OIG-15-140 September 4, 2015 DHS OIG HIGHLIGHTS DHS Can Strengthen Its Cyber Mission Coordination Efforts

Total Page:16

File Type:pdf, Size:1020Kb

OIG-15-140 September 4, 2015 DHS OIG HIGHLIGHTS DHS Can Strengthen Its Cyber Mission Coordination Efforts DHS Can Strengthen Its Cyber Mission Coordination Efforts OIG-15-140 September 4, 2015 DHS OIG HIGHLIGHTS DHS Can Strengthen Its Cyber Mission Coordination Efforts September 4, 2015 What We Found Department of Homeland Security (DHS) components have Why We Did strengthened coordination in performing their cyber This Audit missions. For example, United States Immigration and Customs Enforcement (ICE) and United States Secret We audited the DHS components’ coordination Service (USSS) have enhanced relationships with the in performing their cyber National Protection and Programs Directorate’s (NPPD) missions. We sought to National Cybersecurity and Communications Integration determine whether their Center to improve information sharing and coordination on cyber roles and incident response and investigation. responsibilities have been well delineated and a Despite these positive steps, the Department can take process is in place for additional actions to improve its cyber mission department-wide coordination. For example, the Office of Policy has not information sharing and developed a cyber strategic implementation plan due to its coordinated response to recent establishment and limited staff. Without a strategic cyber incidents and plan, DHS cannot effectively align the components’ cyber criminal investigations. We also evaluated the responsibilities and capabilities with DHS’ overall mission. components’ compliance with applicable DHS Further, DHS needs to establish a cyber training program information security to provide its analysts and investigators with the skills requirements. needed to effectively perform their duties at ICE, NPPD, and USSS. An automated cyber information sharing tool is needed to enhance coordination among the components. What We Moreover, we identified deficiencies regarding ICE and Recommend USSS’ implementation of DHS baseline configuration settings, vulnerability management, weakness remediation, We recommended that DHS develop both a and specialized security training that may result in loss, department-wide cyber misuse, modification, and unauthorized access to the strategy and a security Department’s information systems and data. training program. DHS components must also address the information Management Response security deficiencies we identified. DHS concurred with all nine recommendations and has implemented corrective actions to address the findings. We considered recommendations 1–5, 7, and 9 open and resolved. Recommendations 6 and 8 are open and For Further Information: unresolved. Contact our Office of Public Affairs at (202) 254-4100, or email us at [email protected] www.oig.dhs.gov OIG-15-140 ..~='~: ~ °~ p OFFICE OF INSPECTOR GENERAL ~`'~ND S~~'~' Department of Homeland Security Washington, DC 20528 / www.oig.dhs.gov September 4, 2015 MEMORANDUM FOR: Andy Ozment Assistant Secretary, Office of Cybersecurity and Communications National Protection and Programs Directorate Rosemary Wenchel Acting Assistant Secretary for Cyber, Infrastructure, and Resilience Office of Policy Peter Edge Executive Associate Director of Homeland Security Investigations U.S. Immigration and Customs Enforcement Craig Magaw Deputy Director U. S~c~~t Serv'ce U~ FROM: Sondra F. M auley Assistant Inspector General Office of Information Technology Audits SUBJECT: DHS Can Strengthen Its Cyber Mission Coordination Efforts Attached for your action is our final report, DHS Can Strengthen Its Cyber Mission Coordination Efforts. We incorporated the Department's comments in our report. The report contains nine recommendations aimed at enhancing the program's overall effectiveness. The Department concurred with all nine recommendations. Based on information provided in your response to the draft report, we consider recommendations 6 and 8 open and unresolved. As prescribed by the Department of Homeland Security Directive 077-01, Follow- Up and Resolutionsfor the Office ofInspector General Report Recommendations, within 90 days of the date of this memorandum, please provide our office with a written response that includes your (1) agreement or disagreement, (2) corrective action plan, and (3) target completion date for each recommendation. Also, please include responsible parties and any other OFFICE OF INSPECTOR GENERAL Department of Homeland Security supporting documentation necessary to inform us about the current status of the recommendations. Until your response is received and evaluated, the recommendations will be considered open and unresolved. Based on information provided in your response to the draft report, we consider recommendations 1-5, 7, and 9 open and resolved. Once your office has fully implemented the recommendations, please submit a formal closeout letter to us within 30 days so that we may close the recommendations. The memorandum should be accompanied by evidence of completion of agreed-upon corrective actions and of the disposition of any monetary amounts. Please send your response or closure request to [email protected]. Consistent with our responsibility under the Inspector General Act, we will provide copies of our report to congressional committees with oversight and appropriation responsibility over the Department of Homeland Security. We will post the report on our website for public dissemination. Please call me with any questions, or your staff may contact Chiu-Tong