Evolutionary Relationships Among Marine Cercozoans As Inferred from Combined SSU and LSU Rdna Sequences and Polyubiquitin Insertions

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Relationships Among Marine Cercozoans As Inferred from Combined SSU and LSU Rdna Sequences and Polyubiquitin Insertions Molecular Phylogenetics and Evolution 57 (2010) 518–527 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary relationships among marine cercozoans as inferred from combined SSU and LSU rDNA sequences and polyubiquitin insertions Chitchai Chantangsi a,b,*, Mona Hoppenrath a,1, Brian S. Leander a a Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand article info abstract Article history: An insertion of one or two amino acids at the monomer–monomer junctions of polyubiquitin is a distinct Received 23 October 2009 and highly conserved molecular character that is shared by two very diverse clades of microeukaryotes, Revised 15 July 2010 the Cercozoa and the Foraminifera. It has been suggested that an insertion consisting of one amino acid, Accepted 15 July 2010 like that found in foraminiferans and some cercozoans, represents an ancestral state, and an insertion Available online 21 July 2010 consisting of two amino acids represents a derived state. However, the limited number of cercozoan taxa examined so far limits inferences about the number and frequency of state changes associated with this Keywords: character over deep evolutionary time. Cercozoa include a very diverse assemblage of mainly unculti- Cercozoa vated amoeboflagellates, and their tenuous phylogenetic interrelationships have been based largely on Ebria LSU rDNA small subunit (SSU) rDNA sequences. Because concatenated datasets consisting of both SSU and large Molecular phylogeny subunit (LSU) rDNA sequences have been shown to more robustly recover the phylogenetic relationships Polyubiquitin of other major groups of eukaryotes, we employed a similar approach for the Cercozoa. In order to recon- Protaspis struct the evolutionary history of this group, we amplified twelve LSU rDNAs, three SSU rDNAs, and seven polyubiquitin sequences from several different cercozoans, especially uncultured taxa isolated from mar- ine benthic habitats. The distribution of single amino acid insertions and double amino acid insertions on the phylogenetic trees inferred from the concatenated dataset indicates that the gain and loss of amino acid residues between polyubiquitin monomers occurred several times independently. Nonetheless, all of the cercozoans we examined possessed at least one amino acid insertion between the polyubiquitin monomers, which reinforced the significance of this feature as a molecular signature for identifying members of the Cercozoa and the Foraminifera. Our study also showed that analyses combining both SSU and LSU rDNA sequences leads to improved phylogenetic resolution and statistical support for dee- per branches within the Cercozoa. Ó 2010 Elsevier Inc. All rights reserved. 1. Introduction radiolarians), cercozoans are strongly nested within the supergroup Rhizaria (Adl et al., 2005; Burki et al., 2007, 2008; Keeling et al., 2005; Cercozoans comprise a diverse clade of amoeboflagellates that Nikolaev et al., 2004; Polet et al., 2004). Cercozoans, along with was initially recognized and established using molecular phyloge- euglenids and dinoflagellates, are among the most commonly netic analyses of SSU rDNA sequences (Cavalier-Smith, 1998a,b). encountered predatory flagellates in marine benthic environments, An obvious morphological feature that unites the group has yet to and environmental surveys of this diversity have demonstrated a be identified. Nonetheless, phylogenetic analyses of concatenated huge number of cercozoan lineages that have yet to be adequately gene datasets have subsequently demonstrated that along with characterized (Bass and Cavalier-Smith, 2004; Chantangsi et al., the Foraminifera and the Radiozoa (i.e., most of the traditional 2008; Hoppenrath and Leander, 2006a,b). Marine benthic cercozo- ans, especially members of the Cryomonadida (e.g., Cryothecomonas and Protaspis) and their benthic and planktonic relatives (e.g., * Corresponding author at: Department of Biology, Faculty of Science, Chul- Botuliforma, Clautriavia, Ebria, Thaumatomastix, Ventrifissura, and alongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand. Fax: Verrucomonas), have so far been relatively neglected by the protisto- +66 2 218 5386. logical community (Chantangsi et al., 2008). Improved knowledge of E-mail addresses: [email protected], [email protected] (C. Chantang- these particular lineages is important for gaining a more compre- si), [email protected] (M. Hoppenrath), [email protected] hensive understanding of marine benthic ecosystems and shedding (B.S. Leander). 1 Present address: Forschungsinstitut Senckenberg, Deutsches Zentrum für Marine light on our view of the evolutionary history of marine benthic Biodiversitätsforschung (DZMB), Südstrand 44, D-26382 Wilhelmshaven, Germany. cercozoans. 