PTJA11-Cefiderocol-Core-Submission-Dossier-V1.0.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simultaneous Determination of Amoxicillin and Clavulanic Acid in Pharmaceutical Preparations by Capillary Zone Electrophoresis
Brazilian Journal of Pharmaceutical Sciences vol. 52, n. 2, apr./jun., 2016 Article http://dx.doi.org/10.1590/S1984-82502016000200006 Simultaneous determination of amoxicillin and clavulanic acid in pharmaceutical preparations by capillary zone electrophoresis Gabriel Hancu1,*, Anamaria Neacşu1, Lajos Attila Papp1, Adriana Ciurba2 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, TîrguMureş, Romania, 2Department of PharmaceuticalTechnology, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania Clavulanic acid enhances the antibacterial spectrum of amoxicillin by rendering most β-lactamase producing isolates susceptible to the drug. A fast, simple and efficient capillary electrophoresis method was developed for the simultaneous determination of amoxicillin and clavulanic acid from complex mixtures. Using a 25 mM sodium tetraborate as background electrolyte at a pH of 9.30, + 25 kV applied voltage, 25 °C system temperature, UV determination at 230 nm; we succeeded in simultaneous separation of amoxicillin and clavulanic acid in approximately 2 minutes. The analytical performance of the method was evaluated in terms of reproducibility, precision, accuracy, and linearity. The optimized analytical method was applied for the determination of the two analytes from combined commercial pharmaceutical preparations. This CE method is fast, inexpensive, efficient, and environmentally friendly when compared with the more frequently used high performance liquid chromatography methods described in the literature. Uniterms: Amoxicillin/determination. Clavulanic acid/determination. Capillary electrophoresis/ quantitative analysis. Antibacterials/quantitative analysis. O ácido clavulânico acentua o espectro antibacteriano de amoxicilina, tornando a maioria dos isolados produtores de β-lactamase sensíveis ao fármaco. Desenvolveu-se um método rápido, simples e eficiente de electroforese capilar (EC) para a determinação simultânea de amoxicilina e de ácido clavulânico a partir de misturas complexas. -
12. What's Really New in Antibiotic Therapy Print
What’s really new in antibiotic therapy? Martin J. Hug Freiburg University Medical Center EAHP Academy Seminars 20-21 September 2019 Newsweek, May 24-31 2019 Disclosures There are no conflicts of interest to declare EAHP Academy Seminars 20-21 September 2019 Antiinfectives and Resistance EAHP Academy Seminars 20-21 September 2019 Resistance of Klebsiella pneumoniae to Pip.-Taz. olates) EAHP Academy Seminars 20-21 September 2019 https://resistancemap.cddep.org/AntibioticResistance.php Multiresistant Pseudomonas Aeruginosa Combined resistance against at least three different types of antibiotics, 2017 EAHP Academy Seminars 20-21 September 2019 https://atlas.ecdc.europa.eu/public/index.aspx Distribution of ESBL producing Enterobacteriaceae EAHP Academy Seminars 20-21 September 2019 Rossolini GM. Global threat of Gram-negative antimicrobial resistance. 27th ECCMID, Vienna, 2017, IS07 Priority Pathogens Defined by the World Health Organisation Critical Priority High Priority Medium Priority Acinetobacter baumanii Enterococcus faecium Streptococcus pneumoniae carbapenem-resistant vancomycin-resistant penicillin-non-susceptible Pseudomonas aeruginosa Helicobacter pylori Haemophilus influenzae carbapenem-resistant clarithromycin-resistant ampicillin-resistant Enterobacteriaceae Salmonella species Shigella species carbapenem-resistant fluoroquinolone-resistant fluoroquinolone-resistant Staphylococcus aureus vancomycin or methicillin -resistant Campylobacter species fluoroquinolone-resistant Neisseria gonorrhoae 3rd gen. cephalosporin-resistant -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Burkholderia Pseudomallei Clinical Isolates Are Highly Susceptible in Vitro To
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.009134; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Burkholderia pseudomallei clinical isolates are highly susceptible in vitro to 2 cefiderocol, a novel siderophore cephalosporin 3 Delaney Burnard1,6, Gemma Robertson1,2,4, Andrew Henderson1,5, Caitlin Falconer1, Michelle 4 Bauer-Leo1, Kyra Cottrell1, Ian Gassiep2,3, Robert Norton8,9, David L. Paterson1,3, Patrick N. 5 A. Harris1,2* 6 7 1University of Queensland Centre for Clinical Research, Herston, Queensland, Australia 8 2Pathology Queensland, Queensland Health, Herston, Queensland, Australia 9 3Royal Brisbane and Women’s Hospital, Queensland Health, Herston, Queensland, Australia 10 4Forensic and Scientific Services, Queensland