Matheus Souza Lima Ribeiro
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.1 První Chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Jakub Březina Rešerše k bakalářské práci Využití mikrostruktur klů neogenních chobotnatců na příkladu rodu Zygolophodon Vedoucí práce: doc. Mgr. Martin Ivanov, Dr. Brno 2012 OBSAH 1. Současný pohled na evoluci chobotnatců 3 1.1 První chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2. Kly chobotnatců a jejich mikrostruktura 9 2.1 Přírůstky v klech chobotnatců 11 2.1.1 Využití přírůstků v klech chobotnatců 11 2.2 Schregerův vzor 12 2.2.1 Stavba Schregerova vzoru 12 2.2.2 Využití Schregerova vzoru 12 2.3 Dentinové kanálky 15 3 Sedimenty s nálezy savců v okolí Mikulova 16 3.1 Baden 17 3.2 Pannon a Pont 18 1. Současný pohled na evoluci chobotnatců Současná systematika chobotnatců není kompletně odvozena od jejich fylogeneze, rekonstruované pomocí kladistických metod. Diskutované skupiny tak mnohdy nepředstavují monofyletické skupiny. Přestože jsou taxonomické kategorie matoucí (např. Laurin 2005), jsem do jisté míry nucen je používat. Některým skupinám úrovně stále přiřazeny nebyly a zde této skutečnosti není přisuzován žádný význam. V této rešerši jsem se zaměřil hlavně na poznatky, které následovaly po vydání knihy; The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, od Shoshaniho a Tassyho (1996). Chobotnatci jsou součástí skupiny Tethytheria společně s anthracobunidy, sirénami a desmostylidy (Shoshani 1998; Shoshani & Tassy 1996; 2005; Gheerbrant & Tassy 2009). Základní klasifikace sestává ze dvou skupin. Ze skupiny Plesielephantiformes, do které patří čeledě Numidotheriidae, Barytheriidae a Deinotheridae a ze skupiny Elephantiformes, do které patří čeledě Palaeomastodontidae, Phiomiidae, Mammutida, Gomphotheriidae, tetralofodontní gomfotéria, Stegodontidae a Elephantidae (Shoshani & Marchant 2001; Shoshani & Tassy 2005; Gheerbrant & Tassy 2009). -
Distinguishing Extant Elephants Ivory from Mammoth Ivory Using a Short
www.nature.com/scientificreports OPEN Distinguishing extant elephants ivory from mammoth ivory using a short sequence of cytochrome b gene Jacob Njaramba Ngatia1, Tian Ming Lan2,3,4, Yue Ma1,5, Thi Dao Dinh1, Zhen Wang1,5, Thomas D. Dahmer6 & Yan Chun Xu1,5,7* Trade in ivory from extant elephant species namely Asian elephant (Elephas maximus), African savanna elephant (Loxodonta africana) and African forest elephant (Loxodonta cyclotis) is regulated internationally, while the trade in ivory from extinct species of Elephantidae, including woolly mammoth, is unregulated. This distinction creates opportunity for laundering and trading elephant ivory as mammoth ivory. The existing morphological and molecular genetics methods do not reliably distinguish the source of ivory items that lack clear identifcation characteristics or for which the quality of extracted DNA cannot support amplifcation of large gene fragments. We present a PCR-sequencing method based on 116 bp target sequence of the cytochrome b gene to specifcally amplify elephantid DNA while simultaneously excluding non-elephantid species and ivory substitutes, and while avoiding contamination by human DNA. The partial Cytochrome b gene sequence enabled accurate association of ivory samples with their species of origin for all three extant elephants and from mammoth. The detection limit of the PCR system was as low as 10 copy numbers of target DNA. The amplifcation and sequencing success reached 96.7% for woolly mammoth ivory and 100% for African savanna elephant and African forest elephant ivory. This is the frst validated method for distinguishing elephant from mammoth ivory and it provides forensic support for investigation of ivory laundering cases. -
Straight-Tusked Elephant (Palaeoloxodon Antiquus) and Other Megafauna in Europe