1055-7903/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2010.07.007 C. Chantangsi et al. / Molecular Phylogenetics and Evolution 57 (2010) 518–527 519 The Cercozoa and the Foraminifera share a significant molecular 2. Materials and methods character involving the presence of novel amino acid insertion(s) at the junctions between monomers of polyubiquitin genes (Archi- 2.1. Source of samples and light microscopy (LM) bald et al., 2003). Ubiquitin is a small regulatory protein composed of 76 amino acids and functions to mark other proteins for destruc- Fourteen cercozoan taxa were examined in this study (Table 1 tion (Archibald et al., 2003; Bass et al., 2005). This protein is found and Fig. 1); only three of these have been cultivated: Cryotheco- only in eukaryotes and plays essential roles in many biological pro- monas sp. (strain APCC MC5-1Cryo), Gymnochlora stellata (strain cesses, such as cell cycle regulation, DNA repair, transcriptional CCMP 2057), and Lotharella vacuolata (strain CCMP 240). Placocista regulation, signal transduction, endocytosis, embryogenesis, and sp. was isolated from freshwater aquatic moss, and individual cells apoptosis (Hershko and Ciechanover, 1998). Ubiquitin genes are representing the remaining ten taxa were isolated from marine also highly conserved, as indicated by only three residue differ- sand samples collected near Vancouver, British Columbia (details ences between humans and yeast, and can be configured in three in Table 1). Cercozoan cells were extracted from the sand samples main ways: (1) individual genes with single open reading frames; through a 48 lm mesh using a melted seawater–ice method de- (2) genes fused to ribosomal protein genes; and (3) genes orga- scribed by Uhlig (1964). Briefly, 2–3 spoons of sand samples were nized as linear head-to-tail ubiquitin coding region repeats, called placed into an extraction column wrapped with the mesh, and two polyubiquitin genes (Bass et al., 2005). Although the amino acid to three seawater ice cubes were then put on top of the sand sam- sequences of polyubiquitin genes cannot be used directly to con- ples and left to melt over several hours. The cells of interest passed struct phylogenetic trees, the specific amino acids inserted be- through the mesh and were concentrated in a seawater-filled Petri tween the monomers (e.g., serine or theonine) might provide dish that was placed underneath the extraction column. The Petri molecular signatures for specific subclades within the Cercozoa dish containing the cells was then observed using a Leica DMIL in- and the Foraminifera (Archibald et al., 2003; Archibald and Keeling, verted microscope. Cells were individually isolated and placed on a 2004; Bass et al., 2005). slide for imaging and identification using phase contrast and differ- Phylogenetic analyses of multi-gene datasets have proven to be ential interference contrast (DIC) microscopy with a Zeiss Axioplan a powerful approach to better resolving relationships among 2 imaging microscope (Fig. 1). eukaryotes (e.g., Baldauf et al., 2000; Bapteste et al., 2002; Burki et al., 2007, 2008; Burki and Pawlowski, 2006; Harper et al., 2.2. DNA extraction and PCR amplification 2005; Kim et al., 2006; Rokas et al., 2003). However, large-scale data (i.e., hundreds of genes or whole genomes) are only available Cells were individually isolated and washed three times in for a very limited number of eukaryotes, and phylogenetic analyses either autoclaved distilled water or autoclaved filtered seawater, of these datasets are computationally challenging, time consuming depending on the species. DNA was extracted using the protocol (Moreira et al., 2007), and currently impractical for studying uncul- provided in the Total Nucleic Acid Purification kit by EPICENTRE tivated lineages. Phylogenetic analyses of combined SSU and LSU (Madison, WI, USA). Semi-nested polymerase chain reaction rDNA sequences, on the other hand, have been shown to be a prag- (PCR) with a final reaction volume of 25 ll was performed in a matic and effective way to significantly improve the resolution of thermal cycler using puReTaq Ready-To-Go PCR beads (GE Health- distant relationships within the tree of eukaryotes (e.g., Moreira care Bio-Sciences, Inc., Québec, Canada). The first PCR amplification et al., 2007). These molecular markers are, therefore, expected to was conducted using the outermost forward and reverse primers provide
Recommended publications
  • Massisteria Marina Larsen & Patterson 1990
