Pre-Meeting Background Material for the 2011 International Workshop On

Total Page:16

File Type:pdf, Size:1020Kb

Pre-Meeting Background Material for the 2011 International Workshop On Pre-meeting background material for the 2011 International Workshop on the Science and Conservation of Asian Horseshoe Crabs (13-16 June 2011, Hong Kong, China] Carl N. Shuster Jr. NOTE: Because I will not be able to attend the workshop, this paper is intended for distribution to participants ahead of time so that if any questions arise on it or other topics, they can be sent to me before 30 April 2011 so that I can respond prior to the workshop. In addition, a video keynote address will be presented at the workshop. SUGGESTIONS: In preparation of background material for the workshop I: Used Biology and Conservation of Horseshoe Crabs (2009), The American Horseshoe Crab (2003), and Biology of Horseshoe Crabs (1988) as guides; Assembled and read recent papers on populations (viz.: papers co-authored by David R. Smith et al.; Winston Watson III et al., etc.); Assembled and read recent papers on habitat (viz.: Jackson, Nordstrom 2009; Jackson, Smith, Nordstrom 2008; Jackson, Nordstrom, Smith 2002; etc.); Prepared the attached background information, based primarily on what authors have sent to me (my thanks to them, as I do not frequently get to libraries) and some internet searches. Within the past two decades there probably have been more publications on Limulus polyphemus than in all previous years on a wide range of topics including spawning, fecundity, egg transport, population dynamics, distribution and migrations, fossil species, and habitat changes, etc. So much, it seems to me, that much effort will be needed to assimilate what has accumulated. Developed a table of questions and answers pertaining to Limulus, as a guide to preparation of what would be more pertinent to the Asian species. The following material may not be the information that you expected or hoped for. If so, I am willing to attempt to provide it and to answer questions on Limulus, prior to the workshop. Please send questions to [email protected] before 30 April 2011. 1 Limulus polyphemus as a Model for the Conservation of Horseshoe Crabs Carl N. Shuster Jr. Virginia Institute/School of Marine Science, The College of William & Mary March 2011 PROLOGUE I am honored and humbled by the invitation to keynote ways in which Limulus might serve as a model for the conservation of Asian horseshoe crabs. This is a challenge because we are in an upward trend of research on Limulus that is related, in part, to conservation and management of the species and there are so many others who are well-aware and involved in Limulus conservation issues. One such expert, the late Dr. Robert B. Barlow, known for his many contributions to understanding vision, circadian rhythms, and spawning in Limulus would probably advise up to look after the “little ones” – meaning, of course, populations of lesser numbers of horseshoe crabs. He would speak emotionally but accurately and succinctly of his experience in having his research population wiped out by commercial harvesting (Weiner and Barlow 1999); (Figure1). Due to his incisive insights and his many contributions on Limulus, I respectfully request that this workshop be dedicated to the memory of Dr. Robert B. Barlow. 2 INTRODUCTION A call for international coordination in the pursuit of the conservation and management of horseshoe crabs was a theme of the symposium held in 2007 at Dowling College, U.S.A. (Tanacredi et al. 2009). It and the report of its panel on horseshoe crab management (Berkson et al. 2009) were direct precursors to this workshop. The panel, comprised of representatives from five countries, responded to eight questions prepared by Berkson. They generally agreed that: Basic data necessary for assessment of the status of the horseshoe crab populations had not been collected. Habitat degradation and loss was the primary threat to the populations. Primary focus must be on protecting spawning and nursery habitats. A citizenry educated on the importance of the crabs, especially the policymakers, is essential. Information and lessons learned during research and management in other countries should be made more directly available through regularly scheduled meetings. Funding should be sought, especially at the ecosystem-level. In contrast to the general unanimity on the first seven questions, opinions regarding the future of horseshoe crab conservation ranged from pessimism (Taiwan and China), to cautious optimism (India), to guarded optimism because there was still time to thwart some major threats (Mexico), to outright optimism (USA) due to successful coordination of coastwise management by the Atlantic States Marine Fisheries Commission. Defining Conservation Everyone “knows” what conservation is, but do we agree on a definition? As a country boy, trained at a land grant college, it is perhaps natural that I emerged as a believer in conservation as the wise use of a resource. That may not be the concept applicable to the goals of this workshop. In any case, I believe we should define the term. As part of the discussion I would point out that we may not