Role of 15-Lipoxygenase/15-Hydroxyeicosatetraenoic Acid in Hypoxia-Induced Pulmonary Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Load more

J Physiol Sci (2012) 62:163–172 DOI 10.1007/s12576-012-0196-9

REVIEW

Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension

Daling Zhu Yajuan Ran

Received: 29 September 2011 / Accepted: 25 January 2012 / Published online: 14 February 2012 Ó The Physiological Society of Japan and Springer 2012

Abstract Pulmonary arterial hypertension (PAH) is a rare disease with a complex aetiology characterized by elevated pulmonary artery resistance, which leads to right heart ventricular afterload and ultimately progressing to right ventricular failure and often death. In addition to other factors, metabolites of arachidonic acid cascade play an important role in the pulmonary vasculature, and disruption of signaling pathways of arachidonic acid plays a central role in the pathogenesis of PAH. 15-Lipoxygenase (15-LO) is upregulated in pulmonary artery endothelial cells and smooth muscle cells of PAH patients, and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) in particular seems to play a central role in the contractile machinery, and in the initiation and propagation of cell proliferation via its effects on signal pathways, mitogens, and cell cycle components. Here, we focus on our important research into the role played by 15-LO/15-HETE, which promotes a proliferative, antiapoptotic, and vasoconstrictive physiological milieu leading to hypoxic pulmonary hypertension.

Introduction

Pulmonary hypertension (PH) is a severe and frequently fatal disease characterized by elevated mean pulmonary arterial (PA) pressure greater than 25 mmHg at rest or greater than 30 mmHg with exercise [1], and which contributes to the morbidity and mortality of adult and pediatric patients with various lung and heart diseases. According to the Venice Classification of Pulmonary Hypertension in 2003, PH is currently classified into five categories as listed in Table 1. Importantly, many of these diseases or conditions are associated with persistent or intermittent hypoxia, either globally or regionally, within confined areas of the lung [2]. The acute hypoxia-induced pulmonary vasoconstriction (HPV) is an important mechanism that aids in matching ventilation with perfusion by directing blood flow from poorly ventilated regions of the lung to areas with normal or relatively high ventilation. Although acute HPV benefits gas exchange and maximizes oxygenation of venous blood in the pulmonary artery, sustained HPV or chronic exposure to hypoxia is a major cause for the elevated pulmonary vascular resistance and pulmonary arterial remodeling (PAR) in patients with pulmonary arterial hypertension (PAH) associated with hypoxic cardiopulmonary diseases [3]. Vascular remodeling is characterized largely by medial hypertrophy and hyperplasia due to enhanced vascular smooth muscle cell (VSMC) proliferation or attenuated apoptosis and endothelial cell over-proliferation [4, 5]. However, the mechanism of pulmonary vascular remodeling (PVR) and pulmonary hypertension is still unknown.
Keywords Hypoxic pulmonary hypertension Á 15-Lipoxygenase Á 15-Hydroxyeicosatetraenoic acid Á Vasoconstriction Á Remodeling

D. Zhu (&) College of Pharmacy, Harbin Medical University-Daqing, No. 1 Xinyang Street, High-tech Zone, Daqing 163319, Heilongjiang, People’s Republic of China e-mail: [email protected]

The arachidonic acid cascade plays a vital role in homeostasis of the endothelium and VSMCs, and has been observed in dysregulation of downstream pathways of arachidonic acid in patients with PAH and in animal

D. Zhu Á Y. Ran Biopharmaceutical Key Laboratory of Heilongjiang Province, 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, People’s Republic of China

123

  • 164
  • J Physiol Sci (2012) 62:163–172

models. More and more biological data suggest that arachidonic acid metabolites of lipoxygenases (LOs) play pivotal roles in the pathological development of PAH. LOs are a family of non-heme iron-containing enzymes which dioxygenate polyunsaturated fatty acids to hydroperoxyl metabolites. As shown in Table 2, LOs mainly include four isoforms, 5-lipoxygenase (5-LO) [6], 8-lipoxygenase (8-LO) [7, 8], 12-lipoxygenase (12-LO) [9], and 15-lipoxygenase (15-LO) [10], which correspond to the carbon position of arachidonic acid oxygenation, whereas 8-LO was not found to be expressed in human tissues. LOs are involved in biosynthesis of vasoactive mediators, growth factors, adhesion molecules, and cytokines [10–12], and hence are important targets for the atherogenesis, vasoconstriction, and vascular remodeling. Moreover, LOs-derived compounds impact the metabolic characteristics of vascular cells, particularly those of endothelial cells (EC) and smooth muscles cells (SMC) [13, 14]. In our laboratory, we have reported that 15-LO/15-HETE played an important role in hypoxic pulmonary hypertension (HPH). Therefore, this review is intended to provide a comprehensive overview of the effect of 15-LO/15-HETE on HPH, and also to propose underlying the important aspects of 5-LO and 12-LO in PAH.