    l MARINE ECOLOGY PROGRESS SERIES Vol. 62: 11-19, 1990 1 Published April 5 l Mar. Ecol. Prog. Ser. l Massisteria marina Larsen & Patterson 1990, a widespread and abundant bacterivorous protist associated with marine detritus David J. patterson', Tom ~enchel~ ' Department of Zoology. University of Bristol. Bristol BS8 IUG. United Kingdom Marine Biological Laboratory, Strandpromenaden, DK-3000 Helsinger, Denmark ABSTRACT: An account is given of Massisteria marina Larsen & Patterson 1990, a small phagotrophic protist associated with sediment particles and with suspended detrital material in littoral and oceanic marine waters. It has been found at sites around the world. The organism has an irregular star-shaped body from which radiate thin pseudopodia with extrusomes. There are 2 inactive flagella. The organism is normally sedentary but, under adverse conditions, the arms are resorbed, the flagella become active, and the organism becomes a motile non-feeding flagellate. The ecological niche occupied by this organism and its phylogenetic affinities are discussed. INTRODUCTION (Patterson & Fenchel 1985, Fenchel & Patterson 1986, 1988, V~rs1988, Larsen & Patterson 1990). Here we Much of the carbon fixed in marine ecosystems is report on a protist, Massisteria marina ', that is specifi- degraded by microbial communities and it is held that cally associated with planktonic and benthic detritus protists, especially flagellates under 10 pm in size, and appears to be widespread and common. exercise one of the principal controlling influences over bacterial growth rates and numbers (Fenchel 1982, Azam et al. 1983, Ducklow 1983, Proctor & Fuhrman MATERIALS AND METHODS 1990). Detrital aggregates, whether benthic or in the water column, may support diverse and active microbial Cultures were established by dilution series from communities that include flagellates (Wiebe & Pomeroy water samples taken in the Limfjord (Denmark), and 1972, Caron et al.
    [Show full text]
  • Protistology Review of Diversity and Taxonomy of Cercomonads
    Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Ebriid Phylogeny and the Expansion of the Cercozoa
    ARTICLE IN PRESS Protist, Vol. 157, 279—290, May 2006 http://www.elsevier.de/protis Published online date 26 May 2006 ORIGINAL PAPER Ebriid Phylogeny and the Expansion of the Cercozoa Mona Hoppenrath1, and Brian S. Leander Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4 Submitted November 30, 2005; Accepted March 4, 2006 Monitoring Editor: Herve´ Philippe Ebria tripartita is a phagotrophic flagellate present in marine coastal plankton communities worldwide. This is one of two (possibly four) described extant species in the Ebridea, an enigmatic group of eukaryotes with an unclear phylogenetic position. Ebriids have never been cultured, are usually encountered in low abundance and have a peculiar combination of ultrastructural characters including a large nucleus with permanently condensed chromosomes and an internal skeleton composed of siliceous rods. Consequently, the taxonomic history of the group has been tumultuous and has included a variety of affiliations, such as silicoflagellates, dinoflagellates, ‘radiolarians’ and ‘neomonads’. Today, the Ebridea is treated as a eukaryotic taxon incertae sedis because no morphological or molecular features have been recognized that definitively relate ebriids with any other eukaryotic lineage. We conducted phylogenetic analyses of small subunit rDNA sequences from two multi-specimen isolations of Ebria tripartita. The closest relatives to the sequences from Ebria tripartita are environmental sequences from a submarine caldera floor. This newly recognized Ebria clade was most closely related to sequences from described species of Cryothecomonas and Protaspis. These molecular phylogenetic relationships were consistent with current ultrastructural data from all three genera, leading to a robust placement of ebriids within the Cercozoa.
    [Show full text]
  • Protaspis.Pdf
    J. Eukaryot. Microbiol., 53(5), 2006 pp. 327–342 r 2006 The Author(s) Journal compilation r 2006 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2006.00110.x Dinoflagellate, Euglenid, or Cercomonad? The Ultrastructure and Molecular Phylogenetic Position of Protaspis grandis n. sp. MONA HOPPENRATH and BRIAN S. LEANDER Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 ABSTRACT. Protaspis is an enigmatic genus of marine phagotrophic biflagellates that have been tentatively classified with several different groups of eukaryotes, including dinoflagellates, euglenids, and cercomonads. This uncertainty led us to investigate the phylogenetic position of Protaspis grandis n. sp. with ultrastructural and small subunit (SSU) rDNA sequence data. Our results demonstrated that the cells were dorsoventrally flattened, shaped like elongated ovals with parallel lateral sides, 32.5–55.0 mm long and 20.0–35.0 mm wide. Moreover, two heterodynamic flagella emerged through funnels that were positioned subapically, each within a depression and separated by a distinctive protrusion. A complex multilayered wall surrounded the cell. Like dinoflagellates and euglenids, the nucleus contained permanently condensed chromosomes and a large nucleolus throughout the cell cycle. Pseudopodia containing numerous mitochondria with tubular cristae emerged from a ventral furrow through a longitudinal slit that was positioned posterior to the protrusion and flagellar apparatus. Batteries of extrusomes were present within the cytoplasm and had ejection sites through pores in the cell wall. The SSU rDNA phylogeny demonstrated a very close relationship between the benthic P. grandis n.