be able to save all populations of horseshoe crabs. If not, is the information obtained and recorded on a population an adjunct to saving it or at least remembering it? 3 Scope of the Following Material Participants of this workshop most likely will be called upon to evaluate available information on the Asian species, determine what else should be obtained, and then decide, at the very least, what actions could be taken to conserve and protect the Asian horseshoe crabs. This paper calls attention to what has been learned about the science, conservation, and management of Limulus populations that may provide a useful background for the development of a conservation strategy for the Indo-Pacific horseshoe crabs. It concentrates on the first two of the four workshop themes (Populations, Habitats, Exploitation/Utilization, and Public Consensus). Why Look To Limulus? The suggestion that Limulus polyphemus, the American horseshoe crab, can serve as a model for the conservation of the Indo-Pacific species is based on a large amount of scientific information on the natural history and ecology of Limulus polyphemus, as well as programs to manage its populations. This information and experience provides a sufficient background to begin the discussion on conservation, despite major differences in the natural and political patterns of the distribution of Limulus and that of the Indo-Pacific species. One glance at the distribution of the Asiatic species is sufficient to appreciate the dedication of Dr. Sekiguchi and his colleagues in the difficult task of mapping and studying such diversely situated populations (Figure 2). Even a casual inspection of the figure suggests that the number of horseshoe crab populations around Borneo is an invitation for an in depth study, particularly due to the presence of all three Asiatic species. There is a long history of research on the Asiatic species, especially Tachypleus tridentatus, exemplified by an excellent treatise on the Biology of Horseshoe Crabs edited by Koichi Sekiguchi (1988). Thus the challenge is to select and utilize what is pertinent from our collective experiences. Much research on Limulus has occurred in recent years; even a summary of that research would create a book. Because I have selected items emphasizing populations and habitats that illustrate or contribute to the conservation theme of this workshop, this selection does not evenly reflect all that is available. 4 In contrast, all of the populations L. polyphemus, except the more ancient ones on the Yucatan peninsula, are located within the boundaries of the United States of America and relatively easy to get to. Because the sequence of spawning along the coast is staggered, being slightly later and later as one travels northward, it is possible to observe the spawning of a majority of the populations on the Atlantic coast from Florida to Maine in one summer (Figure 3). In another summer, the Gulf of Mexico population, from Florida to the Mississippi delta, could be examined, including an expedition to Yucatan. These distributions have the distinct advantage of not only that of relative accessibility but also the opportunity to quickly observe many populations along an appreciable environmental gradient, from about 21o to 44o N, during one or two spawning seasons. In a world-wide search Mikkelsen (1988) has also contributed to observations on distribution of the four species. An important difference between managing/conserving the American and the Asiatic species of horseshoe crabs is that fewer nations and jurisdictions are involved in North America. POPULATIONS There are at least two guiding principles when considering the ecology of horseshoe crabs -- they are environmental generalists and they exist in discrete populations. Generally the adaptation of horseshoe crabs to their habitat or environmental factors have been subjects of prime interest (see Towle and Henry 2003). Recently questions have been raised about the genetic viability of populations have been raised (Faurby et al. 2010). Perhaps more closely pertinent topics are considered here: population size; distribution limits including influence of abundance; egg size and spawning events, etc. Environmental Generalists. Horseshoe crabs are capable of adapting/adjusting to and surviving manifold variations in their environment (Eldredge 1991, Loveland et al. 1997). They are also rugged, not only in relation to the hydroclimate but also to physical impact due to occasional high energy waves, dredges, and loggerhead turtles that 5 bash/dent or rip away part of their carapace; healing often follows even extensive wounds. It can be argued that, in addition to their physiological capacity to adjust to estuarine conditions, their survival as a group is due to an architecturally solid, three-part body design with two articulations – a piano-hinge between the first and second parts and a universal joint between the telson and the mid-part. The lineally arranged thirteen, multi-articulated appendages all operate under the carapace, as in a caisson, protected from outside interferences and capable of carrying out, more effectively, such functions as burrowing, spawning, feeding, and locomotion.
