Population Structure and Breeding Pattern of the Mangrove Horseshoe Crab Carcinoscorpius Rotundicauda in Singapore

Total Page:16

File Type:pdf, Size:1020Kb

Population Structure and Breeding Pattern of the Mangrove Horseshoe Crab Carcinoscorpius Rotundicauda in Singapore Vol. 8: 61–69, 2009 AQUATIC BIOLOGY Published online December 29 doi: 10.3354/ab00206 Aquat Biol OPENPEN ACCESSCCESS Population structure and breeding pattern of the mangrove horseshoe crab Carcinoscorpius rotundicauda in Singapore Lesley Cartwright-Taylor*, Julian Lee, Chia Chi Hsu Nature Society of Singapore (NSS), 510 Geylang Road, #02-05 The Sunflower, Singapore 389466 ABSTRACT: The first year-long survey of the mangrove horseshoe crab Carcinoscorpius rotundi- cauda was conducted at the Mandai mudflats at Kranji in Singapore to determine if breeding is year round or seasonal and to provide qualitative and quantitative baseline data to monitor the health of the population. At spring tide from September 2007 to July 2008, volunteers collected horseshoe crabs along the exposed mudflats as the tide receded. The carapace width was measured, and the sex and breeding status of each individual were determined. The proportion of juveniles in different size groups varied in each month. In November and January, 25 and 30%, respectively, were 2 to 3 cm in width, while in June and July, 8 and 4%, respectively, were in this size group. The size cohorts showed recruitment to the smallest size classes from November to March and recruitment to the larger size classes from March to July. Juveniles less than 2 cm were not found in June, suggesting that there may be a rest period of low or no breeding activity from May to July resulting in none of the smallest sizes mid-year. Ratios of males to females varied from 0.85 to 1.78 throughout the year, and although pairs in amplexus were found year round, no spawning activity was seen. Males mature at about 8 cm while females may mature later at 10 cm. A mean of 33% growth during ecdysis in juveniles was observed, suggesting that juveniles of approximately 2 cm may moult about 5 more times before maturity. KEY WORDS: Mangrove horseshoe crabs . Carcinoscorpius rotundicauda . Breeding patterns . Population structure . Growth . Sex ratio Resale or republication not permitted without written consent of the publisher INTRODUCTION been well described by Mikkelsen (1988), but his book was based on work carried out before the late 1980s. Horseshoe crabs have changed very little over 500 Since then, land reclamation and coastal development million years and have survived 2 mass extinctions or degradation have destroyed much of the habitat of (Stormer 1952), but now, according to the IUCN Red horseshoe crabs (Savage 2001, Ng & Sivasothi 2002, Data Book, one species is near threatened (Limulus Mishra 2009). Moreover, the biology, ecology and polyphemus), and data on the other three are deficient breeding patterns of C. rotundicauda have not been as (IUCN 2008). well documented as those of the North American spe- One of the 4 species of horseshoe crab, the mangrove cies Limulus polyphemus (Linnaeus, 1758). According horseshoe crab Carcinoscorpius rotundicauda (Latreille, to Mikkelsen (1988), the breeding cycle of C. rotundi- 1802), occurs only in Asia: around India, Indonesia, cauda in Thailand is thought to be continuous, whereas Malaysia, Philippines, Singapore, Thailand and Hong in Borneo it is thought to occur from March to July, but Kong (Lee & Morton 2005, IUCN 2008). The Singapore there are no quantitative data to support this. For other Red Data book released in November 2008 classifies parts of Southeast Asia, including Singapore and this species as vulnerable (Davidson et al. 2008). The Malaysia, there is a paucity of information, and it is still global distribution of all species of horseshoe crab has not clear if this tropical species has a seasonal breed- *Email: cartwrighttaylor@gmail.com © Inter-Research 2009 · www.int-res.com 62 Aquat Biol 8: 61–69, 2009 ing pattern, as occurs with L. polyphemus, along the The aim of this project was to provide qualitative and temperate shores of USA, or if breeding occurs year quantitative baseline data over a period of 1 yr to round. Abundance, population structure and spawning determine if breeding is year round or seasonal. From patterns of the Atlantic horseshoe crab off the east these data, the structure and stability of the population coast of the USA have been well studied (Botton et al. can be monitored over time. 2003, Carmichael et al. 2003, James-Pirri et al. 2005, Leschen et al. 2006), but very little has been published on the spawning activity of C. rotundicauda. The mas- MATERIALS AND METHODS sive seasonal migration up the beach for spawning that is a well known part of the breeding pattern of Study site. The study site is on the north coast of the L. polyphemus in the USA has never been described main island of Singapore