Health, Coopers Plains, Queensland, Australia 11 5Princess Alexandra Hospital, Queensland Health, Woolloongabba, Queensland, Australia 12 6Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia 13 8Townsville Hospital and Health Service, Townsville, Queensland, Australia 14 9School of Medicine, James cook university, Townsville, Queensland, Australia 15 16 *Corresponding author: [email protected] 17 University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Royal Brisbane & Women’s 18 Hospital, Herston, QLD, 4029, Australia 19 20 Running title: B. pseudomallei in vitro susceptibility to cefiderocol 21 Keywords: melioidosis, Burkholderia pseudomallei, cefiderocol, antimicrobial resistance, 22 AMR, minimum inhibitory concentration, MIC 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.26.009134; this version posted March 27, 2020. -
Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update
Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update Aline Fuchsa, Julia Bielickia,b, Shrey Mathurb, Mike Sharlandb, Johannes N. Van Den Ankera,c a Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, Basel, Switzerland b Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom c Division of Clinical Pharmacology, Children’s National Health System, Washington, DC, USA WHO-Reviews 1 TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................................... 3 1.1. Aims ......................................................................................................................................... 3 1.2. Background ............................................................................................................................. 3 1.2.1. Definition and diagnosis ................................................................................................. 3 Neonatal Sepsis ............................................................................................................................... 3 Paediatric Sepsis ............................................................................................................................. 4 Community versus hospital acquired sepsis .................................................................................. 5 1.2.2. Microbiology .................................................................................................................. -
Endosymbiont Diversity and Evolution Across Weevil Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/171181; this version posted August 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Endosymbiont diversity and evolution across weevil tree of life Guanyang Zhang1#, Patrick Browne1,2#, Geng Zhen1#, Andrew Johnston4, Hinsby Cadillo-Quiroz5, and Nico Franz1 1 School of Life Sciences, Arizona State University, Tempe, Arizona, USA 2 Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark # These authors contributed equally to this work ABSTRACT As early as the time of Paul Buchner, a pioneer of endosymbionts research, it was shown that weevils host diverse bacterial endosymbionts, probably only second to the hemipteran insects. To date, there is no taxonomically broad survey of endosymbionts in weevils, which preclude any systematic understanding of the diversity and evolution of endosymbionts in this large group of insects, which comprise nearly 7% of described diversity of all insects. We gathered the largest known taxonomic sample of weevils representing four families and 17 subfamilies to perform a study of weevil endosymbionts. We found that the diversity of endosymbionts is exceedingly high, with as many as 44 distinct kinds of endosymbionts detected. We recovered an ancient origin of association of Nardonella with weevils, dating back to 124 MYA. We found repeated losses of this endosymbionts, but also cophylogeny with weevils. We also investigated patterns of coexistence and coexclusion. INTRODUCTION Weevils (Insecta: Coleoptera: Curculionoidea) host diverse bacterial endosymbionts. -
209445Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 209445Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review Clinical Microbiology/Virology Multi-Disciplinary Review and Evaluation NDA 209445 FETROJA (cefiderocol) for Injection NDA Multi-Disciplinary Review and Evaluation Application Type 505(b)(1) NDA Type 1 NME Application Number(s) NDA 209445 Priority or Standard Priority Submit Date(s) December 14, 2018 Received Date(s) December 14, 2018 PDUFA Goal Date November 14, 2019 Division/Office Division of Anti-Infectives/Office of Infectious Diseases Review Completion Date See DARRTS electronic signature page Established/Proper Name Cefiderocol (Proposed) Trade Name FETROJA Pharmacologic Class Cephalosporin