Recommended publications
  • Horseshoe Crab Limulus Polyphemus
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Atlantic Horseshoe Crab Limulus polyphemus Contributor (2005): Elizabeth Wenner (SCDNR) Reviewed and Edited (2013): Larry Delancey and Peter Kingsley-Smith [SCDNR] DESCRITPION Taxonomy and Basic Description Despite their name, horseshoe crabs are not true crabs. The Atlantic horseshoe crab, Limulus polyphemus, is the only member of the Arthropoda subclass Xiphosura found in the Atlantic. Unlike true crabs, which have 2 pairs of antennae, a pair of jaws and 5pairs of legs, horseshoe crabs lack antennae and jaws and have 7 pairs of legs, including a pair of chelicerae. Chelicerae are appendages similar to those used by spiders and scorpions for grasping and crushing. In addition, horseshoe crabs have book lungs, similar to spiders and different from crabs, which have gills. Thus, horseshoe crabs are more closely related to spiders and scorpions than they are to other crabs. Their carapace is divided into three sections: the anterior portion is the prosoma; the middle section is the opithosoma; and the “tail” is called the telson. Horseshoe crabs have two pairs of eyes located on the prosoma, one anterior set of simple eyes, and one set of lateral compound eyes similar to those of insects. In addition, they possess a series of photoreceptors on the opithosoma and telson (Shuster 1982). Horseshoe crabs are long-lived animals. After attaining sexual maturity at 9 to 12 years of age, they may live for another 10 years or more. Like other arthropods, horseshoe crabs must molt in order to grow. As the horseshoe crab ages, more and more time passes between molts, with 16 to 19 molts occurring before a crab becomes mature, stops growing, and switches energy expenditure to reproduction.
    [Show full text]
  • Misc Thesisdb Bythesissuperv
    Honors Theses 2006 to August 2020 These records are for reference only and should not be used for an official record or count by major or thesis advisor. Contact the Honors office for official records. Honors Year of Student Student's Honors Major Thesis Title (with link to Digital Commons where available) Thesis Supervisor Thesis Supervisor's Department Graduation Accounting for Intangible Assets: Analysis of Policy Changes and Current Matthew Cesca 2010 Accounting Biggs,Stanley Accounting Reporting Breaking the Barrier- An Examination into the Current State of Professional Rebecca Curtis 2014 Accounting Biggs,Stanley Accounting Skepticism Implementation of IFRS Worldwide: Lessons Learned and Strategies for Helen Gunn 2011 Accounting Biggs,Stanley Accounting Success Jonathan Lukianuk 2012 Accounting The Impact of Disallowing the LIFO Inventory Method Biggs,Stanley Accounting Charles Price 2019 Accounting The Impact of Blockchain Technology on the Audit Process Brown,Stephen Accounting Rebecca Harms 2013 Accounting An Examination of Rollforward Differences in Tax Reserves Dunbar,Amy Accounting An Examination of Microsoft and Hewlett Packard Tax Avoidance Strategies Anne Jensen 2013 Accounting Dunbar,Amy Accounting and Related Financial Statement Disclosures Measuring Tax Aggressiveness after FIN 48: The Effect of Multinational Status, Audrey Manning 2012 Accounting Dunbar,Amy Accounting Multinational Size, and Disclosures Chelsey Nalaboff 2015 Accounting Tax Inversions: Comparing Corporate Characteristics of Inverted Firms Dunbar,Amy Accounting Jeffrey Peterson 2018 Accounting The Tax Implications of Owning a Professional Sports Franchise Dunbar,Amy Accounting Brittany Rogan 2015 Accounting A Creative Fix: The Persistent Inversion Problem Dunbar,Amy Accounting Foreign Account Tax Compliance Act: The Most Revolutionary Piece of Tax Szwakob Alexander 2015D Accounting Dunbar,Amy Accounting Legislation Since the Introduction of the Income Tax Prasant Venimadhavan 2011 Accounting A Proposal Against Book-Tax Conformity in the U.S.
