followed by aminopenicillin- gentamicin (from 35.9% in Indonesia to EXPOSURES The prespecified regimens of interest were aminopenicillin-gentamicin, third- 81.0% in Laos) and cefotaxime or generation cephalosporins (cefotaxime or ceftriaxone), and meropenem.
    [Show full text]
  • Reflection Paper on the Use of Aminopenicillins and Their Beta
    1 13 September 2018 2 EMA/CVMP/AWP/842786/2015 3 Committee for Medicinal Products for Veterinary Use (CVMP) 4 Reflection paper on the use of aminopenicillins and their 5 beta-lactamase inhibitor combinations in animals in the 6 European Union: development of resistance and impact 7 on human and animal health 8 Draft Draft agreed by Antimicrobials Working Party (AWP) 9 July 2018 Adopted by CVMP for release for consultation 13 September 2018 Start of public consultation 21 September 2018 End of consultation (deadline for comments) 21 December 2018 9 Comments should be provided using this template. The completed comments form should be sent to [email protected] 10 Keywords aminopenicillins, antimicrobial resistance 11 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. 12 13 Table of contents 14 Executive summary ..................................................................................... 4 15 CVMP Recommendations for action ............................................................. 6 16 1. Background ............................................................................................. 7 17 2. General drug characteristics .................................................................... 8 18 2.1. Structure and mechanism of action ......................................................................
    [Show full text]
  • FINRES-Vet 2016–2017 Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents
    Evira publications 5/2018 FINRES-Vet 2016–2017 Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents Evira publications 5/2018 FINRES-Vet 2016–2017 Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents FINRES-Vet 2016–2017 - Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents Authors and institutions participating in making the FINRES-Vet report Finnish Food Safety Authority Evira Suvi Nykäsenoja, Tarja Pohjanvirta, Mia Biström, Mirja Raunio-Saarnisto, Liisa Kaartinen, Henriette Helin-Soilevaara, Katariina Pekkanen Finnish Medicines Agency FIMEA Katariina Kivilahti-Mäntylä, Martti Nevalainen Faculty of Veterinary Medicine, University of Helsinki Merja Rantala, Thomas Grönthal Acknowledgements The coordinators of the FINRES-Vet programme wish to thank the meat inspection personnel of Evira and slaughterhouses for collecting the samples from animals at slaughter. Also, the personnel of Evira who has participated in the meat sampling at retail are acknowledged. Any use of data from FINRES-Vet 2016–2017 should include a specific reference to this report. Suggested citation: FINRES-Vet 2016-2017, Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents, Finnish Food Safety Authority Evira, Helsinki, Finland, ISSN 1797-299X, ISBN 978-952-225-173-2 (pdf). This report is available at www.evira.fi FINRES-Vet 2016–2017 - Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption
    [Show full text]
  • ARCH-Vet Anresis.Ch
    Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland Joint report 2013 ARCH-Vet anresis.ch Publishing details © Federal Office of Public Health FOPH Published by: Federal Office of Public Health FOPH Publication date: November 2015 Editors: Federal Office of Public Health FOPH, Division Communicable Diseases. Elisabetta Peduzzi, Judith Klomp, Virginie Masserey Design and layout: diff. Marke & Kommunikation GmbH, Bern FOPH publication number: 2015-OEG-17 Source: SFBL, Distribution of Publications, CH-3003 Bern www.bundespublikationen.admin.ch Order number: 316.402.eng Internet: www.bag.admin.ch/star www.blv.admin.ch/gesundheit_tiere/04661/04666 Table of contents 1 Foreword 4 Vorwort 5 Avant-propos 6 Prefazione 7 2 Summary 10 Zusammenfassung 12 Synthèse 14 Sintesi 17 3 Introduction 20 3.1 Antibiotic resistance 20 3.2 About anresis.ch 20 3.3 About ARCH-Vet 21 3.4 Guidance for readers 21 4 Abbreviations 24 5 Antibacterial consumption in human medicine 26 5.1 Hospital care 26 5.2 Outpatient care 31 5.3 Discussion 32 6 Antibacterial sales in veterinary medicines 36 6.1 Total antibacterial sales for use in animals 36 6.2 Antibacterial sales – pets 37 6.3 Antibacterial sales – food producing animals 38 6.4 Discussion 40 7 Resistance in bacteria from human clinical isolates 42 7.1 Escherichia coli 42 7.2 Klebsiella pneumoniae 44 7.3 Pseudomonas aeruginosa 48 7.4 Acinetobacter spp. 49 7.5 Streptococcus pneumoniae 52 7.6 Enterococci 54 7.7 Staphylococcus aureus 55 Table of contents 1 8 Resistance in zoonotic bacteria 58 8.1 Salmonella spp.