at 1° 26’ N and 103° 45’ E, at for C. rotundicauda. Kranji. About 2 km to the east is the stone causeway There is little recent information on abundance, sex across the Strait to Johor Baru in Malaysia. There is ratios, population structure or densities of Carcinoscor- flow of the sea through the strait, but flushing is pius rotundicauda, or whether numbers are stable or de- restricted to some extent by the causeway. The Strait of creasing. A 2008 report in Marine News (www.merinews. Johor is an estuary, and salinities vary depending upon com/article/horseshoe-crabs-galloping-towards-extinction/ the state of tide, weather and terrestrial runoff. The 136265.shtml) indicated that 2 species, C. rotundi- salinity in the strait typically exhibits 2 high levels, in cauda and Tachypleus gigas (Müller, 1785), are being March/April and October/November, and 2 low levels, poached in their thousands by children engaged by local in January and June/July (Ng & Sivasothi 2002), fishermen to collect the crabs, which are then sold to depending upon the state of tide, weather and terres- pharmaceutical companies. In addition, harvesting for trial runoff. commercial purposes is considered a serious threat to the The tidal amplitude varies from about 3 m during the survival of these species in Malaysia (Christianus & Saad spring tides at the full moon to about 1 m at the neap 2007). With the increasing interest in C. rotundicauda for tides. The distance, as measured for the study, from the medical research (Ding et al. 2005, Ng et al. 2007) and high tide to the lowest tide mark is about 200 m. The the additional threats of habitat loss due to coastal intertidal zone is almost flat, has no mangroves, and development in Southeast Asia, such information is the mud is very sticky, at least ankle deep in most urgently needed to assess the ecological requirements parts. Part of the area is bounded by a sea wall. The and conservation status of this species and to manage search area was approximately 26 680 m2, 115 m from and conserve it. Loss of habitat is listed as one of the 2 the high to low tide area by 232 m along the shore line, main threats to horseshoe crabs in Singapore (Davidson with a firm man-made earth bund or quay midway et al. 2008); the other is pollution. along the shore stretching out to sea. This bund is In Singapore, the Mandai mudflats at Kranji on the almost level with the mudflats, so it is exposed at low north coast of the main island are the largest mudflats re- tide but covered as the tide comes in. The site, particu- maining in the country and are the habitat of a population larly near the high tide area, is strewn with various of Carcinoscorpius rotundicauda. The Nature Society of types of debris at low tide, including large lumps of Singapore (NSS) has been organising volunteers to visit concrete, driftwood, logs and sticks, and pieces of this site every 3 to 4 mo to rescue horseshoe crabs that metal or plastic, and it is here in the intertidal zone that have become entangled in deployed or abandoned fish- the mangrove horseshoe crab Carcinoscorpius rotundi- ing nets. In 2007, the volunteers also started collecting de- cauda can be found. mographic information on the horseshoe crabs found dur- Search times and dates. The tide heights were the ing this operation. These unpublished data showed a overriding factor in selecting search times and dates. large proportion of small juveniles in March with very few The searches required uncovered mudflats, so the seen in June, suggesting some seasonal pattern to spawn- spring tides were chosen for the search days, which ing, contrary to opinion in Singapore and Malaysia (R. all occurred within 3 d of full moon. To determine Tan, A. Christianus pers. comm.; www.wildsingapore. population structure over time, searches were made com/wildfacts/arthropoda/limulidae/limulidae.htm). Be- over the whole of the study area from September 2007 ginning in September 2007, more regular visits were through to July 2008, except for December 2007 and made to the site at the spring tide each month for 1 yr, and February 2008, when the optimal search times fell on data on C. rotundicauda were collected more systemati- public holidays, and August 2008, when the optimal cally to determine breeding patterns and provide infor- tide time was after dark. As trained volunteers were mation on population structure. This is the first systematic, recruited to provide sufficient manpower, searches quantitative survey over a period of 1 yr on a population of were all done at weekends, which meant that the this species anywhere in Asia. searches were not always conducted on exactly the Cartwright-Taylor et al.: Breeding pattern of Carcinoscorpius rotundicauda 63 same day of the lunar cycle. Visits to the site were adult horseshoe crabs, and the females were distin- timed to start when the receding tide height was about guished from juveniles by their size alone.