Table 1 Clinical classification of pulmonary hypertension Venice Classification of Pulmonary Hypertension (2003) 1. Pulmonary arterial hypertension (PAH) 1.1. Idiopathic (IPAH) 1.2. Familial (FPAH) 1.3. Associated with (APAH) 1.3.1. Collagen vascular disease 1.3.2. Congenital systemic-to-pulmonary shunts 1.3.3. Portal hypertension 1.3.4. HIV infection 1.3.5. Drugs and toxins 1.3.6. Other (thyroid disorders, glycogen storage disease, Gaucher disease, hereditary hemorrhagic telangiectasia, hemoglobinopathies, myeloproliferative disorders, splenectomy)

1.4. Associated with significant venous or capillary involvement 1.4.1. Pulmonary veno-occlusive disease (PVOD) 1.4.2. Pulmonary capillary hemangiomatosis (PCH) 1.5. Persistent pulmonary hypertension of the newborn 2. Pulmonary hypertension with left heart disease 2.1. Left-sided atrial or ventricular heart disease 2.2. Left-sided valvular heart disease 3. Pulmonary hypertension associated with lung diseases and/or hypoxemia

3.1. Chronic obstructive pulmonary disease 3.2. Interstitial lung disease 3.3. Sleep-disordered breathing

Basic properties of LOs

3.4. Alveolar hypoventilation disorders 3.5. Chronic exposure to high altitude 3.6. Developmental abnormalities

Two distinct types of 15-LO have been identified in humans: reticulocyte type of 15-LO-1 [15] and epidermis type of 15-LO-2 [16]. 15-LO-1 was initially discovered in a rabbit reticulocytes mass at a 75-kD, single-polypeptide chain [17]; the enzyme has a two-domain structure [18] with one non-heme iron per molecule. 15-LO-2 was subsequently identified, and its expression has been reported in human prostate, skin, and cornea [17]. Both enzymes convert arachidonic acid to 15-hydroperoxyeicosatetraenoic acid (15(S)-HPETE). 15(S)-HPETE is unstable and can be reduced by peroxidases to the corresponding

4. Pulmonary hypertension owing to chronic thrombotic and/or embolic disease

4.1. Thromboembolic obstruction of proximal pulmonary arteries 4.2. Thromboembolic obstruction of distal pulmonary arteries 4.3. Nonthrombotic pulmonary embolism (tumor, parasites, foreign material)

5. Miscellaneous: sarcoidosis, histiocytosis X, lymphangiomatosis, compression of pulmonary vessels (adenopathy, tumor, fibrosing mediastinitis)

Table 2 Basic properties of LOs Gene name ALOX15
Alternative nomenclature 15-LOX-1
Predominant enzyme products 15(S)-HPETE, 15(S)-HETE
Main distribution Reticulocyte, eosinophils, bronchial epithelial cells

  • 15-LOX-2
  • 15(S)-HPETE, 15(S)-HETE

12(S)-HPETE, 12(S)-HETE 12(R)-HPETE, 12(R)-HETE 12(S)-HPETE, 12(S)-HETE 8(S)-HPETE, 8(S)-HETE 5-HETE, leukotrienes
Prostate, skin, lung, cornea

  • In various cell types
  • ALOX12
  • Platelet-type lipoxygenase 12

Epidermis-type lipoxygenase 12 Leukocyte-type lipoxygenase 12 8-LOX
In various cell types In various cell types
ALOX8 ALOX5
Only in mice and rats tissues

  • In various cell types
  • 5-LOX

123

  • J Physiol Sci (2012) 62:163–172
  • 165

15-hydroxyeicosatetraenoic acid (15-HETE), but they share only 40% amino acid homology, and there are two major differences between the isozymes. The first difference is that 15-LO-1 converts AA to 15(S)-HPETE (90%) and lesser amounts of 12(S)-HPETE (10%), whereas 15-LO-2 produces exclusively 15(S)-HPETE [17]. The second difference is that, although both arachidonic acid and linoleic acid are preferred substrates for 15-LO-1, only arachidonic acid is a substrate for 15-LO-2 [19, 20].
15-HETE inhibits the activity of 5-LO and LT production by neutrophils [32–34]. The expression of 15-LO induced by interleukin (IL)-4 in monocytes significantly decreased the LTB4 expression [35]. 15-HETE can inhibit neutrophil migration across cytokine-activated (interleukin-1 beta or tumor necrosis factor-alpha) endothelium [36]. Transfection of rat kidney with human 15-LO can suppress inflammation [37]. According to these studies, the in vivo activity of 15-LO/15-HETE may be regarded as a protective response to limit or reverse inflammatory symptoms and to maintain basic cell function [38].
The human 5-LO consists of 673 amino acids and a nonheme iron, and the sequence is highly homologous with those of other mammalian LOs and soybean 15-LO [21]. 5-LO catalyzes conversion of arachidonic acid to leukotriene (LT) A4, which can be subsequently converted into the potent chemoattractant LTB4, or into cysteinyl leukotrienes (Cys-LTs: LTC4, LTD4, and LTE4) [22]. 8-LO is consisted of 677 amino acids, which displays 78% sequence identity to human 15-LO-2 considered to be its human orthologue. 8-LO expression or activity has only been detected in tissues of mice and rats [7, 8, 23], and is predominantly expressed in epithelia of mice, hair follicle, forestomach, and footsole. 8-HETE is a major arachidonic acid metabolite for 8-LO [24]. There are three isoforms of 12-LO named after the cells where they were first identified; platelet, leukocyte, and epidermis. The leukocyte-type enzyme is widely distributed among cells, but the tissue distribution varies substantially from species to species. The platelet and epidermal enzymes are present in only a relatively limited number of cell types, but murine epidermis-type 12-LOX is not a functional human gene [9]. The 12-LO pathway metabolizes AA to a variety of products with numerous biological activities, and the major products of this pathway are 12(S)-HETE, hydroxyepoxy-containing hepoxilins, and trihydroxy-containing trioxilins [25].
Also, it has been found that 15-LO is implicated in the maturation of rabbit reticulocytes by inhibiting mitochondria degradation [39–41]. 15-HETE improves the proliferation of Friend erythroleukemia cells, rat aortic smooth muscle cells, and calf PASMCs [42–44], and even plays an important role in differentiation and function of macrophage [45]. Moreover, 15-LO plays a role in pro- and anti-carcinogenesis [46–48], 15-HETE also triggers cell death through the release of cytochrome C, activation of caspase-3, and PARP-1 (poly (ADP) ribose polymerase-1) cleavage in the K-562 cell line [49]. Chronic inflammation plays an important role in atherogenesis. Furthermore, there is evidence for a pro-atherosclerotic effect and anti-atherosclerotic effect of 15-LO [50–52].
Although 15-LO/15-HETE participates in various physiological and pathological processes, yet the exact role and mechanism in HPH have not been explained, so here we will describe in detail the effect of 15-LO/15-HETE on hypoxic pulmonary vasoconstriction and vascular remodeling.