Tsang, Director, Cybersecurity and Intelligence Division, at (202) 254-5472. Attachment www.oig.dhs.gov 2 OIG-15-140 OFFICE OF INSPECTOR GENERAL Department of Homeland Security Table of Contents Background ............................................................................................3 Results of Audit ......................................................................................4 Progress in Coordinating Cyber Mission Activities ..................................5 Challenges in Cyber Mission Coordination and Response ........................6 DHS Must Develop a Strategic Implementation Plan to Improve Cyber Awareness across Components...........................6 Recommendation...........................................................................7 DHS Has Not Established a Department-wide Cyber Training Program ..........................................................................9 Recommendation........................................................................10 DHS Components Would Benefit from an Enterprise-wide Automated Capability for Sharing Cyber Information ..................11 Recommendation........................................................................13 Technical Enhancements Could Strengthen Cyber Mission Information Systems...................................................................14 Recommendations ......................................................................16 ICE and USSS Are Not Compliant with Certain DHS Information Security Program Requirements...............................18 Recommendations ......................................................................20 Appendixes Appendix A: Objective, Scope, and Methodology .......................22 Appendix B: DHS Comments to the Draft Report. .....................24 Appendix C: Office of Information Technology Audits Major Contributors to This Report ...................................30 Appendix D: Report Distribution...............................................31 Abbreviations C3 Cyber Crimes Center CETS Child Exploitation Tracking System CHCO Chief Human Capital Officer CIDS Criminal Investigative Division Suite CIO Chief Information Officer www.oig.dhs.gov 1 OIG-15-140 OFFICE OF INSPECTOR GENERAL Department of Homeland Security CIR Office of Cyber, Infrastructure and Resilience CMSI CyberSkills Management Support Initiative DHS Department of Homeland Security ICE United States Immigration and Customs Enforcement ISSO Information System Security Officer NCCIC National Cybersecurity and Communications Integration Center NPPD National Protection and Programs Directorate OIG Office of Inspector General OMB Office of Management and Budget PLCY Office of Policy POA&M Plan of Action and Milestones USSS United States Secret Service www.oig.dhs.gov 2 OIG-15-140 OFFICE OF INSPECTOR GENERAL Department of Homeland Security Background Prevalent cyber attacks, including attempts to gain unauthorized access to information systems or sensitive data stored and processed by these systems, have triggered an expansion of cybersecurity initiatives in the government and private sectors. The President has identified cybersecurity as one of the most serious economic and national security challenges we face as a Nation. One of the Department’s missions is to coordinate national protection, prevention, mitigation of, and recovery from cyber incidents, and to oversee the protection of the Federal network (.gov). Table 1 depicts some of the core cyber responsibilities of DHS and several of its components. Table 1. DHS’ Core Cyber Responsibilities ICE NPPD USSS - Identity and benefit document - Critical infrastructure protection - Financial payment systems fraud - Intrusion detection and protection - Money laundering prevention for Federal networks - Critical infrastructure - Financial fraud - Cyber threat and vulnerability protection - Commercial fraud analysis dissemination - Identity theft - Counter-proliferation - Network and digital media - Credit card fraud investigations analysis - Bank fraud - Narcotics trafficking - Coordination of national - Illegal exports response to significant
Recommended publications
  • Clickjacking
    Security Now! Transcript of Episode #168 Page 1 of 18 Transcript of Episode #168 ClickJacking Description: Steve and Leo discuss yet another challenge to surfing safely in the web world: Known as "ClickJacking," or more formally as "UI Redressing," this class of newly popular threats tricks web users into performing web-based actions they don't intend by leading them to believe they are doing something else entirely. High quality (64 kbps) mp3 audio file URL: http://media.GRC.com/sn/SN-168.mp3 Quarter size (16 kbps) mp3 audio file URL: http://media.GRC.com/sn/sn-168-lq.mp3 INTRO: Netcasts you love, from people you trust. This is TWiT. Leo Laporte: Bandwidth for Security Now! is provided by AOL Radio at AOL.com/podcasting. This is Security Now! with Steve Gibson, Episode 168 for October 30, 2008: Clickjacking. It's time for Security Now!, the show where we cover everything you'd ever want to know about security. And we do it with a guy who is the king, really, as far as I'm concerned, the man who discovered spyware, named spyware, wrote some of the most used security utilities out there, including ShieldsUP!, Mr. Steve Gibson of GRC.com. Hi, Steve. Steve Gibson: Yes, in fact sometimes we're discussing things that you'd rather wish weren't the case. I mean... Leo: Well, lately it's been kind of bleak because it's like, there's bad stuff, and there doesn't really seem like there's any cure. Steve: Yes, that's true.