Code Names S-649266; RSC-649266; GSK2696266 Applicant Shionogi USA, Inc. Dosage Form Lyophilized powder for Injection, 1 gram per vial Dosing Regimen Cefiderocol 2 gm intravenous infusion every 8 hours for 7-14 days Applicant Proposed Treatment of complicated urinary tract infections (cUTI), including Indication/Population pyelonephritis, due to Gram-negative bacteria in patients with limited or no alternative treatment options Regulatory Action Approval Recommended Treatment of cUTI, including pyelonephritis, due to susceptible Indication(s)/Population(s) Gram-negative bacteria in patients 18 years of age or older with limited or no alternative treatment options 1 Reference ID: 4520111 Multi-Disciplinary -
FDA Briefing Document Meeting of The
FDA Briefing Document Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC) October 16, 2019 Cefiderocol Injection Applicant: Shionogi, Inc. Proposed Indication: The treatment of complicated urinary tract infections (cUTI), including pyelonephritis due to Gram-negative bacteria in patients with limited or no alternative treatment options 1 DISCLAIMER STATEMENT: The attached package contains background information prepared by the Food and Drug Administration (FDA) for the panel members of the advisory committee. The FDA background package often contains assessments and/or conclusions and recommendations written by individual FDA reviewers. Such conclusions and recommendations do not necessarily represent the final position of the individual reviewers, nor do they necessarily represent the final position of the Review Division or Office. We have brought cefiderocol to this Advisory Committee in order to gain the Committee’s insights and opinions, and the background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues identified by the Agency for discussion by the Advisory Committee. The FDA will not issue a final determination on the issues at hand until input from the advisory committee process has been considered and all reviews have been finalized. The final determination may be affected by issues not discussed at the advisory committee meeting. 2 Table of Contents 1 Introduction ................................................................................................................ -
Diversity of Culturable Gut Bacteria of Diamondback Moth, Plutella Xylostella (Linnaeus) (Lepidoptera: Yponomeutidae) Collected
Diversity of Culturable Gut Bacteria of Diamondback Moth, Plutella Xylostella (Linnaeus) (Lepidoptera: Yponomeutidae) Collected From Different Geographical Regions of India Mandeep Kaur ( [email protected] ) Dr Yashwant Singh Parmar University of Horticulture and Forestry https://orcid.org/0000-0002-6118- 9447 Meena Thakur Dr Yashwant Singh Parmar University of Horticulture and Forestry Vinay Sagar ICAR-CPRI: Central Potato Research Institute Ranjna Sharma Dr Yashwant Singh Parmar University of Horticulture and Forestry Research Article Keywords: Plutella xylostella, Bacteria, DNA, Phylogeny Posted Date: May 25th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-510613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Diamondback moth, Plutella xylostella is one of the important pests of cole crops, the larvae of which cause damage to leaves from seedling stage to the harvest thus reducing the quality and quantity of the yield. The insect gut posses a large variety of microbial communities among which, the association of bacteria is the most spread and common. Due to variations in various agro-climatic factors, the insect often assumes the status of major pest. These geographical variations in insects inuence various biological parameters including insecticide resistance due to diversity of microbes/bacteria. The diverse role of gut bacteria in insect tness traits has now gained perspectives for biotechnological exploration. The present study was aimed to determine the diversity of larval gut bacteria of diamondback moth collected from ve different geographical regions of India. The gut bacteria of this pest were found to be inuenced by different geographical regions. -
Clinical Pharmacology of Ampicillin in Infants and Children