    [Show full text]
  • Horseshoe Crab Genomes Reveal the Evolutionary Fates of Genes and Micrornas After 2 Three Rounds (3R) of Whole Genome Duplication
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.045815; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Horseshoe crab genomes reveal the evolutionary fates of genes and microRNAs after 2 three rounds (3R) of whole genome duplication 3 Wenyan Nong1,^, Zhe Qu1,^, Yiqian Li1,^, Tom Barton-Owen1,^, Annette Y.P. Wong1,^, Ho 4 Yin Yip1, Hoi Ting Lee1, Satya Narayana1, Tobias Baril2, Thomas Swale3, Jianquan Cao1, 5 Ting Fung Chan4, Hoi Shan Kwan5, Ngai Sai Ming4, Gianni Panagiotou6,16, Pei-Yuan Qian7, 6 Jian-Wen Qiu8, Kevin Y. Yip9, Noraznawati Ismail10, Siddhartha Pati11, 17, 18, Akbar John12, 7 Stephen S. Tobe13, William G. Bendena14, Siu Gin Cheung15, Alexander Hayward2, Jerome 8 H.L. Hui1,* 9 10 1. School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of 11 Agrobiotechnology, The Chinese University of Hong Kong, China 12 2. University of Exeter, United Kingdom 13 3. Dovetail Genomics, United States of America 14 4. State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, 15 China 16 5. School of Life Sciences, The Chinese University of Hong Kong, China 17 6. School of Biological Sciences, The University of Hong Kong, China 18 7. Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering 19 Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, China 20 8. Department of Biology, Hong Kong Baptist University, China 21 9.
    [Show full text]
  • EXPLOITATION STATUS and FOOD PREFERENCE of ADULT TROPICAL HORSESHOE CRAB, Tachypleus Gigas
    EXPLOITATION STATUS AND FOOD PREFERENCE OF ADULT TROPICAL HORSESHOE CRAB, Tachypleus gigas BY MOHD RAZALI BIN MD RAZAK A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Biosciences) Kulliyyah of Science International Islamic University Malaysia SEPT 2018 ABSTRACT According to this study, local in Malacca more preferred to apply the modern method (fishing net) (65.85%) than traditional method (hand-harvest) (34.15%) to harvest the T. gigas from the wild (p<0.05), while locals in Pahang more preferred to apply traditional (56.1%) than modern method (43.9%). Frequency of the modern harvesting method application in Malacca (25 ± 10.48 times) was higher than the traditional method (2 ± 0.73 times) and also higher compared to the modern method application in Pahang (6 ± 3.45 times) (p<0.05). Quantity of harvested crabs per month for one individual was higher in Malacca (16,860 T. gigas) compared to Pahang (4,180 T. gigas). Foods conditions would substantially influence their edibility. However, horseshoe crabs might have specific behaviour to manipulate the edibility of the foraged food. A total of 30 males and 30 females were introduced with five different natural potential feeds, namely, gastropods (Turritella sp.), crustacean (Squilla sp.), fish (Lates calcarifer), bivalve (Meretrix meretrix) and polychaete (Nereis sp.). The conditions of introduced feeds had been manipulated based on the natural foods condition in nature; decayed and protected in shell, hardened outer skin and host-tubed. Female crabs took shorter response period (3.42 ± 2.42 min) toward surrounding food compared to males (13.14 ± 6.21 min).