Recommended publications
  • The ′Crab′ That Might Have Saved Your Life
    Advertisement TOP STORIES / ENVIRONMENT / GLOBAL IDEAS GLOBAL IDEAS The 'crab' that might have saved your life Closely related to the spider and around since long before the dinosaurs, the horseshoe crab has light blue blood that's vital for medical research. But can these living fossils survive the age of man? In the waters along the eastern seaboards of the United States and several East Asian countries, lives a species so dogged in its determination to defy decimation, it's earned the tag of "living fossil." "They crawled underneath the legs of dinosaurs and the dinosaurs were on earth for 150 million years," said John Tanacredi, a professor at Molloy College in New York and an eminent authority on horseshoe crabs, which could be the most amazing species many people have never heard of. "Of course, the mass extinction event 65 million years ago that saw the demise of the dinosaurs — both terrestrial and in the marine environment — makes it even more unique that these animals have survived." More on dinosaurs: Dinosaurs are extinct because an asteroid hit the wrong spot Technically, they're not crabs, nor are they shaped like a horseshoe, exactly. Like crabs though, they're arthropods, but the four different species of the animal belong to the subphylum chelicerata, and so are closely related to arachnids such as spiders. The animals have an almost alien quality to their appearance. They grow to about 60 centimeters (23 inches) in length have hard, helmet-like outer shells, five pairs of legs with a mouth located at their center, and several pairs of eyes distributed across their bodies.
    [Show full text]
  • Horseshoe Crab Limulus Polyphemus
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Atlantic Horseshoe Crab Limulus polyphemus Contributor (2005): Elizabeth Wenner (SCDNR) Reviewed and Edited (2013): Larry Delancey and Peter Kingsley-Smith [SCDNR] DESCRITPION Taxonomy and Basic Description Despite their name, horseshoe crabs are not true crabs. The Atlantic horseshoe crab, Limulus polyphemus, is the only member of the Arthropoda subclass Xiphosura found in the Atlantic. Unlike true crabs, which have 2 pairs of antennae, a pair of jaws and 5pairs of legs, horseshoe crabs lack antennae and jaws and have 7 pairs of legs, including a pair of chelicerae. Chelicerae are appendages similar to those used by spiders and scorpions for grasping and crushing. In addition, horseshoe crabs have book lungs, similar to spiders and different from crabs, which have gills. Thus, horseshoe crabs are more closely related to spiders and scorpions than they are to other crabs. Their carapace is divided into three sections: the anterior portion is the prosoma; the middle section is the opithosoma; and the “tail” is called the telson. Horseshoe crabs have two pairs of eyes located on the prosoma, one anterior set of simple eyes, and one set of lateral compound eyes similar to those of insects. In addition, they possess a series of photoreceptors on the opithosoma and telson (Shuster 1982). Horseshoe crabs are long-lived animals. After attaining sexual maturity at 9 to 12 years of age, they may live for another 10 years or more. Like other arthropods, horseshoe crabs must molt in order to grow. As the horseshoe crab ages, more and more time passes between molts, with 16 to 19 molts occurring before a crab becomes mature, stops growing, and switches energy expenditure to reproduction.
