Thesis Sequence Stratigraphic Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Sequence Stratigraphic Distribution THESIS SEQUENCE STRATIGRAPHIC DISTRIBUTION OF COAL-BEARING ROCKS FROM THE MESAVERDE GROUP IN THE EASTERNMOST ATLANTIC RIM OF THE WASHAKIE BASIN, WYOMING Submitted by Jeffrey M. Dereume Department of Geosciences In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2010 COLORADO STATE UNIVERSITY August 25, 2010 WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPERVISION BY JEFFREY M. DEREUME ENTITLED SEQUENCE STRATIGRAPHIC DISTRIBUTION OF COAL-BEARING ROCKS FROM THE MESAVERDE GROUP IN THE EASTERNMOST ATLANTIC RIM OF THE WASHAKIE BASIN, WYOMING BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE. Committee on Graduate work _________________________________________ Joseph C. von Fischer _________________________________________ Dennis L. Harry _________________________________________ Advisor: Sven O. Egenhoff _________________________________________ Department Head: Sally Sutton ii ABSTRACT OF THESIS SEQUENCE STRATIGRAPHIC DISTRIBUTION OF COAL-BEARING ROCKS FROM THE MESAVERDE GROUP IN THE EASTERNMOST ATLANTIC RIM OF THE WASHAKIE BASIN, WYOMING Coals occur in various levels of the siliciclastic Campanian upper Mesaverde Group in the Atlantic Rim area, Washakie Basin, south central Wyoming. This unit consists of continental, delta, and offshore facies showing several orders of internal cyclic architecture. At least five large-scale cycles form the upper part of the Mesaverde Group, internally arranged in stacks of up to five medium-scale cycles that are in turn subdivided into a maximum of five small- scale cycles. These cycles reflect million-year to Milankovitch-type sea-level fluctuations causing trans- and regression of varying magnitude, within an overall transgressive regime. Coals developed preferentially in paralic and lower coastal plain environments in the Atlantic Rim in relative proximity to a nearby delta. The position closest to the shoreline was occupied by coal-rich mudstones reflecting siliciclastic input from the delta and the sea during floods. Both coals and coal- rich siliciclastic mudstones occur during all stages of a sea-level curve. While previous models suggested a preferential accumulation of coals during early iii transgressions, a peak in coal frequency characterizes early regressive sediments within the Mesaverde Group in the Atlantic Rim. This is believed to be the result of a heightened water table during early regressions promoting anoxic swamp and marsh environments, and frequent flooding of floodplains forming an ideal setting for accumulation of organic matter. The lateral continuity of Mesaverde coals is also positively influenced by development within paralic settings. Many of the most correlative coal seams in the Atlantic Rim occur within close stratigraphic proximity and/or lateral to marine deposits. Integrating a sequence stratigraphic framework into the upper Mesaverde Group significantly enhances prediction patterns of coaly rocks by constraining their stratigraphic and lateral distributions. Clay- and silt-bearing organic-rich mudstones mark the transition from continental to marine facies, while pure coals only occur at a distance from the shoreline. The overall transgressive nature of the upper part of the Mesaverde Group reveals a highly diachronous facies distribution within the Washakie Basin. A significantly thicker coal-bearing interval characterizes the southern part, while successions further north show abundant mudstones, representing an overall earlier transition to marine conditions. Jeffrey M. Dereume Department of Geosciences Colorado State University Fort Collins, CO 80523 Fall 2010 iv ACKNOWLEDGEMENTS I would like to thank Anadarko Petroleum Corporation, Warren Resources Inc., and the Warner College of Natural Resources Geosciences Department for their financial and technical support. I would also like to acknowledge Anadarko staff members Ana Meyer, Andy Taylor, Troy Beserra, and Russell Stands-Over- Bull for their continuous direction and assistance, as well as