    [Show full text]
  • Swedres-Svarm 2005
    SVARM Swedish Veterinary Antimicrobial Resistance Monitoring Preface .............................................................................................4 Summary ..........................................................................................6 Sammanfattning................................................................................7 Use of antimicrobials (SVARM 2005) .................................................8 Resistance in zoonotic bacteria ......................................................13 Salmonella ..........................................................................................................13 Campylobacter ...................................................................................................16 Resistance in indicator bacteria ......................................................18 Escherichia coli ...................................................................................................18 Enterococcus .....................................................................................................22 Resistance in animal pathogens ......................................................32 Pig ......................................................................................................................32 Cattle ..................................................................................................................33 Horse ..................................................................................................................36 Dog
    [Show full text]
  • Incidence of Pneumonia in Nursing Home Residents in Germany: Results of a Claims Data Analysis
    Epidemiology and Infection Incidence of pneumonia in nursing home residents in Germany: results of a claims cambridge.org/hyg data analysis Original Paper A. M. Fassmer, O. Spreckelsen and F. Hoffmann – Cite this article: Fassmer AM, Spreckelsen O, Department of Health Services Research, School VI Medicine and Health Sciences, Carl von Ossietzky University Hoffmann F (2018). Incidence of pneumonia in Oldenburg, Ammerländer Heerstraße 140, Oldenburg, Lower Saxony, Germany nursing home residents in Germany: results of a claims data analysis. Epidemiology and Abstract Infection 146, 1123–1129. https://doi.org/ 10.1017/S0950268818000997 Pneumonia is one of the most common infectious diseases with a high mortality, especially in the elderly population. To date, there have been only a few population-based studies dealing Received: 10 November 2017 with the incidence of pneumonia in nursing homes (NHs). We conducted a cohort study Revised: 24 February 2018 Accepted: 2 April 2018 using data from a large German statutory health insurance fund. Between 2010 and 2014, First published online: 26 April 2018 127 227 NH residents 65 years and older were analysed. For the calculation of incidences per 100 person-years (PY) and 95% confidence intervals (CIs), we assessed the first diagnosis Key words: of pneumonia during the time in NH. We compared the rates between sexes, age groups, care Claims data; elderly; Germany; incidence; nursing home; pneumonia levels, and comorbidities and we performed a multivariate Cox regression analysis. The mean age in the cohort was 84.0 years (74.6% female). A total of 19 183 incident cases led to an Author for correspondence: overall 5-year-incidence of 11.8 per 100 PY (95% CI 11.7–12.0).