    [Show full text]
  • A Semi-Automated Security Advisory System to Resist Cyber-Attack in Social Networks
    A Semi-Automated Security Advisory System to Resist Cyber-attack in Social Networks Samar Muslah Albladi and George R S Weir University of Strathclyde, Glasgow G1 1XH, UK {samar.albladi; george.weir}@strath.ac.uk Abstract. Social networking sites often witness various types of social engi- neering (SE) attacks. Yet, limited research has addressed the most severe types of social engineering in social networks (SNs). The present study in- vestigates the extent to which people respond differently to different types of attack in a social network context and how we can segment users based on their vulnerability. In turn, this leads to the prospect of a personalised security advisory system. 316 participants have completed an online-ques- tionnaire that includes a scenario-based experiment. The study result re- veals that people respond to cyber-attacks differently based on their de- mographics. Furthermore, people’s competence, social network experience, and their limited connections with strangers in social networks can decrease their likelihood of falling victim to some types of attacks more than others. Keywords: Advisory System, Social Engineering, Social Networks. 1 Introduction Individuals and organisations are becoming increasingly dependent on working with computers, accessing the World Wide Web and, more importantly, sharing data through virtual communication. This makes cyber-security one of today’s greatest issues. Pro- tecting people and organisations from being targeted by cybercriminals is becoming a priority for industry and academia [1]. This is due to the huge potential damage that could be associated with losing valuable data and documents in such attacks. Previous research focuses on identifying factors that influence people’s vulnerability to cyber-attack [2] as the human has been characterised as the weakest link in infor- mation security research.
    [Show full text]
  • Financial Fraud and Internet Banking: Threats and Countermeasures
    Report Financial Fraud and Internet Banking: Threats and Countermeasures By François Paget, McAfee® Avert® Labs Report Financial Fraud and Internet Banking: Threats and Countermeasures Table of Contents Some Figures 3 U.S. Federal Trade Commission Statistics 3 CyberSource 4 Internet Crime Complaint Center 4 In Europe 5 The Many Faces of Fraud 6 Small- and large-scale identity theft 7 Carding and skimming 8 Phishing and pharming 8 Crimeware 9 Money laundering 10 Mules 10 Virtual casinos 11 Pump and dump 12 Nigerian advance fee fraud (419 fraud) 12 Auctions 14 Online shopping 16 Anonymous payment methods 17 Protective Measures 18 Scoring 18 Europay, MasterCard, and Visa (EMV) standard 18 PCI-DSS 19 Secure Sockets Layer (SSL) and Transport Secured Layer (TLS) protocols 19 SSL extended validation 20 3-D Secure technology 21 Strong authentication and one-time password devices 22 Knowledge-based authentication 23 Email authentication 23 Conclusion 24 About McAfee, Inc. 26 Report Financial Fraud and Internet Banking: Threats and Countermeasures Financial fraud has many faces. Whether it involves swindling, debit or credit card fraud, real estate fraud, drug trafficking, identity theft, deceptive telemarketing, or money laundering, the goal of cybercriminals is to make as much money as possible within a short time and to do so inconspicuously. This paper will introduce you to an array of threats facing banks and their customers. It includes some statistics and descriptions of solutions that should give readers—whether they are responsible for security in a financial organization or a customer—an overview of the current situation. Some Figures U.S.