the Anadarko field personnel in Rawlins, Wyoming for making fieldwork possible. I am very grateful to my committee Dr. Sven Egenhoff, Dr. Dennis Harry, and Dr. Joe von Fischer for all the help and supervision they have offered me. I am especially grateful to my advisor Dr. Sven Egenhoff who accompanied me on numerous field trips, provided critical insight, and conducted countless edits and corrections. A special thanks to my field assistants Dale Hernandez and Patrick Boyle, the Colorado State sedimentology working group including Ali Jaffri, Aaron Van Dolah, Chris Cassle, Khaled Amrouni, Warren Newby and Zach Wessel, and to my family whose support and guidance has shaped the person that I am. Finally, I would like to thank my girlfriend Kathryn, who not only helped with editing and formatting, but also provided endless love, patience, and encouragement when it was needed the most. v This thesis is dedicated in loving memory to my father August John Dereume Jr., whose everlasting hard work and positive attitude has set the standard for which I strive to live my life. vi TABLE OF CONTENTS SIGNATURE PAGE………………………………………………………………… ii ABSTRACT OF THESIS.................................................................................... iii ACKNOWLEDGEMENTS.................................................................................. v DEDICATION..................................................................................................... vi CHAPTER 1 INTRODUCTION........................................................................... 1 CHAPTER 2 GEOLOGICAL SETTING 2.1 GENERAL ASPECTS AND TECTONIC EVOLUTION................. 7 2.2 DEPOSITIONAL ENVIRONMENTS............................................. 10 2.3 STRATIGRAPHY AND BASIN FILL............................................. 12 CHAPTER 3 METHODOLOGY......................................................................... 17 CHAPTER 4 SEDIMENTOLOGY OF THE MESAVERDE GROUP 4.1 INTRODUCTION.......................................................................... 21 4.2 FACIES DESCRIPTION AND INTERPRETATION...................... 21 4.3 FACIES ASSOCIATIONS............................................................ 37 CHAPTER 5 STACKING PATTERNS AND DEPOSITIONAL MODEL 5.1 OVERALL FACIES ORGANIZATION.......................................... 43 5.2 DEPOSITIONAL MODEL............................................................. 49 vii CHAPTER 6 DISCUSSION 6.1 CORRELATION STRATEGY....................................................... 55 6.2 SEQUENCE STRATIGRAPHIC FRAMEWORK........................... 58 6.3 SEQUENCE STRATIGRAPHIC DISTRIBUTION OF COAL- BEARING ROCKS........................................................................ 62 CHAPTER 7 CONCLUSIONS............................................................................ 66 BIBLIOGRAPHY................................................................................................ 70 APPENDIX I…………………………………………………………………………. 77 APPENDIX II………………………………………………………………………… 82 APPENDIX III………………………………………………………………………... 87 APPENDIX IV………………………………………………………………………... 94 APPENDIX V………………………………………………………………………… 96 viii CHAPTER 1: INTRODUCTION The Mesaverde Group of south-central Wyoming represents a succession of Upper Cretaceous strata that has recently become one of the most prominent new coalbed methane plays in the Rocky Mountain region (Cross, 1986; Lamarre and Ruhl, 2004; Livingston, 1982; Martinsen, 1993). Deposited landward of, and at the margins of the Western Interior Cretaceous Seaway, this succession contains transgressive-regressive cycles that are the product of tectonically and glacially-induced sea-level fluctuations (Glass, 1980; Livingston, 1982; Neuendorf, 1997). These changes have resulted in stratigraphic sequences that are proven to contain significant accumulations of methane-bearing coal source and reservoir rocks (Garcia-Gonzalez et al., 1996; Levey, 1985; Nummedal et al., 2002). The unconventional gas play covers 275 square miles of the 3,000 square mile Washakie Basin, targeting potential coals and carbonaceous shales of the Allen Ridge, Pine Ridge Sandstone, and Almond Formations of the Mesaverde Group. The stratigraphic accumulations of thermogenic and biogenic gas within this play have led to drilling and producing methane gas from fully saturated coals and carbonaceous shales of this area (Lamarre and Ruhl, 2004; Rice and Claypool, 1981; Tyler et al., 1992). 