    [Show full text]
  • Misc Thesisdb Bythesissuperv
    Honors Theses 2006 to August 2020 These records are for reference only and should not be used for an official record or count by major or thesis advisor. Contact the Honors office for official records. Honors Year of Student Student's Honors Major Thesis Title (with link to Digital Commons where available) Thesis Supervisor Thesis Supervisor's Department Graduation Accounting for Intangible Assets: Analysis of Policy Changes and Current Matthew Cesca 2010 Accounting Biggs,Stanley Accounting Reporting Breaking the Barrier- An Examination into the Current State of Professional Rebecca Curtis 2014 Accounting Biggs,Stanley Accounting Skepticism Implementation of IFRS Worldwide: Lessons Learned and Strategies for Helen Gunn 2011 Accounting Biggs,Stanley Accounting Success Jonathan Lukianuk 2012 Accounting The Impact of Disallowing the LIFO Inventory Method Biggs,Stanley Accounting Charles Price 2019 Accounting The Impact of Blockchain Technology on the Audit Process Brown,Stephen Accounting Rebecca Harms 2013 Accounting An Examination of Rollforward Differences in Tax Reserves Dunbar,Amy Accounting An Examination of Microsoft and Hewlett Packard Tax Avoidance Strategies Anne Jensen 2013 Accounting Dunbar,Amy Accounting and Related Financial Statement Disclosures Measuring Tax Aggressiveness after FIN 48: The Effect of Multinational Status, Audrey Manning 2012 Accounting Dunbar,Amy Accounting Multinational Size, and Disclosures Chelsey Nalaboff 2015 Accounting Tax Inversions: Comparing Corporate Characteristics of Inverted Firms Dunbar,Amy Accounting Jeffrey Peterson 2018 Accounting The Tax Implications of Owning a Professional Sports Franchise Dunbar,Amy Accounting Brittany Rogan 2015 Accounting A Creative Fix: The Persistent Inversion Problem Dunbar,Amy Accounting Foreign Account Tax Compliance Act: The Most Revolutionary Piece of Tax Szwakob Alexander 2015D Accounting Dunbar,Amy Accounting Legislation Since the Introduction of the Income Tax Prasant Venimadhavan 2011 Accounting A Proposal Against Book-Tax Conformity in the U.S.
    [Show full text]
  • Adventures of Bini the Horseshoe Crab
    ADVENTURES OF BINI THE HORSESHOE CRAB Published in Singapore by National Parks Board Singapore Botanic Gardens 1 Cluny Road Singapore 259659 Authors: Adi Haliq Bin Zaini, Ameryn Dahnia Binte Mohamad Zaili, Bentley Boo Cheng Kang Illustrators: Ahmad Iqbal Bin Othman, Hafizah Binte Mohamad Pauzi Advisors: Ang Hui Ping, Jayasri, Sabrina Tang, Dr Laura Yap Printed by Oxford Graphic Printers Pte Ltd ©National Parks Board, 2020 All rights reserved. No parts of this publication may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior permission of the copyright owner. One morning, Bini the horseshoe crab awakens from her moult. She lets out a huge yawn, stretches all her 12 legs, and shakes off the mud. Horseshoe crabs have six pairs of legs. Five pairs are used for walking and the last pair is used for eating. 4 Multiple Legs! 5 “Yay, I have finished moulting! I have grown bigger too! I’ve got to tell my parents!” Bini says in excitement. Bini starts to look around the mangrove forest, but she cannot find her parents. “Oh no, where have they gone?” Bini wonders worriedly. As horseshoe crabs grow bigger, their hard shells (exoskeletons) become too small for them. Moulting allows them to shed their old shells to form bigger ones. Horseshoe crabs moult up to six times in their first year, and up to 18 times before they become adults. Growing Up! 6 ?? 7 Bini ventures out into the mangrove forest to look for her parents.
    [Show full text]
  • Download the Pdf