15-LO/15-HETE and HPH

Distribution and expression of 15-LO/15-HETE in HPH

Biological role of 15-LO/15-HETE

It is reported that only 15-LO-1 is expressed in normoxic lung tissues, and that 15-LO-1 and 15-LO-2 are upregulated by hypoxia. Moreover, in hypoxic lungs, 15-LO is concentrated in the microsomes, whereas in normoxic lungs, 15-LO is localized in the cytosol, suggesting that activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane under hypoxic conditions [53]. Moreover, the 15-LO-1 mRNA and protein were localized in pulmonary artery endothelial cells (PAECs), while the 15-LO-2 mRNA and protein were localized in both PAECs and pulmonary smooth muscle cells (PASMCs) [54]. Furthermore, both 15-LO-1 and 15-LO-2 were up-regulated and localized in PASMCs and PAECs of pulmonary vessels from patients displaying severe PH [44]. Using a combination of high-pressure liquid chromatography (HPLC) and gas chromatography/ mass spectrometry (GC/MS), the synthesis of 15-HETE
15-LOs are lipid peroxidizing enzymes that catalyze the stereoselective introduction of molecular dioxygen at carbon 15 (C-15) of arachidonic acid [26, 27], and their expression and arachidonic acid metabolites are implicated in several important inflammatory conditions, cell differentiation, carcinogenesis, atherogenesis, and other potential functions. The physiologic roles of the enzymes and arachidonic acid metabolites are dependent on the context in which (tissue- and species-specificity) they are expressed.
Tissue levels of 15-LOs and 15-HETE are often elevated during inflammation condition. Further evidence for a role of 15-HETE is that it is increased in asthma and chronic bronchitis patients and animals [28–31]. Several lines of ex vivo studies have documented that 15-LOs product 15-HETE might have anti-inflammatory properties.

123

  • 166
  • J Physiol Sci (2012) 62:163–172

was increased in microsomes from hypoxic lungs and this effect is dependent on the lipoxygenase pathway [53]. depolarization, opens VDCCs, promotes Ca2? influx, increases [Ca2?]i, and triggers PASMCs contraction. Studies have suggested that K? channels in PASMCs are inhibited by subacute hypoxia, leading to depolarization, an increase in [Ca2?]i, and constriction of pulmonary arteries [59, 60]. These K? channels are voltage-gated and sensitive to 4-aminopyridine (4-AP) [61–63]. However, how the K? channels are inhibited after subacute hypoxia remains elusive. Both direct and indirect effects have been proposed for the channel inhibition.
15-LO/15-HETE and hypoxic pulmonary vasoconstriction

15-HETE increases intracellular Ca2? and contracts pulmonary arteries

15-HETE increases the tension of PA from hypoxic rats in a concentration-dependent manner [53]. After inhibiting the endogenous production of 15-HETE, the reaction of hypoxic pulmonary artery rings to phenylephrine (a vasoconstrictor and used to detect the viability of vessels) was markedly decreased, suggesting that endogenous 15-HETE is involved in pulmonary vasoconstriction. PA vasoconstriction induced by 15-HETE is triggered by an increase in intracellular Ca2? concentration([Ca2?]i) in PASMCs, which is in turn caused by Ca2? release from intracellular Ca2? stores, or an influx of Ca2? through ion channels such as L-type and storeoperated calcium channels (SOCCs) [55].
Our studies have shown that inhibiting KATP and BKCa channels could not affect 15-HETE induced vasoconstriction, but once inhibited Kv channels can completely block the effect of 15-HETE on pulmonary arteries [64], 15-HETE can inhibit the Kv currents of PASMCs [65]. Recent studies also identified that subacute hypoxia downregulates Kv1.5, Kv2.1, and Kv3.4 channel expression and suppresses IK current through endogenous 15-HETE. 15-HETE was found to be more potent than 5-HETE and 12-HETE in mediating hypoxia-induced down-regulation of Kv3.4 channel expression. These results fill the lacunae which define how subacute hypoxia inhibits Kv channels leading to membrane depolarization and an increase in
More and more studies are showing that there is an important role for SOCCs in the chronic hypoxia-induced increase in resting [Ca2?]i which is responsible for HPV but eliminates a role for voltage-dependent calcium channels (VDCCs) during this procedure [56]. Our data also show that transient receptor potential channel 1 (TRPC1), one candidate of SOCCs, was up-regulated by 15-HETE, leading to elevation of capacitative calcium entry (CCE) via SOCCs in PASMCs [57]. It has been suggested that the mechanism of 15-HETE mobilizes [Ca2?]i signaling through Ca2? release from intracellular Ca2? stores via IP3 receptor- and ryanodine receptor-operated Ca2? channels. After depletion of sarcoplasmic reticulum Ca2? stores, the resulting Ca2? influx, known as CCE, is mediated by SOCCs, and consists of up-regulated TRPC1. The other mechanism is directly activating Ca2? entry from extracellular solution via L-type Ca2? channels (VDCCs). PASMCs are required to maintain active vascular tones, then the increased [Ca2?]i can form complexes with calmodulin, which activates myosin light chain (MLC) kinase (MLCK), causing phosphorylation of MLC. Phosphorylated MLC (P-MLC) then facilitates stimulation of myosin ATPase activity by actin leading to crossbridge cycling and contraction [58].