    [Show full text]
  • Antibiotic Prescribing – Quality Indicators
    Clinical Microbiology and Infection, Volume 12, Supplement 4, 2006 Antibiotic prescribing – quality indicators P1460 Methods: Medical records from all patients with positive blood Is self-medication with antibiotics in Europe cultures in 2001 were analysed retrospectively. Factors driven by prescribed use? predisposing to infections, results of blood cultures, antibiotic use, and outcome were recorded. L. Grigoryan, F.M. Haaijer-Ruskamp, J.G.M. Burgerhof, Results: The antibiotic use in 226 episodes of true bacteraemia J.E. Degener, R. Deschepper, D. Monnet, A. Di Matteo, were analysed. According to guidelines empirical antibiotic ˚ and the SAR E.A. Scicluna, A. Bara, C. Stalsby Lundborg, J. Birkin treatment should be adjusted in 166 episodes. Antibiotic use was group adjusted in 146 (88%) of these 166 episodes, which led to a Objectives: The occurrence of self-medication with antibiotics narrowing of therapy in 118 (80%) episodes. Compared to has been described in the US and Europe, a possible empirical therapy there was a 22% reduction in the number of contributing factor to increased antibiotic resistance. An antibiotics. Adjustment of therapy was more often performed in important reason for using self-medication can be past Gram-negative bacteraemia and polymicrobial cultures than in experience with antibiotics prescribed by health professionals. Gram-positive bacteraemia. In bacteraemia caused by We investigated whether self-medication in Europe follows the ampicillin-resistant E. coli, ampicillin was mostly replaced by same pattern as prescribed use. ciprofloxacin. The cost for 7 days adjusted therapy was 19800 Methods: A population survey was conducted in: North and EUR (23%) less than for 7 days of empirical therapy.
    [Show full text]
  • جامعة كرري الصيدلة كلية Pharmaceutical Microbiology III 2021
    بسمميحرلا نمحرلا هللا جامعة كرري كلية الصيدلة Pharmaceutical Microbiology III 2021 Lecture (2)Part 1 Semi-synthetic Penicillin Dr.Eithar Karrar M.Pharm OIU2011 Karary university Dr. Eithar Karrar 2021 1 Objectives 1 • By the end of this part students should know regarding the following other types of penicillin’s:- • Their members. • Properties. • Spectrum of activity & therapeutic uses. • Side effects. • Drug drug interaction. Karary university Dr. Eithar Karrar 2021 1.Cell wall inhibitors-beta-lactam antibiotic 1.penicillin 2.Penicllinase-resistant Penicillin characteristics members • They are active against • Methicillin. Staphylococci that produce • Nafcillin. penicillinase. • Isoxazolyl penicillin. • These pencillin are not • Cloxacillin. hydrolyzed by beta- • lactamase. Dicloxacillin. • Oxacillin • Flucloxacillin. Karary university Dr. Eithar Karrar 2021 1.Cell wall inhibitors 2.Penicllinase-resistant Penicillin Therapeutic Uses &spectrum of activity Pharmacokinetics • Penicillinase resistant • Nafcillin is excreted by liver. penicillins are used solely in • therefore may be useful in Staphylococcal infection treating Staphylococcal resulting from organisms infection in patient with that resist natural renal failure. penicillins. • These agents are less potent than natural penicillin. Karary university Dr. Eithar Karrar 2021 1.Cell wall inhibitors 2.Penicllinase-resistant Penicillin Adverse effects Significant interactions • Hypersensitivity reactions. • Probencid increase blood • Methicillin may cause levels of these penicillin and nepherotoxicity and may be given concurrently intestinal nepharitis. for this purpose . • Oxacillin may be hepatotoxic. • Cross-reaction exist among Penicillinase resistant penicillin. Karary university Dr. Eithar Karrar 2021 1.Cell wall inhibitors 3.Aminopenicillin (Broad-spectrum penicillins) Important properties Members • They are semi-synethetic 1. Ampicillin. agents. 2. Amoxycillin. • They have a wider 3. bacampicillins antibacterial spectrum. • therefore they are known as (broad-spectrum penicillins).
    [Show full text]
  • Antimicrobial Use and Resistance (AUR) Module
    February 2021 Antimicrobial Use and Resistance (AUR) Module Contents Antimicrobial Use and Resistance (AUR) Module ................................................................................. 1 Introduction .................................................................................................................................................. 1 1. Antimicrobial Use (AU) Option ................................................................................................................. 2 Introduction ......................................................................................................................................... 2 Requirements ....................................................................................................................................... 3 Data Analyses ....................................................................................................................................... 8 References .......................................................................................................................................... 14 Appendix A. Table of Instructions: Antimicrobial Use Option ........................................................... 15 Appendix B. List of Antimicrobials...................................................................................................... 17 Appendix C. Example Calculations of Antimicrobial Days .................................................................. 21 Appendix D: List of SAARsa ................................................................................................................
    [Show full text]