    [Show full text]
  • Clickjacking: Attacks and Defenses
    Clickjacking: Attacks and Defenses Lin-Shung Huang Alex Moshchuk Helen J. Wang Carnegie Mellon University Microsoft Research Microsoft Research [email protected] [email protected] [email protected] Stuart Schechter Collin Jackson Microsoft Research Carnegie Mellon University [email protected] [email protected] Abstract such as a “claim your free iPad” button. Hence, when Clickjacking attacks are an emerging threat on the web. the user “claims” a free iPad, a story appears in the user’s In this paper, we design new clickjacking attack variants Facebook friends’ news feed stating that she “likes” the using existing techniques and demonstrate that existing attacker web site. For ease of exposition, our description clickjacking defenses are insufficient. Our attacks show will be in the context of web browsers. Nevertheless, the that clickjacking can cause severe damages, including concepts and techniques described are generally applica- compromising a user’s private webcam, email or other ble to all client operating systems where display is shared private data, and web surfing anonymity. by mutually distrusting principals. We observe the root cause of clickjacking is that an Several clickjacking defenses have been proposed and attacker application presents a sensitive UI element of a deployed for web browsers, but all have shortcomings. target application out of context to a user (such as hiding Today’s most widely deployed defenses rely on frame- the sensitive UI by making it transparent), and hence the busting [21, 37], which disallows a sensitive page from user is tricked to act out of context. To address this root being framed (i.e., embedded within another web page).
    [Show full text]
  • A Case Study on Clickjacking Attack and Location Leakage
    International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 190 ISSN 2229-5518 A Case Study on Clickjacking Attack and Location Leakage Lim Chin Nei, Loo Yow Cherng, Manmeet Mahinderjit Singh Abstract— The advanced in technologies such as mobile devices, GSP, WIFI, and 3G has encourage the information sharing using social media. The large amount of information shared on social media often lead to security issues which are unaware by the users. This information may include sensitive information such as a person’s name, location, relationship status and many more and can be dangerous if is put in a wrong hand. In this research, we provide a review on the type of social media ad what are the current threat in social media. We then focus on two specific threat namely clickjacking and location leakage, and proposed a solution for each of it as well as the evaluation of the solution. Index Terms—Security; Social media; Attack; Defense Machine, Clickjacking, Location leakage —————————— —————————— 1 INTRODUCTION This rapid shift of technologies in this era of informa- media. With this large amount of information shared online, tion and communication has dramatically boosted the usage the social media actually has become a perfect platform for of the social media. With the advanced in technologies such hackers to find their victims. The information shared using as smart mobile devices, GPS, WIFI, and 3G services, user social media often contain sensitive and private information were able to connect to the internet regardless of time and which can be easily compromised by the hackers.
    [Show full text]
  • Cisco 2017 Midyear Cybersecurity Report
    Cisco 2017 Midyear Cybersecurity Report 1 Executive Summary Table of Contents Executive Summary ..........................................................03 Vulnerabilities update: Rise in attacks following key disclosures ................................................................ 47 Major Findings ..................................................................05 Don’t let DevOps technologies leave the Introduction ......................................................................07 business exposed ............................................................ 50 Attacker Behavior .............................................................09 Organizations not moving fast enough to patch Exploit kits: Down, but not likely out ................................. 09 known Memcached server vulnerabilities ......................... 54 How defender behavior can shift attackers’ focus ...........11 Malicious hackers head to the cloud to shorten the path to top targets ..................................................... 56 Web attack methods provide evidence of a mature Internet ............................................................. 12 Unmanaged infrastructure and endpoints leave organizations at risk ......................................................... 59 Web block activity around the globe ................................ 13 Security Challenges and Opportunities Spyware really is as bad as it sounds............................... 14 for Defenders ...................................................................61
    [Show full text]
  • Comparisons of Machine Learning Techniques for Detecting Malicious Webpages ⇑ H.B
    Expert Systems with Applications 42 (2015) 1166–1177 Contents lists available at ScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa Comparisons of machine learning techniques for detecting malicious webpages ⇑ H.B. Kazemian , S. Ahmed Intelligent Systems Research Centre, School of Computing, London Metropolitan University, United Kingdom article info abstract Article history: This paper compares machine learning techniques for detecting malicious webpages. The conventional Available online 16 September 2014 method of detecting malicious webpages is going through the black list and checking whether the web- pages are listed. Black list is a list of webpages which are classified as malicious from a user’s point of Keywords: view. These black lists are created by trusted organizations and volunteers. They are then used by modern K-Nearest Neighbor web browsers such as Chrome, Firefox, Internet Explorer, etc. However, black list is ineffective because of Support Vector Machine the frequent-changing nature of webpages, growing numbers of webpages that pose scalability issues Naive Bayes and the crawlers’ inability to visit intranet webpages that require computer operators to log in as authen- Affinity Propagation ticated users. In this paper therefore alternative and novel approaches are used by applying machine K-Means Supervised and unsupervised learning learning algorithms to detect malicious webpages. In this paper three supervised machine learning techniques such as K-Nearest Neighbor, Support Vector Machine and Naive Bayes Classifier, and two unsupervised machine learning techniques such as K-Means and Affinity Propagation are employed. Please note that K-Means and Affinity Propagation have not been applied to detection of malicious web- pages by other researchers.