  • [Ca2?
  • ]
  • level in PASMCs, and demonstrate the link

i

between 15-LO, 15-HETE formation, and pulmonary vasoconstriction after subacute hypoxia [66–68].

Effects of pulmonary artery endothelial cells on 15-HETE induced pulmonary vasoconstriction

PAECs can release several kinds of vascular activity factors such as PGE2, NO, and some others, which have important contributions to vasoconstriction. Hypoxia reduces the activity of eNOS to decrease the production of NO, then contracts PAs [69]. In in vitro tension studies, denuded endothelial and inhibiting the NO production of vascular rings increased the effect of 15-HETE on PAs contraction. Blockage of endogenous 15-HETE can induce the production of NO in PAECs. Moreover, 15-HETE phosphorylated eNOS at Thr495, causing reduced activity of eNOS [70]. In addition, the immunoprecipitation (IP) supported there were 15-LO, Hsp90, and Akt in an eNOS complex in PAECs, and therefore these data must be interpreted with 15-HETE overcoming the protein network of eNOS process through phosphorylating or de-phosphorylating to inactivate some sites of eNOS resulting in reduced NO, thereby contracting PAs.

15-HETE induces pulmonary vasoconstriction by inhibiting Kv channels

The resting membrane potential (Em) is primarily determined by K? permeability and K? concentration gradient across the plasma membrane, and therefore the activity of K? channels in the plasma membrane is a critical determinant of Em. Inhibition of K? channels causes membrane

15-HETE regulates pulmonary vessels rhythm by protein kinase pathways

Protein kinase pathways play an important role in HPV, such as PKC, Rho kinase, Rho-associated serine/threonine

123

  • J Physiol Sci (2012) 62:163–172
  • 167

kinase (ROCK), and extracellular signal-regulated kinase 1/2 (ERK1/2). Tension measurements of responsiveness of rat PA rings have demonstrated that incubation with specific protein kinase inhibitors significantly attenuated the constriction of PA rings to 15-HETE under hypoxic conditions. 15-HETE can activate the translocation of PKC isoforms, PKC-delta and PKC-varepsilon, from the cytoplasm to the membranes of PASMCs, then down-regulate expression of Kv1.5, Kv2.1, and Kv3.4 channels to protect the effect of 15-HETE on PAs [71]. Also, 15-HETE mediated the up-regulation of ROCK expression and promoted the translocation of ROCK2 from the nucleus to the cytoplasm through G-protein and tyrosine kinase pathways under hypoxic conditions, then leading to PA vasoconstriction [72]. Furthermore, the ERK1/2 pathway was involved in 15-HETE-induced PA vasoconstriction, the ERK1/2 phosphorylation was also upregulated by 15-HETE in a dose-dependent manner, and this phosphorylation was detected in cytosol as well as in nucleus [73]. These data shown above suggested that 15-HETE mediated HPV by activating different signal transduction pathways. related to tissue homeostasis, when this balance is disrupted, diseases such as PAH can result [75]. The enhanced VSMC proliferation and suppressed normal VSMC apoptosis are likely the major reasons leading to medial hypertrophy, arterial remodeling, and vascular lumen narrowing [76]. Indeed, the inadequate apoptosis has been implicated in the development and maintenance of severe pulmonary hypertension. We found subtle thickening of proximal media/ adventitia of the PA in rats exposed to hypoxia, which was associated with an up-regulation of the anti-apoptotic Bcl-2 expression and down-regulation of activated caspase-3 and Bax expression in PA homogenates [54].
The effects of hypoxia on PASMCs apoptosis are well known; however, whether 15-HETE acts on the apoptotic responses in PASMCs remains unclear. Studies have shown that 15-HETE induced anti-apoptotic Bcl-2 expression, and down-regulated apoptotic caspase-3, Bax, FasL, Bad and caspase-9 expression to prevent PASMCs from apoptosis via ROCK, HSP90, PI3K/Akt, ERK1/2, and iNOS pathways. Some methods such as cell viability measurement, nuclear morphology determination, TUNEL assay, and mitochondrial potential analysis have also demonstrated that 15-HETE suppressed PASMC apoptosis and improved cell survival, contributing to HPVR including morphological alterations, mitochondrial depolarization, and the expression of anti-apoptotic proteins [77–80].
Activity of Kv channels also plays a major role in regulating the PASMCs population in the pulmonary vasculature, as they are involved in cell apoptosis, survival, and proliferation [3, 75, 76]. PASMCs from PAH patients demonstrate many cellular abnormalities linked to Kv channels, including decreased Kv current, down-regulated expression of various Kv channels, and inhibited apoptosis [81, 82]. It is well known that hypoxia can inhibit Kv channels, inhibiting cell apoptosis, but it remains unclear whether K? channels participate in the 15-HETE antiapoptotic process under hypoxic conditions. Data have also shown that 15-HETE enhanced cell survival, suppressed the expression and activity of caspase-3, up-regulated Bcl2 and attenuated mitochondrial depolarization, prevented chromatin condensation, and partly reversed K? channel opener-induced apoptosis in PASMCs under serumdeprived conditions, indicating that 15-HETE inhibited the apoptosis in PASMCs through, at least in part, inactivating K? channels [83].
15-LO/15-HETE and HPVR Hypoxia induces pathological changes of the pulmonary vasculature mainly including: extracellular matrix components such as increase in collagen fibers and elastic fibers, smooth muscle cell hypertrophy and hyperplasia, endothelial cell swelling, hypertrophy, thereby resulting in pulmonary tube wall thickening, and luminal stenosis, reducing blood vessel flexibility in the vessel wall cavity volume level. Under conditions of prolonged hypoxia, although recovering the PO2 to normoxic conditions, the pulmonary artery pressure is still higher than normal values. It can be concluded that hypoxic pulmonary vascular remodeling (HPVR) is the main mechanism of HPH [74].
It has been reported that PA remodeling induced by hypoxia in vivo is mediated by the 15-LO/15-HETE pathway at least in part. Moreover, both 15-LO-1 and 15-LO-2 were overexpressed in the pulmonary vessels of human PH lungs and localized in PASMCs and PAECs from pulmonary vessels of patients displaying severe PH [44]. Intragastric administration of rats with 15-LO inhibitor (nordihydroguaiaretic acid, NDGA) under hypoxic conditions decreased the formation of the endogenous 15-HETE level, which also reversed all the pathological changes of PAs induced by hypoxia, including the deposition of collagen and medial thickening [44, 54].