Central Journal of Drug Design and Research Bringing Excellence in Open Access Review Article *Corresponding author Gian Maria Pacifici,Associate professorof Pharmacology,via Sant’Andrea 32,56127 Pisa,Italy. Clinical Pharmacology of Email: [email protected] Submitted: 19 April 2021 Accepted: 25 April 2021 Ampicillin in Infants and Published: 27 April 2021 ISSN: 2379-089X Children Copyright © 2021 Pacifici GM Gian Maria Pacifici* OPEN ACCESS Associate professorof Pharmacology, Italy Keywords Abstract • Ampicillin • Dosing Ampicillin is an aminopenicillin and is more active than penicillin G. Ampicillin is destroyed by β-lactamase • Treatment and is co-formulated with sulbactam an inhibitor of β-lactamase. Ampicillin is bactericidal and it is active • Trials against meningococci, Listeria monocytogenes, enterococci, and the co-administration with sulbactam markedly • Placental-transfer expands the spectrum of activity against Haemophilus influenzae, Escherichia coli, Proteus, and Bacillus fragilis. • Breast-milk Ampicillin may be administered intravenously and orally and the intravenous dose is 50 mg twice-daily and • Meningitis thrice-daily in preterm and term infants, respectively. The oral dose in children ranges from 125 to 500 mg 4 times-daily and increases with the chid age. Ampicillin has been found efficacy and safe in infants and children but may cause adverse-effects. In infants, the ampicillin elimination half-life ranges between 2.4 to 5.0 hours and decreases with infant maturation and in children it is about 0.8 hours. Ampicillin interacts with drugs, the treatment and the trials with ampicillin have been extensively studied in infants and children. This antibiotic freely crosses the human placenta but poorly migrates into the breast-milk. -
Evaluation of the Coverage of 3 Antibiotic Regimens for Neonatal Sepsis in the Hospital Setting Across Asian Countries
Original Investigation | Global Health Evaluation of the Coverage of 3 Antibiotic Regimens for Neonatal Sepsis in the Hospital Setting Across Asian Countries Julia A. Bielicki, MD; Mike Sharland, MD; Paul T. Heath, FRCPCH; A. Sarah Walker, PhD; Ramesh Agarwal, MD; Paul Turner, PhD; David A. Cromwell, PhD Abstract Key Points Question What is the antibiotic IMPORTANCE High levels of antimicrobial resistance in neonatal bloodstream isolates are being coverage offered by empirical neonatal reported globally, including in Asia. Local hospital antibiogram data may include too few isolates to sepsis treatment with aminopenicillin- meaningfully examine the expected coverage of antibiotic regimens. gentamicin, third-generation cephalosporins (cefotaxime or OBJECTIVE To assess the coverage offered by 3 antibiotic regimens for empirical treatment of ceftriaxone), and meropenem in Asian neonatal sepsis in Asian countries. countries? DESIGN, SETTING, AND PARTICIPANTS A decision analytical model was used to estimate coverage Findings In this decision analytical of 3 prespecified antibiotic regimens according to a weighted-incidence syndromic combination model based on a decision tree, 8376 antibiogram. Relevant data to parameterize the models were identified from a systematic search of isolates from 10 countries were used to Ovid MEDLINE and Embase. Data from Asian countries published from 2014 onward were of interest. estimate coverage. Meropenem Only data on blood culture isolates from neonates with sepsis, bloodstream infection, or bacteremia generally had the highest coverage reported from the relevant setting were included. Data analysis was performed from April 2019 to (from 64.0% in India to 90.6% in July 2019. Cambodia) followed by aminopenicillin- gentamicin (from 35.9% in Indonesia to EXPOSURES The prespecified regimens of interest were aminopenicillin-gentamicin, third- 81.0% in Laos) and cefotaxime or generation cephalosporins (cefotaxime or ceftriaxone), and meropenem. -
Reflection Paper on the Use of Aminopenicillins and Their Beta
1 13 September 2018 2 EMA/CVMP/AWP/842786/2015 3 Committee for Medicinal Products for Veterinary Use (CVMP) 4 Reflection paper on the use of aminopenicillins and their 5 beta-lactamase inhibitor combinations in animals in the 6 European Union: development of resistance and impact 7 on human and animal health 8 Draft Draft agreed by Antimicrobials Working Party (AWP) 9 July 2018 Adopted by CVMP for release for consultation 13 September 2018 Start of public consultation 21 September 2018 End of consultation (deadline for comments) 21 December 2018 9 Comments should be provided using this template. The completed comments form should be sent to [email protected] 10 Keywords aminopenicillins, antimicrobial resistance 11 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. 12 13 Table of contents 14 Executive summary ..................................................................................... 4 15 CVMP Recommendations for action ............................................................. 6 16 1. Background ............................................................................................. 7 17 2. General drug characteristics .................................................................... 8 18 2.1. Structure and mechanism of action ......................................................................