    [Show full text]
  • Conservation Status of the American Horseshoe Crab, (Limulus Polyphemus): a Regional Assessment
    Rev Fish Biol Fisheries DOI 10.1007/s11160-016-9461-y REVIEWS Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment David R. Smith . H. Jane Brockmann . Mark A. Beekey . Timothy L. King . Michael J. Millard . Jaime Zaldı´var-Rae Received: 4 March 2016 / Accepted: 24 November 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Horseshoe crabs have persisted for more available scientific information on its range, life than 200 million years, and fossil forms date to 450 history, genetic structure, population trends and anal- million years ago. The American horseshoe crab yses, major threats, and conservation. We structured (Limulus polyphemus), one of four extant horseshoe the status assessment by six genetically-informed crab species, is found along the Atlantic coastline of regions and accounted for sub-regional differences in North America ranging from Alabama to Maine, USA environmental conditions, threats, and management. with another distinct population on the coasts of The transnational regions are Gulf of Maine (USA), Campeche, Yucata´n and Quintana Roo in the Yucata´n Mid-Atlantic (USA), Southeast (USA), Florida Atlan- Peninsula, Me´xico. Although the American horseshoe tic (USA), Northeast Gulf of Me´xico (USA), and crab tolerates broad environmental conditions, Yucata´n Peninsula (Me´xico). Our conclusion is that exploitation and habitat loss threaten the species. We the American horseshoe crab species is vulnerable to assessed the conservation status of the American local extirpation and that the degree and extent of risk horseshoe crab by comprehensively reviewing vary among and within the regions.
    [Show full text]
  • Population Structure and Breeding Pattern of the Mangrove Horseshoe Crab Carcinoscorpius Rotundicauda in Singapore
    Vol. 8: 61–69, 2009 AQUATIC BIOLOGY Published online December 29 doi: 10.3354/ab00206 Aquat Biol OPENPEN ACCESSCCESS Population structure and breeding pattern of the mangrove horseshoe crab Carcinoscorpius rotundicauda in Singapore Lesley Cartwright-Taylor*, Julian Lee, Chia Chi Hsu Nature Society of Singapore (NSS), 510 Geylang Road, #02-05 The Sunflower, Singapore 389466 ABSTRACT: The first year-long survey of the mangrove horseshoe crab Carcinoscorpius rotundi- cauda was conducted at the Mandai mudflats at Kranji in Singapore to determine if breeding is year round or seasonal and to provide qualitative and quantitative baseline data to monitor the health of the population. At spring tide from September 2007 to July 2008, volunteers collected horseshoe crabs along the exposed mudflats as the tide receded. The carapace width was measured, and the sex and breeding status of each individual were determined. The proportion of juveniles in different size groups varied in each month. In November and January, 25 and 30%, respectively, were 2 to 3 cm in width, while in June and July, 8 and 4%, respectively, were in this size group. The size cohorts showed recruitment to the smallest size classes from November to March and recruitment to the larger size classes from March to July. Juveniles less than 2 cm were not found in June, suggesting that there may be a rest period of low or no breeding activity from May to July resulting in none of the smallest sizes mid-year. Ratios of males to females varied from 0.85 to 1.78 throughout the year, and although pairs in amplexus were found year round, no spawning activity was seen.