Recommended publications
  • Eicosanoids in Carcinogenesis

    Eicosanoids in Carcinogenesis

    4open 2019, 2,9 © B.L.D.M. Brücher and I.S. Jamall, Published by EDP Sciences 2019 https://doi.org/10.1051/fopen/2018008 Special issue: Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” Available online at: Guest Editor: Obul R. Bandapalli www.4open-sciences.org REVIEW ARTICLE Eicosanoids in carcinogenesis Björn L.D.M. Brücher1,2,3,*, Ijaz S. Jamall1,2,4 1 Theodor-Billroth-Academy®, Germany, USA 2 INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Germany, USA 3 Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany 4 Risk-Based Decisions Inc., Sacramento, CA, USA Received 21 March 2018, Accepted 16 December 2018 Abstract- - Inflammation is the body’s reaction to pathogenic (biological or chemical) stimuli and covers a burgeoning list of compounds and pathways that act in concert to maintain the health of the organism. Eicosanoids and related fatty acid derivatives can be formed from arachidonic acid and other polyenoic fatty acids via the cyclooxygenase and lipoxygenase pathways generating a variety of pro- and anti-inflammatory mediators, such as prostaglandins, leukotrienes, lipoxins, resolvins and others. The cytochrome P450 pathway leads to the formation of hydroxy fatty acids, such as 20-hydroxyeicosatetraenoic acid, and epoxy eicosanoids. Free radical reactions induced by reactive oxygen and/or nitrogen free radical species lead to oxygenated lipids such as isoprostanes or isolevuglandins which also exhibit pro-inflammatory activities. Eicosanoids and their metabolites play fundamental endocrine, autocrine and paracrine roles in both physiological and pathological signaling in various diseases. These molecules induce various unsaturated fatty acid dependent signaling pathways that influence crosstalk, alter cell–cell interactions, and result in a wide spectrum of cellular dysfunctions including those of the tissue microenvironment.
  • University of California, San Diego

    University of California, San Diego

    UNIVERSITY OF CALIFORNIA, SAN DIEGO A Lipidomic Perspective on Inflammatory Macrophage Eicosanoid Signaling A Thesis submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Paul Christopher Norris Committee in charge: Professor Edward A. Dennis, Chair Professor Pieter C. Dorrestein Professor Partho Ghosh Professor Christopher K. Glass Professor Michael J. Sailor 2013 The Dissertation of Paul Christopher Norris is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION To my parents, Darrell and Kathy, for always allowing me to think (and choose) for myself. iv TABLE OF CONTENTS Signature page ............................................................................................................................ iii Dedication .................................................................................................................................. iv Table of contents ......................................................................................................................... v List of symbols and abbreviations ........................................................................................... viii List of figures ............................................................................................................................. xi List of tables ............................................................................................................................
  • The Relationship Between Specialized Pro-Resolving Lipid Mediators, Morbid Obesity and Weight Loss After Bariatric Surgery

    The Relationship Between Specialized Pro-Resolving Lipid Mediators, Morbid Obesity and Weight Loss After Bariatric Surgery

    www.nature.com/scientificreports OPEN The relationship between specialized pro‑resolving lipid mediators, morbid obesity and weight loss after bariatric surgery Fabian Schulte1,2,7, Abdul Aziz Asbeutah3,6,7, Peter N. Benotti4, G. Craig Wood4, Christopher Still4, Bruce R. Bistrian5, Markus Hardt1,2 & Francine K. Welty3* Obesity and diabetes are associated with chronic infammation. Specialized pro‑resolving lipid mediators (SPMs)—resolvins (Rv), protectins (PD) and maresins (MaR)—actively resolve infammation. Bariatric surgery achieves remission of diabetes, but mechanisms are unclear. We measured SPMs and proinfammatory eicosanoid levels using liquid chromatography‑tandem mass spectrometry in 29 morbidly obese subjects (13 with diabetes) and 15 nondiabetic, mildly obese subjects. Compared to the mildly obese, the morbidly obese had higher levels of SPMs—RvD3, RvD4 and PD1—and white blood cells (WBC) and platelets. Post‑surgery, SPM and platelet levels decreased in morbidly obese nondiabetic subjects but not in diabetic subjects, suggesting continued infammation. Despite similar weight reductions 1 year after surgery (44.6% vs. 46.6%), 8 diabetes remitters had signifcant reductions in WBC and platelet counts whereas fve non‑remitters did not. Remitters had a 58.2% decrease (p = 0.03) in 14‑HDHA, a maresin pathway marker; non‑remitters had an 875.7% increase in 14‑HDHA but a 36.9% decrease in MaR1 to a median of 0. In conclusion, higher levels of RvD3, PD1 and their pathway marker, 17‑HDHA, are markers of leukocyte activation and infammation in morbid obesity and diabetes and diminish with weight loss in nondiabetic but not diabetic subjects, possibly representing sustained infammation in the latter.
  • Serum Leukotriene Metabolism and Type I Hypersensitivity Reactions in Different Animal Species