The World of Elephants - International Congress, Rome 2001 The Late Quaternary extinction of woolly mammoth (Mammuthus primigenius), straight-tusked elephant (Palaeoloxodon antiquus) and other megafauna in Europe A.J. Stuart, A.M. Lister Department of Biology, University College, London, UK [email protected] We are engaged in a research project (funded at present, it is apparent that these range changes by the Natural Environment Research Council - were not the same for each species; for example NERC) on megafaunal extinctions throughout the “last stands” of Mammuthus primigenius, Europe within the period ca. 50,000 to 9000 14C Megaloceros giganteus and Palaeoloxodon years BP. The work involves a survey of strati- antiquus appear to have been made in very dif- graphic information and available 14C dates, and ferent regions of Europe. Tracking these changes also sampling crucial material for a major involves firstly gathering data from the literature programme of AMS 14C dating. Both of the and from colleagues in each region. By these elephant species present in the European Late means we are building up an approximate pic- Pleistocene: Mammuthus primigenius and ture and specifying the likely latest material of Palaeoloxodon antiquus are included in the our target species for each region. In order to project. obtain a much more accurate database, we are Our target species include most of those that sampling the putatively latest material and sub- became extinct, or regionally extinct, after mitting it for 14C dating. ca. 15,000 BP: woolly mammoth Mammuthus Late Quaternary extinctions have been vari- primigenius, woolly rhinoceros Coelodonta ously attributed to overkill by human hunters antiquitatis; giant deer Megaloceros giganteus; (Martin 1984; Martin & Steadman 1999), to lion Panthera leo; and spotted hyaena Crocuta environmental changes (Graham & Lundelius crocuta. -
The Mastodonts of Brazil': the State of the Art of South American
Quaternary International 443 (2017) 52e64 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Sixty years after ‘The mastodonts of Brazil’: The state of the art of South American proboscideans (Proboscidea, Gomphotheriidae) * Dimila Mothe a, b, , Leonardo dos Santos Avilla a, c, Lidiane Asevedo a, d, Leon Borges-Silva a, Mariane Rosas e, Rafael Labarca-Encina f, Ricardo Souberlich g, Esteban Soibelzon h, i, Jose Luis Roman-Carrion j, Sergio D. Ríos k, Ascanio D. Rincon l, Gina Cardoso de Oliveira b, Renato Pereira Lopes m a Laboratorio de Mastozoologia, Departamento de Zoologia, Instituto de Bioci^encias, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, 501, Urca, CEP 22290-240, Rio de Janeiro, Brazil b Programa de Pos-graduaç ao~ em Geoci^encias, Centro de Tecnologia e Geoci^encias, Universidade Federal de Pernambuco, Rua Acad^emico Helio Ramos, s/n, Cidade Universitaria, CEP 50740-467, Recife, Brazil c Programa de Pos-graduaç ao~ em Biodiversidade Neotropical, Instituto de Bioci^encias, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, 501, Urca, CEP 22290-240, Rio de Janeiro, Brazil d Faculdade de Geoci^encias (Fageo), Campus Cuiaba, Universidade Federal de Mato Grosso, Av. Fernando Correa da Costa, 2367, Jardim Petropolis, CEP 78070-000, Cuiaba, Mato Grosso, Brazil e Laboratorio de Paleontologia, Centro de Ci^encias Agrarias, Ambientais e Biologicas, Universidade Federal do Reconcavo^ da Bahia, Cruz das Almas, Bahia, Brazil f Laboratorio de Paleoecología, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile g Laboratorio de Paleontología, Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Acceso Av. -
Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects. -
Mammalia, Proboscidea, Gomphotheriidae): Taxonomy, Phylogeny, and Biogeography
J Mammal Evol DOI 10.1007/s10914-012-9192-3 ORIGINAL PAPER The South American Gomphotheres (Mammalia, Proboscidea, Gomphotheriidae): Taxonomy, Phylogeny, and Biogeography Dimila Mothé & Leonardo S. Avilla & Mario A. Cozzuol # Springer Science+Business Media, LLC 2012 Abstract The taxonomic history of South American Gom- peruvium, seems to be a crucial part of the biogeography photheriidae is very complex and controversial. Three species and evolution of the South American gomphotheres. are currently recognized: Amahuacatherium peruvium, Cuvieronius hyodon,andNotiomastodon platensis.Thefor- Keywords South American Gomphotheres . Systematic mer is a late Miocene gomphothere whose validity has been review. Taxonomy. Proboscidea questioned by several authors. The other two, C. hyodon and N. platensis, are Quaternary taxa in South America, and they have distinct biogeographic patterns: Andean and lowland Introduction distributions, respectively. South American gomphotheres be- came extinct at the end of the Pleistocene. We conducted a The family Gomphotheriidae is, so far, the only group of phylogenetic analysis of Proboscidea including the South Proboscidea recorded in South America. Together with the American Quaternary gomphotheres, which resulted in two megatheriid sloths Eremotherium laurillardi Lund, 1842, most parsimonious trees. Our results support a paraphyletic the Megatherium americanum Cuvier, 1796,andthe Gomphotheriidae and a monophyletic South American notoungulate Toxodon platensis Owen, 1840, they are the gomphothere lineage: C. hyodon and N. platensis. The late most common late Pleistocene representatives of the mega- Miocene gomphothere record in Peru, Amahuacatherium fauna in South America (Paula-Couto 1979). Similar to the Pleistocene and Holocene members of the family Elephan- tidae (e.g., extant elephants and extinct mammoths), the D. -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