    [Show full text]
  • Defining Optimal Husbandry Conditions for the Atlantic
    BSc Thesis, 2019 | Chairgroup of Marine Animal Ecology, Wageningen University & Research RESEARCH ARTICLE Defining Optimal Husbandry conditions for the Atlantic Horseshoe Crab, Limulus polyphemus A comparative study on literature and current culture practices in public aquaria Hilmar N. S. Derksen, Tinka A. J. Murk, Max Janse ABSTRACT The Atlantic horseshoe crab is an important species used as a laboratory model animal in prominent research regarding The Atlantic horseshoe crab, Limulus polyphemus L. vision & circadian rhythms, embryology of marine invertebrates (Xiphosurida: Lumilidae) plays a vital role in coastal and their unique endocrine system (Berkson & Shuster, 1999; Liu ecosystems and is an important species in physiological & Passaglia, 2009; Rudloe, 1979; Zaldívar-Rae, Sapién-Silva, studies. Over the past three decades, horseshoe crab Rosales-Raya, & Brockmann, 2009). Additionally, Limulus populations have rapidly declined due to wild capture for polyphemus is a key species in coastal ecosystems and benthic fishing industries and biomedical industries, stressing the food chains, where the eggs provide an essential food source to necessity for conservation efforts and raising public supplement the diet of more than a dozen species of migratory awareness. Public zoos and aquaria largely contribute to this shorebirds (Clark, Niles, & Burger, 1993; Gillings et al., 2007; cause by keeping horseshoe crabs in captivity. However, a Graham, Botton, Hata, Loveland, & Murphy, 2009). complete and detailed set of optimal rearing conditions was Since 1980 horseshoe crab populations have been rapidly still lacking. This study provides first evaluation of current declining with large numbers of animals captured in the wild for their use in fertilizer, cattle feed and as bait in commercial fishing husbandry practises among public aquaria and comparisons industries (Berkson & Shuster, 1999; Botton, 1984).
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • Evidence from the Genome of Limulus Polyphemus (Arthropoda: Chelicerata)
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 Opsin repertoire and expression patterns in horseshoe crabs: Evidence from the genome of limulus polyphemus (arthropoda: Chelicerata). Wesley C. Warren Washington University School of Medicine Patrick Minx Washington University School of Medicine Michael J. Montague Washington University School of Medicine Lucinda Fulton Washington University School of Medicine Richard K. Wilson Washington University School of Medicine See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Warren, Wesley C.; Minx, Patrick; Montague, Michael J.; Fulton, Lucinda; Wilson, Richard K.; and et al, ,"Opsin repertoire and expression patterns in horseshoe crabs: Evidence from the genome of limulus polyphemus (arthropoda: Chelicerata).." Genome Biology and Evolution.8,5. 1571-1589. (2016). https://digitalcommons.wustl.edu/open_access_pubs/5439 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Wesley C. Warren, Patrick Minx, Michael J. Montague, Lucinda Fulton, Richard K. Wilson, and et al This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/5439 Genome Biology and Evolution Advance Access published April 29, 2016 doi:10.1093/gbe/evw100 Opsin repertoire and expression patterns in horseshoe crabs: evidence from the genome of Limulus polyphemus (Arthropoda: Chelicerata) Barbara-Anne Battelle 1* Joseph F. Ryan 2, Karen E. Kempler 1, Spencer R. Saraf 1†., Catherine E.
    [Show full text]
  • Horseshoe Crab
    Horseshoe Crab Dorsal View Ventral view Phylum: Arthropoda Subphylum: Chelicerata Class: Merostomata Order: Xiphosura Family: Limulidae Horseshoe crabs resemble crustaceans, but belong to a separate subphylum, Chelicerata. They are closely related to arachnids such as spiders, scorpions and ticks. Horseshoe crabs are fascinating creatures. They live primarily in and around shallow ocean waters on soft sandy or muddy bottoms. Theyoccasionally come onto the shore to mate. In recent years, a decline in the population has occurred as a consequence of coastal habitat destruction in Japan and overharvesting along the east coast of North America. Because of their origin 450 million years ago, horseshoe crabs are considered as living fossils. The Limulidae are the only recent family of the order Xiphosura, and contain all four living species of horseshoe crabs: 1. Carcinoscorpius rotundicauda, the mangrove horseshoe crab, found in Southeast Asia. 2. Limulus polyphemus, the Atlantic horseshoe crab, found along the American Atlantic coast and in the Gulf of Mexico. 3. Tachypleus gigas, found in Southeast and East Asia. 4. Tachypleus tridentatus, found in Southeast and East Asia. Tachypleus gigas and Carcinoscorpius rotundicauda are found within Indian limits. The distribution of T. gigas and C. rotundicauda is restricted to north-east coast of Orissa and Sunderbans area of the West Bengal, respectively. The occurrence of both species at the same place has not been observed. Mature pairs of both speices, in amplexus, migrate towards the shores for breeding purpose, throughout the year. C. rotundicauda prefers nesting in mangrove swamps whereas, T. gigas breeds on a clean sandy beach (Chatterjee and Abidi, 2001).