    Serum Leukotriene Metabolism and Type I Hypersensitivity Reactions in Different Animal Species

    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1989 Serum leukotriene metabolism and Type I hypersensitivity reactions in different animal species Thulasi Sarojam Unnitan The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Unnitan, Thulasi Sarojam, "Serum leukotriene metabolism and Type I hypersensitivity reactions in different animal species" (1989). Graduate Student Theses, Dissertations, & Professional Papers. 3533. https://scholarworks.umt.edu/etd/3533 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD TJBRARY Copying allowed as provided under provisions of the Fair Use Section of the U.S. COPYRIGHT LAW, 1976. Any copying for commercial purposes or financial gain may be undertaken only with the author's written consent. MontanaUniversity of SERUM LEUKOTRIENE METABOLISM AND TYPE I HYPERSENSITIVITY REACTIONS IN DIFFERENT ANIMAL SPECIES By Thulasi Sarojam Unnithan M.B.B.S., Trivandrum Medical College, India, 1981 Presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana, 1989 8^'an, Graduate School ($hL& . & Date UMI Number: EP34626 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
  • Ioi70902.Pdf

    Ioi70902.Pdf

    ORIGINAL INVESTIGATION Montelukast, a Once-Daily Leukotriene Receptor Antagonist, in the Treatment of Chronic Asthma A Multicenter, Randomized, Double-blind Trial Theodore F. Reiss, MD; Paul Chervinsky, MD; Robert J. Dockhorn, MD; Sumiko Shingo, MS; Beth Seidenberg, MD; Thomas B. Edwards, MD; for the Montelukast Clinical Research Study Group Objectives: To determine the clinical effect of oral mon- Results: Montelukast improved airway obstruction telukast sodium, a leukotriene receptor antagonist, in asth- (forced expiratory volume in 1 second, morning and matic patients aged 15 years or more. evening peak expiratory flow rate) and patient-reported end points (daytime asthma symptoms, “as-needed” Design: Randomized, multicenter, double-blind, placebo- b-agonist use, nocturnal awakenings) (P,.001 com- controlled, parallel-group study. A 2-week, single- pared with placebo). Montelukast provided near- blind, placebo run-in period was followed by a 12- maximal effect in these end points within the first day week, double-blind treatment period (montelukast of treatment. Tolerance and rebound worsening of asthma sodium, 10 mg, or matching placebo, once daily at bed- did not occur. Montelukast improved outcome end points, time) and a 3-week, double-blind, washout period. including asthma exacerbations, asthma control days (P,.001 compared with placebo), and decreased periph- Setting/Patients: Fifty clinical centers randomly allo- eral blood eosinophil counts (P,.001 compared with pla- cated 681 patients with chronic, stable asthma to receive pla- cebo). The incidence of adverse events and discontinu- cebo or montelukast after demonstrating a forced expira- ations from therapy were similar in the montelukast and tory volume in 1 second 50% to 85% of the predicted value, placebo groups.
  • Strict Regio-Specificity of Human Epithelial 15-Lipoxygenase-2

    Strict Regio-Specificity of Human Epithelial 15-Lipoxygenase-2

    Strict Regio-specificity of Human Epithelial 15-Lipoxygenase-2 Delineates its Transcellular Synthesis Potential Abigail R. Green, Shannon Barbour, Thomas Horn, Jose Carlos, Jevgenij A. Raskatov, Theodore R. Holman* Department Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz CA 95064, USA *Corresponding author: Tel: 831-459-5884. Email: [email protected] FUNDING: This work was supported by the NIH NS081180 and GM56062. Abbreviations: LOX, lipoxygenase; h15-LOX-2, human epithelial 15-lipoxygenase-2; h15-LOX-1, human reticulocyte 15-lipoxygenase-1; sLO-1, soybean lipoxygenase-1; 5-LOX, leukocyte 5-lipoxygenase; 12-LOX, human platelet 12-lipoxygenase; GP, glutathione peroxidase; AA, arachidonic acid; HETE, hydoxy-eicosatetraenoic acid; HPETE, hydroperoxy-eicosatetraenoic acid; diHETEs, dihydroxy-eicosatetraenoic acids; 5-HETE, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 5-HPETE, 5-hydro peroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 12-HPETE, 12-hydroperoxy-5Z,8Z,10E, 14Z-eicosatetraenoic acid; 15-HPETE, 15-hydroperoxy-5Z,8Z,10Z,13E- eicosatetraenoic acid; 5,15-HETE, 5S,15S-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid; 5,15-diHPETE, 5,15-dihydroperoxy-6E,8Z,10Z,13E-eicosatetraenoic acid; 5,6- diHETE, 5S,6R-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid; LTA4, 5S-trans-5,6- oxido-7E,9E,11Z,14Z-eicosatetraenoic acid; LTB4, 5S,12R-dihydroxy-6Z,8E,10E,14Z- eicosatetraenoic acid; LipoxinA4 (LxA4), 5S,6R,15S-trihydroxy-7E,9E,11Z,13E- eicosatetraenoic acid; LipoxinB4 (LxB4), 5S,14R,15S-trihydroxy-6E,8Z,10E,12E- eicosatetraenoic acid. Abstract Lipoxins are an important class of lipid mediators that induce the resolution of inflammation, and arise from transcellular exchange of arachidonic acid (AA)- derived lipoxygenase products.
  • Montelukast, a Leukotriene Receptor Antagonist, for the Treatment of Persistent Asthma in Children Aged 2 to 5 Years