The Woolly Mammoth
The Woolly Mammoth The Woolly Mammoth by Edward I. Maxwell The closest relative of the woolly mammoth is the Asian elephant. The main difference between the two is that the mammoth had an incredible coat of fur, made up of an outer layer of coarse "guard hair" with an inner layer of curly wool. The last known group of mammoths died off, or became extinct, around 4,000 years ago. The mammoth roamed the northern lands of the world during a period known as the Ice Age. It was among the largest land mammals to roam the earth. The mammoth was a tough beast and was able to endure extreme weather conditions and frigid temperatures. The mammoth shared these northern territories with other mammals during the Ice Age. The most important mammal to interact with the mammoth, however, was the human. When the mammoths were at their greatest numbers, humans mainly hunted animals and foraged for food. These hunters would follow herds of animals over incredibly long distances in order to hunt them. The woolly mammoth provided a great amount of food and other important things for these humans. The fur, for example, could be used to make coats and blankets that would help keep out the cold in the icy environment. Bones from the mammoth could be used to make tools and weapons. Because one mammoth provided so many useful things to a large group of people, early humans would follow the herds wherever they went. There is even a theory that the humans followed the mammoth over a land-bridge from Asia into the Americas. -
Columbian Mammoths: Giants of the Ice Age
Name: __________________________________________________ Date: ______________ Columbian Mammoths: Giants of the Ice Age Did you know not all mammoths were woolly mammoths? The woolly mammoth was just one of nearly a dozen different species of mammoths. Another species was the Columbian (pronounced “cuh-LUM-be-un”) mammoth. Columbian mammoths lived during the Pleistocene Epoch (“PLY-stuh-SEEN EP-uck”), sometimes called the Ice Age. The Pleistocene Epoch started 2.5 million years ago and ended about 10,000 years ago. Even though people call it the Ice Age, not all the world was covered in ice. Sheets of ice called glaciers (“GLAY-shurs”) covered most of what is now Canada and the northern United States, but the lands that became the southern United States and Mexico were not under ice. Columbian mammoths were grazers, or animals that eat mostly grass. To make sure they had enough to eat, they lived in savannas (“suh-VAN-uhs”). Savannas are warm grasslands with scattered trees, and they were away from the glaciers. This was different from the woolly mammoths, which lived closer to the glaciers in lands called steppes (“STEPS”), cool plains with shrubs, herbs, and a little grass. How big was a Columbian mammoth? Huge! They were about 14 feet tall, or 4.3 meters. They also weighed as much as 10 tons, the same as a school bus. This made them much bigger than woolly mammoths, which were about 10 feet tall (3 meters) and weighed 6 tons. So why were they called Columbian mammoths? Scientists use New Latin to name animals. In New Latin, “Columbia” means “land of Columbus”, or North America. -
Paleobiogeography of Trilophodont Gomphotheres (Mammalia: Proboscidea)