    摘要手册 | ABSTRACT BOOK 2019 Horseshoe Crab International Workshop Integrating Science, Conservation & Education CONTENTS 目录 特邀报告 | PLENARY TALKS Paul K.S. SHIN. City University of Hong Kong. Hope for Horseshoe Crab Conservation in Asia-Pacific 单锦城. 香港城市大学. 亚太区鲎物种保护的希望 …………….…....16 Jennifer MATTEI. Sacred Heart University. The Power of Citizen Science: Twenty Years of Horseshoe Crab Community Research Merging Conservation with Education Jennifer MATTEI. 美国Sacred Heart大学. 公民科学的力量: 鲎社区研究二十年,保育和教育相结合 ………………………...…..18 Jayant Kurma MISHRA. Pondicherry University. Horseshoe Crabs in the Face of Climate Change: Future Challenges and Conservation Strategies for their Sustainable Growth and Existence Jayant Kurma MISHRA. 印度Pondicherry大学. 气候变化下鲎 可持续增长和生存的挑战与相应保护策略 ………………….…..…20 Yongyan LIAO. Beibu Gulf University. The Research of Science and Conservation of Horseshoe Crabs in China 廖永岩. 北部湾大学. 中国的鲎科学与保护研究 ……………..………..22 2019 Horseshoe Crab International Workshop Integrating Science, Conservation & Education 口头报告 | ORAL PRESENTATION Theme 1 HORSESHOE CRAB POPULATION ECOLOGY AND EVOLUTION 主题1 鲎种群生态学和演化 Stine VESTBO. Aarhus University. Global distributions of horseshoe crabs and their breeding areas ………………………………..26 Basudev TRIPATHY. Zoological Survey of India. Mapping of horseshoe crab habitats in India ……………………………………….….…..27 Ali MASHAR. Bogor Agricultural University. Population estimation of horseshoe crab Tachypleus tridentatus (Leach, 1819) in Balikpapan waters, East Kalimantan, Indonesia ………..…28 Lizhe CAI. Xiamen University. Population dynamics
    [Show full text]
  • A Valuable Marine Creature
    R&D Horseshoe Crab – A Valuable Marine Creature by Anil Chatterji and Noraznawati Ismail The ancestors of the horseshoe crab crabs, these five pairs are highly University Malaysia Terengganu are believed to have inhabited brackish specialized appendages with broad, flat or freshwater environments. Fossil and overlapping plates. The external The ocean is a treasure trove of many records show that the oldest horseshoe gills of the horseshoe crab were partly living and non living resources. About 26 crabs were similar to the aglaspids, with developed from these appendages. phyla of marine organisms are found in less abdominal segments but without the ocean, whereas arthropods (jointed well defined appendages. The five pairs Horseshoe crab habitat limbs and an outer shell, which the of walking legs, discontinuing at the The horseshoe crab belongs to the animals moult as they grow), with over abdomen, were present in the primitive benthic community. They prefer calm 35,000 varieties, contribute four-fifth of forms. Gradually, the first four pairs seas or estuaries with muddy sandy all marine animal species. Surprisingly, a started developing pinching claws, bottoms for their biogenic activities. They number of marine organisms, suspected whereas, the last pair terminated in migrate to the shore from the deeper to be extinct, still flourish as living primitive spines. In modern horseshoe waters specifically for breeding purposes. animals. The horseshoe crab, a chelicerate During this shoreward migration the arthropod, is one such amazing creature animal is subjected to a wide range of and is considered to be the oldest 'living environmental conditions including fossil'. salinity and temperature.
    [Show full text]
  • Horseshoe Crab Genomes Reveal the Evolutionary Fates of Genes and Micrornas After 2 Three Rounds (3R) of Whole Genome Duplication
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.045815; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Horseshoe crab genomes reveal the evolutionary fates of genes and microRNAs after 2 three rounds (3R) of whole genome duplication 3 Wenyan Nong1,^, Zhe Qu1,^, Yiqian Li1,^, Tom Barton-Owen1,^, Annette Y.P. Wong1,^, Ho 4 Yin Yip1, Hoi Ting Lee1, Satya Narayana1, Tobias Baril2, Thomas Swale3, Jianquan Cao1, 5 Ting Fung Chan4, Hoi Shan Kwan5, Ngai Sai Ming4, Gianni Panagiotou6,16, Pei-Yuan Qian7, 6 Jian-Wen Qiu8, Kevin Y. Yip9, Noraznawati Ismail10, Siddhartha Pati11, 17, 18, Akbar John12, 7 Stephen S. Tobe13, William G. Bendena14, Siu Gin Cheung15, Alexander Hayward2, Jerome 8 H.L. Hui1,* 9 10 1. School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of 11 Agrobiotechnology, The Chinese University of Hong Kong, China 12 2. University of Exeter, United Kingdom 13 3. Dovetail Genomics, United States of America 14 4. State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, 15 China 16 5. School of Life Sciences, The Chinese University of Hong Kong, China 17 6. School of Biological Sciences, The University of Hong Kong, China 18 7. Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering 19 Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, China 20 8. Department of Biology, Hong Kong Baptist University, China 21 9.