    Montelukast, a Leukotriene Receptor Antagonist, for the Treatment of Persistent Asthma in Children Aged 2 to 5 Years

    Montelukast, a Leukotriene Receptor Antagonist, for the Treatment of Persistent Asthma in Children Aged 2 to 5 Years Barbara Knorr, MD*; Luis M. Franchi, MD‡; Hans Bisgaard, MD§; Jan Hendrik Vermeulen, MDʈ; Peter LeSouef, MD¶; Nancy Santanello, MD, MS*; Theresa M. Michele, MD*; Theodore F. Reiss, MD*; Ha H. Nguyen, PhD*; and Donna L. Bratton, MD# ABSTRACT. Background. The greatest prevalence of baseline period. Patients had a history of physician-di- asthma is in preschool children; however, the clinical agnosed asthma requiring use of ␤-agonist and a pre- utility of asthma therapy for this age group is limited by defined level of daytime asthma symptoms. Caregivers a narrow therapeutic index, long-term tolerability, and answered questions twice daily on a validated, asthma- frequency and/or difficulty of administration. Inhaled specific diary card and, at specified times during the corticosteroids and inhaled cromolyn are the most com- study, completed a validated asthma-specific quality-of- monly prescribed controller therapies for young children life questionnaire. Physicians and caregivers completed a with persistent asthma, although very young patients global evaluation of asthma control at the end of the may have difficulty using inhalers, and dose delivery can study. be variable. Moreover, reduced compliance with inhaled Efficacy end points included: daytime and overnight therapy relative to orally administered therapy has been asthma symptoms, daily use of ␤-agonist, days without reported. One potential advantage of montelukast is the asthma, frequency of asthma attacks, number of patients ease of administering a once-daily chewable tablet; ad- discontinued because of asthma, need for rescue medica- ditionally, no tachyphylaxis or change in the safety pro- tion, physician and caregiver global evaluations of file has been evidenced after up to 140 and 80 weeks of change, asthma-specific caregiver quality of life, and pe- montelukast therapy in adults and pediatric patients ripheral blood eosinophil counts.
  • Phospholipase A2 Regulates Eicosanoid Class Switching During Inflammasome Activation

    Phospholipase A2 Regulates Eicosanoid Class Switching During Inflammasome Activation

    Phospholipase A2 regulates eicosanoid class switching during inflammasome activation Paul C. Norrisa, David Gosselinb, Donna Reichartb, Christopher K. Glassb, and Edward A. Dennisa,1 Departments of aChemistry/Biochemistry and Pharmacology, and bCellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Edited by Michael A. Marletta, The Scripps Research Institute, La Jolla, CA, and approved July 30, 2014 (received for review March 13, 2014) Initiation and resolution of inflammation are considered to be to initiate pathogenic killing, subsequent “class switching” to lipoxin tightly connected processes. Lipoxins (LX) are proresolution lipid (LX) formation by “reprogrammed” neutrophils inhibits additional mediators that inhibit phlogistic neutrophil recruitment and pro- neutrophil recruitment during self-resolving inflammatory resolu- mote wound-healing macrophage recruitment in humans via tion (9). The direct link between inflammatory commitment and potent and specific signaling through the LXA4 receptor (ALX). resolution mediated by eicosanoid signaling in macrophages One model of lipoxin biosynthesis involves sequential metabolism remains unclear from short-term vs. long-term priming, but the of arachidonic acid by two cell types expressing a combined trans- complete temporal changes and important interconnections cellular metabolon. It is currently unclear how lipoxins are effi- within the entire eicosadome are now demonstrated. ciently formed from precursors or if they are directly generated after receptor-mediated inflammatory commitment. Here, we pro- Results vide evidence for a pathway by which lipoxins are generated in We first primed immortalized macrophage-like cells (RAW264.7) macrophages as a consequence of sequential activation of toll-like with the TLR4 agonist Kdo2 lipid A (KLA) for various times and receptor 4 (TLR4), a receptor for endotoxin, and P2X7, a purinergic examined the effects on subsequent purinergic stimulated COX receptor for extracellular ATP.
  • Nutrition Bytes

    Nutrition Bytes

    UCLA Nutrition Bytes Title Theories Presented in The Zone Permalink https://escholarship.org/uc/item/9pg2j7wk Journal Nutrition Bytes, 3(1) ISSN 1548-4327 Author Chang, Jeannie Publication Date 1997 Peer reviewed eScholarship.org Powered by the California Digital Library University of California "Easy -to -follow" diet plans appear each year to convince overweight Americans that there is finally a way to lose weight permanently. Barry Sears and Bill Lawren’s book, The Zone, is no exception; in fact, Sears’ book cover advertises that it is "a dietary road map to lose weight permanently, reset your genetic code, prevent disease, achieve maximum physical performance, [and] enhance mental productivity." But is this realistic? Can a diet really accomplish all of those tasks? After numerous searches through several databases, only two journal articles analyzing this diet plan surfaced, both warning readers about the misinformation contained in the book. There are definitely problems with Sears’ diet; for example, his daily caloric intake recommendation is dangerously low. Tufts University Diet and Nutrition Letter stated that they believed "[Sears was] confusing the near -euphoria he promises from following the Zone diet with lightheadedness from hunger" (3). Dr. Zamenhof, Associate Professor of Biological Ch emistry at UCLA said that it was probably due to an increased release of endorphins, enkephalins, and catecholamines. In addition, the information he provides regarding carbohydrate and fat metabolism, as well as insulin and glucagon secretion, are wrong. However, Sears also says that there is a direct relationship between insulin and glucagon with the synthesis of "good" eicosanoids (prostaglandin E1 and prostaglandin I2 and "bad" eicosanoids (prostaglandin E2, thromboxanes, and leukotrienes).
  • Leukotriene Modifiers (Accolate®, Singulair®, Zileuton®)