Revista Mexicana deTrilophodont Ciencias Geológicas, gomphotheres. v. 28, Anúm. reconstruction 2, 2011, p. applying235-244 DIVA (Dispersion-Vicariance Analysis) 235 Paleobiogeography of trilophodont gomphotheres (Mammalia: Proboscidea). A reconstruction applying DIVA (Dispersion-Vicariance Analysis) María Teresa Alberdi1,*, José Luis Prado2, Edgardo Ortiz-Jaureguizar3, Paula Posadas3, and Mariano Donato1 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, España. 2 INCUAPA, Departamento de Arqueología, Universidad Nacional del Centro, Del Valle 5737, B7400JWI Olavarría, Argentina. 3 LASBE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/Nº, B1900FWA La Plata, Argentina. * [email protected] ABSTRACT The objective of our paper was to analyze the distributional patterns of trilophodont gomphotheres, applying an event-based biogeographic method. We have attempted to interpret the biogeographical history of trilophodont gomphotheres in the context of the geological evolution of the continents they inhabited during the Cenozoic. To reconstruct this biogeographic history we used DIVA 1.1. This application resulted in an exact solution requiring three vicariant events, and 15 dispersal events, most of them (i.e., 14) occurring at terminal taxa. The single dispersal event at an internal node affected the common ancestor to Sinomastodon plus the clade Cuvieronius – Stegomastodon. A vicariant event took place which resulted in two isolated groups: (1) Amebelodontinae (Africa – Europe – Asia) and (2) Gomphotheriinae (North America). The Amebelodontinae clade was split by a second vicariant event into Archaeobelodon (Africa and Europe), and the ancestors of the remaining genera of the clade (Asia). In contrast, the Gomphotheriinae clade evolved mainly in North America. -
Mammoths' - National Park Service MAMMOTH SITE
^ \ . I I ^ I !* A 5,^' ; WACO 'The nation's first and only recorded discovery of a nursery herd of Pleistocene mammoths' - National Park Service MAMMOTH SITE WACO MAMMOTH SITE OVERVIEW • The Waco AAommoth Site sits In more than 100 acres of wooded parkland and is the result of a collabo ration between the City of Waco, Baylor University, and the Waco AAommoth Foundation. The City of Waco manages the site, while Baylor University's AAayborn AAuseum Complex curates the excavated mate rial and oversees scientific research. • Congressional legislation is currently pending to create the Waco Mammoth National Monument and to include the site as a unit of the Notional Park Service. • The Waco Mammoth Site was first discovered in 1978. The site is the only known discovery of a nursery herd (female mammoths and their offspring) in North America. This is also North America's largest known collection of Columbian mammoths that died in a single event. • Research indicates the Waco mammoths perished in a series of flood-related events spread across thou sands of years. One of the earliest events took place approximately 68,000 years ago and included 19 of the mammoths. • To date, 24 mammoths have been discovered, and the likelihood of additional fossils exists. A large por tion of the mammoth remains were discovered in the ravine outside of the dig shelter. COLUMBIAN MAMMOTH FACTS • Columbian Mammoths (Mommuthus columbi) lived during the Pleisto cene Epoch (2.5 million years to 10,000 yeors ago). • The Columbian mammoth was one of the largest mammals to have lived during the Pleistocene Epoch. -
Mammals and Stratigraphy : Geochronology of the Continental Mammal·Bearing Quaternary of South America
MAMMALS AND STRATIGRAPHY : GEOCHRONOLOGY OF THE CONTINENTAL MAMMAL·BEARING QUATERNARY OF SOUTH AMERICA by Larry G. MARSHALLI, Annallsa BERTA'; Robert HOFFSTETTER', Rosendo PASCUAL', Osvaldo A. REIG', Miguel BOMBIN', Alvaro MONES' CONTENTS p.go Abstract, Resume, Resumen ................................................... 2, 3 Introduction .................................................................. 4 Acknowledgments ............................................................. 6 South American Pleistocene Land Mammal Ages ....... .. 6 Time, rock, and faunal units ...................... .. 6 Faunas....................................................................... 9 Zoological character and history ................... .. 9 Pliocene-Pleistocene boundary ................................................ 12 Argentina .................................................................... 13 Pampean .................................................................. 13 Uquian (Uquiense and Puelchense) .......................................... 23 Ensenadan (Ensenadense or Pampeano Inferior) ............................... 28 Lujanian (LuJanense or Pampeano lacus/re) .................................. 29 Post Pampean (Holocene) ........... :....................................... 30 Bolivia ................ '...................................................... ~. 31 Brazil ........................................................................ 37 Chile ........................................................................ 44 Colombia