    [Show full text]
  • Enhanced Growth of Juvenile Tachypleus Tridentatus (Chelicerata: Xiphosura) in the Laboratory: a Step Towards Population Restocking for Conservation of the Species
    Vol. 11: 37–46, 2010 AQUATIC BIOLOGY Published online November 10 doi: 10.3354/ab00289 Aquat Biol Enhanced growth of juvenile Tachypleus tridentatus (Chelicerata: Xiphosura) in the laboratory: a step towards population restocking for conservation of the species Yan Chen1, 2, C. W. Lau1, S. G. Cheung1, 3, C. H. Ke4, Paul K. S. Shin1, 3,* 1Department of Biology and Chemistry, and 3State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 2College of Marine Sciences, Shanghai Ocean University, No. 999, Hu Cheng Loop-road, Lingang New City, Shanghai, PR China 4State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian, PR China ABSTRACT: Juveniles of artificially bred Tachypleus tridentatus were reared in the laboratory for 15.5 mo. Fast growth (at least 3 times faster than in previous studies) and low mortality were observed, with juveniles reaching the 9th instar stage and having a cumulative mortality of 61.3% at the end of the rearing period. Such enhanced growth can potentially be attributed to high seawater temperature, sufficient living space and constant water flow. Isometric growth of prosomal width and other growth parameters including opisthosoma width, eye distance and prosomal length was found. Two distinct growth phases were detected for the opisthosoma length, with zero growth from the 1st to 2nd instar but isometric growth from the 2nd to 9th instar stage. Growth in telson length was pos- itively allometric from the 1st to 3rd instar and isometric from the 3rd to 9th instar stage.
    [Show full text]
  • Comparison of Horseshoe Crabs (Tachypleus Gigas) Morphometry Between Different Populations Using Allometric Analysis Mohd R
    Comparison of horseshoe crabs (Tachypleus gigas) morphometry between different populations using allometric analysis Mohd R. M. Razak, Zaleha Kassim Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia. Corresponding author: M. R. M. Razak, [email protected] Abstract. Studies on horseshoe crabs morphometrics found that they have maintained their descendent features from the Late Ordovician Period to present day. In the present study, we applied the allometric study to evaluate the correlation of body growth in three populations of the Asian horseshoe crab (Tachypleus gigas) collected from Balok (Pahang), Cherok Paloh (Pahang) and Merlimau (Melaka), Malaysia, coastal areas. The aims of this study are to examine the logarithmic growth of horseshoe crabs between three populations by analyzing the variation of their body weight (BW), carapace length (CL), carapace width (CW) and telson length (TEL) to determine their growth and maturity. Their body parameters were analyzed by the allometric method. There are no significant differences between males weight in all populations (p>0.05). However, females from Merlimau were smallest (BW: 519.7±66.3 g; CL: 21.1±1.1 cm; CW: 19.6±0.9 cm) among the three populations; Balok (BW: 928.5±123.2 g; CL: 23.8±1.0 cm; CW: 23.3±1.0 cm) and Cherok Paloh (BW: 939.8±125.7 g; CL: 25.4±1.5 cm; CW: 25.1±1.6 cm). Males and females of T. gigas in Merlimau could be classified as less matured among Balok and Cherok Paloh, since the increment of CL/CW were higher than their BW.
    [Show full text]