    [Show full text]
  • EXPLOITATION STATUS and FOOD PREFERENCE of ADULT TROPICAL HORSESHOE CRAB, Tachypleus Gigas
    EXPLOITATION STATUS AND FOOD PREFERENCE OF ADULT TROPICAL HORSESHOE CRAB, Tachypleus gigas BY MOHD RAZALI BIN MD RAZAK A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Biosciences) Kulliyyah of Science International Islamic University Malaysia SEPT 2018 ABSTRACT According to this study, local in Malacca more preferred to apply the modern method (fishing net) (65.85%) than traditional method (hand-harvest) (34.15%) to harvest the T. gigas from the wild (p<0.05), while locals in Pahang more preferred to apply traditional (56.1%) than modern method (43.9%). Frequency of the modern harvesting method application in Malacca (25 ± 10.48 times) was higher than the traditional method (2 ± 0.73 times) and also higher compared to the modern method application in Pahang (6 ± 3.45 times) (p<0.05). Quantity of harvested crabs per month for one individual was higher in Malacca (16,860 T. gigas) compared to Pahang (4,180 T. gigas). Foods conditions would substantially influence their edibility. However, horseshoe crabs might have specific behaviour to manipulate the edibility of the foraged food. A total of 30 males and 30 females were introduced with five different natural potential feeds, namely, gastropods (Turritella sp.), crustacean (Squilla sp.), fish (Lates calcarifer), bivalve (Meretrix meretrix) and polychaete (Nereis sp.). The conditions of introduced feeds had been manipulated based on the natural foods condition in nature; decayed and protected in shell, hardened outer skin and host-tubed. Female crabs took shorter response period (3.42 ± 2.42 min) toward surrounding food compared to males (13.14 ± 6.21 min).
    [Show full text]
  • Conservation Status of the American Horseshoe Crab, (Limulus Polyphemus): a Regional Assessment
    Rev Fish Biol Fisheries DOI 10.1007/s11160-016-9461-y REVIEWS Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment David R. Smith . H. Jane Brockmann . Mark A. Beekey . Timothy L. King . Michael J. Millard . Jaime Zaldı´var-Rae Received: 4 March 2016 / Accepted: 24 November 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Horseshoe crabs have persisted for more available scientific information on its range, life than 200 million years, and fossil forms date to 450 history, genetic structure, population trends and anal- million years ago. The American horseshoe crab yses, major threats, and conservation. We structured (Limulus polyphemus), one of four extant horseshoe the status assessment by six genetically-informed crab species, is found along the Atlantic coastline of regions and accounted for sub-regional differences in North America ranging from Alabama to Maine, USA environmental conditions, threats, and management. with another distinct population on the coasts of The transnational regions are Gulf of Maine (USA), Campeche, Yucata´n and Quintana Roo in the Yucata´n Mid-Atlantic (USA), Southeast (USA), Florida Atlan- Peninsula, Me´xico. Although the American horseshoe tic (USA), Northeast Gulf of Me´xico (USA), and crab tolerates broad environmental conditions, Yucata´n Peninsula (Me´xico). Our conclusion is that exploitation and habitat loss threaten the species. We the American horseshoe crab species is vulnerable to assessed the conservation status of the American local extirpation and that the degree and extent of risk horseshoe crab by comprehensively reviewing vary among and within the regions.
    [Show full text]
  • Defining Optimal Husbandry Conditions for the Atlantic
    BSc Thesis, 2019 | Chairgroup of Marine Animal Ecology, Wageningen University & Research RESEARCH ARTICLE Defining Optimal Husbandry conditions for the Atlantic Horseshoe Crab, Limulus polyphemus A comparative study on literature and current culture practices in public aquaria Hilmar N. S. Derksen, Tinka A. J. Murk, Max Janse ABSTRACT The Atlantic horseshoe crab is an important species used as a laboratory model animal in prominent research regarding The Atlantic horseshoe crab, Limulus polyphemus L. vision & circadian rhythms, embryology of marine invertebrates (Xiphosurida: Lumilidae) plays a vital role in coastal and their unique endocrine system (Berkson & Shuster, 1999; Liu ecosystems and is an important species in physiological & Passaglia, 2009; Rudloe, 1979; Zaldívar-Rae, Sapién-Silva, studies. Over the past three decades, horseshoe crab Rosales-Raya, & Brockmann, 2009). Additionally, Limulus populations have rapidly declined due to wild capture for polyphemus is a key species in coastal ecosystems and benthic fishing industries and biomedical industries, stressing the food chains, where the eggs provide an essential food source to necessity for conservation efforts and raising public supplement the diet of more than a dozen species of migratory awareness. Public zoos and aquaria largely contribute to this shorebirds (Clark, Niles, & Burger, 1993; Gillings et al., 2007; cause by keeping horseshoe crabs in captivity. However, a Graham, Botton, Hata, Loveland, & Murphy, 2009). complete and detailed set of optimal rearing conditions was Since 1980 horseshoe crab populations have been rapidly still lacking. This study provides first evaluation of current declining with large numbers of animals captured in the wild for their use in fertilizer, cattle feed and as bait in commercial fishing husbandry practises among public aquaria and comparisons industries (Berkson & Shuster, 1999; Botton, 1984).
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]