    Leukotriene Modifiers (Accolate®, Singulair®, Zileuton®)

    Leukotriene Modifiers (Accolate®, Singulair®, Zileuton®) What are They? Leukotriene modifiers reduce swelling and inflammation in the airways to prevent asthma symptoms. You may not notice a change in your asthma symptoms for one to two week, after starting to use them. • These medicines will not stop a sudden asthma attack. Albuterol should be used for sudden asthma attacks. • Only regular daily use of the leukotriene modifiers will prevent asthma symptoms. • It is important that you do not stop or decrease the dose of these medications without contacting your doctor. How should they be used? • Zafirlukast (Accolate®) is a tablet that is taken by mouth twice a day on an empty stomach (1 hour before you eat or 2 hours after you eat). It is very important to take this medicine on an empty stomach. o Zafirlukast must be taken every day even if you don’t have asthma symptoms. If you forget to take your dose on time, do not take twice as much the next time. Take the regularly scheduled dose as soon as you remember, then get back to your regular schedule. o Side effects . Zafirlukast (Accolate®) causes very few side effects. Some people may have headaches, nausea, or diarrhea. Although these side effects are quite uncommon, it is important for you to let your doctor know if you are experiencing any of these while taking zafirlukast. • Montelukast (Singulair®) o A tablet that is taken once a day at nighttime. o You can take Montelukast with or without food. o Montelukast must be taken every day even if you don’t have asthma symptoms.
  • Omega-3, Omega-6 and Omega-9 Fatty Acids

    Omega-3, Omega-6 and Omega-9 Fatty Acids

    Johnson and Bradford, J Glycomics Lipidomics 2014, 4:4 DOI: 0.4172/2153-0637.1000123 Journal of Glycomics & Lipidomics Review Article Open Access Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases Melissa Johnson1* and Chastity Bradford2 1College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, Alabama, USA 2Department of Biology, Tuskegee University, Tuskegee, Alabama, USA Abstract The relationship between diet and disease has long been established, with epidemiological and clinical evidence affirming the role of certain dietary fatty acid classes in disease pathogenesis. Within the same class, different fatty acids may exhibit beneficial or deleterious effects, with implications on disease progression or prevention. In conjunction with other fatty acids and lipids, the omega-3, -6 and -9 fatty acids make up the lipidome, and with the conversion and storage of excess carbohydrates into fats, transcendence of the glycome into the lipidome occurs. The essential omega-3 fatty acids are typically associated with initiating anti-inflammatory responses, while omega-6 fatty acids are associated with pro-inflammatory responses. Non-essential, omega-9 fatty acids serve as necessary components for other metabolic pathways, which may affect disease risk. These fatty acids which act as independent, yet synergistic lipid moieties that interact with other biomolecules within the cellular ecosystem epitomize the critical role of these fatty acids in homeostasis and overall health. This review focuses on the functional roles and potential mechanisms of omega-3, omega-6 and omega-9 fatty acids in regard to inflammation and disease pathogenesis. A particular emphasis is placed on cardiovascular disease, the leading cause of morbidity and mortality in the United States.
  • Thiazolidine-2,4-Dione Attenuates Atherosclerosis Possibly by Reducing Monocyte Recruitment to the Lesion

    Thiazolidine-2,4-Dione Attenuates Atherosclerosis Possibly by Reducing Monocyte Recruitment to the Lesion

    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 43, No. 8, 471-478, August 2011 5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion Jae-Hoon Choi1,2*, Jong-Gil Park2,3*, Accepted 20 June 2011 Hyung Jun Jeon2, Mi-Sun Kim4, Mi-Ran Lee2, Available Online 21 June 2011 2 2 5 Mi-Ni Lee , SeongKeun Sonn , Jae-Hong Kim , Abbreviations: 5-LOX, 5-lipoxygenase; BHB-TZD, 5-(3,5-di- Mun Han Lee3, Myung-Sook Choi6, tert-butyl-4-hydroxybenzylidene) thiazolidin-2,4-dione; COX, Yong Bok Park7, Oh-Seung Kwon8, cyclooxygenase; HMB-TZD, 5-(4-hydroxy-2,3,5-trimethyl- Tae-Sook Jeong9, Woo Song Lee10, Hyun Bo Shim2, benzylidene) thiazolidin-2,4-dione; ICAM-1, intercellular 4 2,11 adhesion molecule-1; Ldlr, low density lipoprotein receptor; Dong Hae Shin and Goo Taeg Oh TNF-α, tumor necrosis factor-alpha; VCAM-1, vascular cell adhesion molecule-1 1Department of Life Science College of Natural Sciences Hanyang University Abstract Seoul 133-791, Korea 2Division of Life and Pharmaceutical Sciences A variety of benzylidenethiazole analogs have been Ewha Womans University demonstrated to inhibit 5-lipoxygenase (5-LOX). Here Seoul 120-750, Korea we report the anti-atherogenic potential of 5-(4-hy- 3 Department of Veterinary Biochemistry droxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-di- College of Veterinary Medicine one (HMB-TZD), a benzylidenethiazole analog, and its Seoul National University potential mechanism of action in LDL receptor-defi- Seoul 151-742, Korea cient (Ldlr-/-) mice. HMB-TZD Treatment reduced leuko- 4Division of Life and Pharmaceutical Sciences triene B4 (LTB4) production significantly in RAW264.7 College of Pharmacy macrophages and SVEC4-10 endothelial cells.