    [Show full text]
  • UI Redressing and Clickjacking: About Click Fraud and Data Theft
    Introduction Attack vectors Counteractive measures Conclusion and outlook UI Redressing and Clickjacking: About click fraud and data theft Marcus Niemietz [email protected] Ruhr-University Bochum Chair for Network and Data Security 25th of November 2011 Marcus Niemietz, RUB @Zeronights UI Redressing and Clickjacking Introduction Attack vectors Counteractive measures Conclusion and outlook Short and crisp details about me Studying \IT-Security/Information Technology", RUB \Computer Science", Distance University Hagen B.Sc. in \IT-Security/Information Technology" Books Authentication Web Pages with Selenium ≥Feb. 2012: Clickjacking und UI-Redressing International speaker Work: RUB, Pixelboxx, ISP and IT-Security, Freelancer (trainings, penetration tests) Twitter: @mniemietz Marcus Niemietz, RUB @Zeronights UI Redressing and Clickjacking Introduction Attack vectors Counteractive measures Conclusion and outlook Contents 1 Introduction UI redressing Clickjacking 2 Attack vectors UI redressing Round up Clickjacking Tool 3 Counteractive measures Frame busting Busting frame busting Clickjacking statistics 4 Conclusion and outlook Marcus Niemietz, RUB @Zeronights UI Redressing and Clickjacking Introduction Attack vectors UI redressing Counteractive measures Clickjacking Conclusion and outlook Introduction Google Inc. can generate a profit of over $8.5 billion in 2010 Interesting for commercial companies to offer web applications shopping banking share status messages New attacks available that can bypass existing protection mechanisms CSRF
    [Show full text]
  • Scams and Spam to Avoid on Facebook
    Security Response in association with: Scams and Spam to Avoid on Facebook Candid Wüest Principal Software Engineer foreword by the Facebook Security Team Foreword Contents At Facebook, we work hard to protect the people that use our service. We in- Foreword ............................................................ 1 vest in equipment, develop proprietary tools, create innovative security fea- Summary ............................................................ 2 tures and devote hundreds of employees around the world to keep you and Introduction ...................................................... 2 your data safe. But we can’t do this alone, which is why we worked on a guide Attack types ....................................................... 2 with our friends at Symantec to educate people on the most prevalent threats Like/share-baiting ........................................ 3 we are seeing and the best ways for users to keep their data safe while online. Like clickjacking ........................................... 4 We process a huge amount of content to protect the people on Facebook – Malicious (iFrame) application ................... 5 every single day we vet over 26 billion pieces of content and 2 trillion link Self-XSS copy/paste attacks ....................... 6 clicks. But with more than 800 million people visiting our site each month Tagging ......................................................... 8 and more than 400 million visiting every day, Facebook has become an Phishing ......................................................