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • High and Specific Diversity of Protists in the Deep-Sea Basins Dominated
    ARTICLE https://doi.org/10.1038/s42003-021-02012-5 OPEN High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans ✉ Alexandra Schoenle 1 , Manon Hohlfeld1, Karoline Hermanns1, Frédéric Mahé 2,3, Colomban de Vargas4,5, ✉ Frank Nitsche1 & Hartmut Arndt 1 Heterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using 1234567890():,; the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kineto- plastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans. 1 University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany. 2 CIRAD, UMR BGPI, Montpellier, France. 3 BGPI, Univ Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France. 4 CNRS, Sorbonne Université, Station Biologique de Roscoff, UMR7144, ECOMAP—Ecology of
    [Show full text]
  • Marine Biological Laboratory) Data Are All from EST Analyses
    TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878.
    [Show full text]
  • Kingdom Chromista)
    J Mol Evol (2006) 62:388–420 DOI: 10.1007/s00239-004-0353-8 Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) Thomas Cavalier-Smith, Ema E-Y. Chao Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Received: 11 December 2004 / Accepted: 21 September 2005 [Reviewing Editor: Patrick J. Keeling] Abstract. Heterokonts are evolutionarily important gyristea cl. nov. of Ochrophyta as once thought. The as the most nutritionally diverse eukaryote supergroup zooflagellate class Bicoecea (perhaps the ancestral and the most species-rich branch of the eukaryotic phenotype of Bigyra) is unexpectedly diverse and a kingdom Chromista. Ancestrally photosynthetic/ major focus of our study. We describe four new bicil- phagotrophic algae (mixotrophs), they include several iate bicoecean genera and five new species: Nerada ecologically important purely heterotrophic lineages, mexicana, Labromonas fenchelii (=Pseudobodo all grossly understudied phylogenetically and of tremulans sensu Fenchel), Boroka karpovii (=P. uncertain relationships. We sequenced 18S rRNA tremulans sensu Karpov), Anoeca atlantica and Cafe- genes from 14 phagotrophic non-photosynthetic het- teria mylnikovii; several cultures were previously mis- erokonts and a probable Ochromonas, performed ph- identified as Pseudobodo tremulans. Nerada and the ylogenetic analysis of 210–430 Heterokonta, and uniciliate Paramonas are related to Siluania and revised higher classification of Heterokonta and its Adriamonas; this clade (Pseudodendromonadales three phyla: the predominantly photosynthetic Och- emend.) is probably sister to Bicosoeca. Genetically rophyta; the non-photosynthetic Pseudofungi; and diverse Caecitellus is probably related to Anoeca, Bigyra (now comprising subphyla Opalozoa, Bicoecia, Symbiomonas and Cafeteria (collectively Anoecales Sagenista). The deepest heterokont divergence is emend.). Boroka is sister to Pseudodendromonadales/ apparently between Bigyra, as revised here, and Och- Bicoecales/Anoecales.
    [Show full text]
  • Influence of Sea Ice on Protist Community Structure in the Central Arctic Ocean
    Table of Contents Influence of sea ice on protist community structure in the Central Arctic Ocean by Kristin Hardge A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Approved Dissertation Committee: Dr. Katja Metfies1, 2 Prof. Dr. Matthias Ullrich1 Dr. Mona Hoppenrath3 Dr. Eva-Maria Nöthig2 1 Jacobs University Bremen 2 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 3 Senckenberg Research Institute, German Centre for Marine Biodiversity Research, Wilhelmshaven Date of Defense: 10 August 2016 1 Table of Contents 2 Table of Contents “In the case of all things which have several parts and in which the totality is not, as it were, a mere heap, but the whole is something besides the parts, there is a cause.” Aristotle, Metaphysics 3 Table of Contents 4 Table of Contents Table of Contents 1 Summary ....................................................................................................................................... 7 2 General Introduction ..................................................................................................................... 9 2.1 Global warming ....................................................................................................................... 9 2.2 Changes in Arctic sea ice ........................................................................................................ 9 2.3 Protist biodiversity in the Arctic Ocean ...............................................................................
    [Show full text]