    [Show full text]
  • Threat Landscape Report – 1St Quarter 2018
    TLP-AMBER Threat Landscape Report – 1st Quarter 2018 (FINAL) V1.0 – 10/04/2018 This quarterly report summarises the most significant direct cyber threats to EU institutions, bodies, and agencies (EU-I or 'Constituents') in Part I, the development of cyber-threats on a broader scale in Part II, and recent technical trends in Part III. KEY FINDINGS Direct Threats • In Europe, APT28 / Sofacy threat actor (likely affiliated to Russia military intelligence GRU) targeted government institutions related to foreign affairs and attendees of a military conference. Another threat actor, Turla (likely affiliated to Russia’s security service FSB) executed a cyber-operation against foreign affairs entities in a European country. • A spear-phishing campaign that targeted European foreign ministries in the end of 2017 was attributed to a China-based threat actor (Ke3chang) which has a long track record of targeting EU institutions (since 2011). As regards cyber-criminality against EU institutions, attempts to deliver banking trojans are stable, ransomware activities are still in decline and cryptojacking on the rise. Phishing lures involve generic matters (’invoice’, ‘payment’, ‘purchase’, ‘wire transfer’, ‘personal banking’, ‘job application’) and more specific ones (foreign affairs issues, European think tanks matters, energy contracts, EU delegation, EU watch keeper). Almost all EU-I are affected by credential leaks (email address | password) on pastebin-like websites. Several credential- harvesting attempts have also been detected. Attackers keep attempting to lure EU-I staff by employing custom methods such as spoofed EU-I email addresses or weaponisation of EU-I documents. Broader Threats • Critical infrastructure. In the energy sector, the US authorities have accused Russian actors of targeting critical infrastructure (including nuclear) for several years and are expecting this to continue in 2018.
    [Show full text]
  • Detecting Malicious Campaigns in Obfuscated Javascript with Scalable Behavioral Analysis
    Detecting malicious campaigns in obfuscated JavaScript with scalable behavioral analysis 1st Oleksii Starov 2nd Yuchen Zhou 3rd Jun Wang Palo Alto Networks, Inc. Palo Alto Networks, Inc. Palo Alto Networks, Inc. [email protected] [email protected] [email protected] Abstract—Modern security crawlers and firewall solutions for malicious scripts [4], [10], [13]. However, proposed sys- have to analyze millions of websites on a daily basis, and tems usually require additional instrumentation and resources significantly more JavaScript samples. At the same time, fast that are unsuitable for near real-time analysis on a large static approaches, such as file signatures and hash matching, often are not enough to detect advanced malicious campaigns, population of URLs. Moreover, such approaches use machine i.e., obfuscated, packed, or randomized scripts. As such, low- learning models, which must be trained and calibrated to overhead yet efficient dynamic analysis is required. minimize false positives. In contrast, there is lack of research In the current paper we describe behavioral analysis after in terms of lightweight behavioral detection methods and indi- executing all the scripts on web pages, similarly to how real cators of dynamic script execution that conclusively determine browsers do. Then, we apply light “behavioral signatures” to the malicious behavior. To the best of our knowledge, we are the collected dynamic indicators, such as global variables declared during runtime, popup messages shown to the user, established first to present a systematic case-study on detecting modern WebSocket connections. Using this scalable method for a month, malicious campaigns with such scalable dynamic analysis. we enhanced the coverage of a commercial URL filtering product In this paper, we describe behavioral analysis that exe- by detecting 8,712 URLs with intrusive coin miners.
    [Show full text]
  • Internet Security Threat Report
    INTERNET SECURITY THREAT REPORT 2011 Trends Volume 17 Published April 2012 INTERNET SECURITY THREAT REPORT Paul Wood Mathew Nisbet Executive Editor Malware Data Analyst Manager, Cyber Security Intelligence Security Technology and Response Security Technology and Response Nicholas Johnston Gerry Egan Sr. Software Engineer Sr. Director, Product Management Security Technology and Response Security Technology and Response Bhaskar Krishnappa Kevin Haley Sr. Software Engineer Director, Product Management Security Technology and Response Security Technology and Response Irfan Asrar Tuan-Khanh Tran Security Response Manager Group Product Manager Security Technology and Response Security Technology and Response Sean Hittel Orla Cox Principal Software Engineer Sr. Manager, Security Operations Security Technology and Response Security Technology and Response Eric Chien Hon Lau Technical Director Manager, Development Security Technology and Response Security Technology and Response Eric Park Candid Wueest Sr. Business Intelligence Analyst Principal Software Engineer Anti-Spam Engineering Security Technology and Response Mathew Maniyara David McKinney Security Response Analyst Principal Threat Analyst Anti-Fraud Response Security Technology and Response Olivier Thonnard Tony Millington Sr. Research Engineer Associate Software Engineer Symantec Research Laboratories Security Technology and Response Pierre-Antoine Vervier Benjamin Nahorney Network Systems Engineer Senior Information Developer Symantec Research Laboratories Security Technology and Response
    [Show full text]