1 A detailed sedimentological model is needed in order to reassess and delineate marine versus nonmarine paleoconditions during Upper Cretaceous deposition of the Mesaverde Group. Numerous studies over the past few decades have returned ambiguous results, and a greater understanding is necessary to create predictive patterns for the formation and accumulation of coal-forming peat (Asquith, 1974; Ayers, 2002; Cobb and Cecil, 1993; Emery and Myers, 1996; Levey, 1985; Lewis, 1961; Livingston, 1982; McCord, 1984; Newman, 1981; Roehler, 1992; Roehler, 1990; Weimer, 1965; Weimer, 1966). Additionally, a sequence stratigraphic framework needs to be created in order to understand the stratigraphic occurrence and distribution of coaly rocks within transgressive-regressive cycles (Bohacs, 1997; Cross, 1988; Embry, 2002). Current concepts envision that wide continental shelves which are successively flooded during initial transgression are ideal sites for accumulation and preservation of organic material (Cross,
Recommended publications
  • Cozzette Sandstone, Book Cliffs, Colorado, U.S.A
    Journal of Sedimentary Research, 2015, v. 85, 459–488 Research Article DOI: http://dx.doi.org/10.2110/jsr.2015.26 TECTONICALLY CONTROLLED NEARSHORE DEPOSITION: COZZETTE SANDSTONE, BOOK CLIFFS, COLORADO, U.S.A. 1 2 2 ANDREW S. MADOF, NICHOLAS CHRISTIE-BLICK, AND MARK H. ANDERS 1Chevron Energy Technology Company, Houston, Texas 77002-7308, U.S.A. 2Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964-8000, U.S.A. e-mail: [email protected] ABSTRACT: The Book Cliffs of eastern Utah and western Colorado have been pivotal in the development of outcrop-based sequence stratigraphic concepts for nonmarine to shallow marine siliciclastic depositional settings. Prior studies in this area, and more generally in the Cretaceous western interior foreland basin of North America, have concluded that nearshore accumulation is controlled for the most part by the interaction between oscillatory eustatic change and longer-term regional patterns of flexural subsidence. New outcrop and subsurface evidence reported here from the eastern Book Cliffs suggests that three-dimensional tectonic tilting at length scales of up to , 50 km (31 mi) and timescales of less than , 200 kyr also strongly influenced sedimentation. Continental ice sheets are thought to have been small at the time. Documented patterns of accumulation are inconsistent with those expected from interactions of eustasy and regional flexure alone. The upper Campanian Cozzette Sandstone Member of the Mount Garfield Formation consists of twelve lithofacies arranged into six lithofacies assemblages, inferred to have been deposited in shallow marine, marginal marine, and nonmarine depositional environments.
    [Show full text]
  • KENNETH CARPENTER, Ph.D. Director and Curator Of
    KENNETH CARPENTER, Ph.D. Director and Curator of Paleontology Prehistoric Museum Utah State University - College of Eastern Utah 155 East Main Street Price, Utah 84501 Education May, 1996. Ph.D., Geology University of Colorado, Boulder, CO. Dissertation “Sharon Springs Member, Pierre Shale (Lower Campanian) depositional environment and origin of it' s Vertebrate fauna, with a review of North American plesiosaurs” 251 p. May, 1980. B.S. in Geology, University of Colorado, Boulder, CO. Aug-Dec. 1977 Apprenticeship, Smithsonian Inst., Washington DC Professional Museum Experience 1975 – 1980: University of Colorado Museum, Boulder, CO. 1983 – 1984: Mississippi Museum of Natural History, Jackson, MS. 1984 – 1986: Academy of Natural Sciences of Philadelphia, Philadelphia. 1986: Carnegie Museum of Natural History, Pittsburgh, PA. 1986: Oklahoma Museum of Natural History, Norman, OK. 1987 – 1989: Museum of the Rockies, Bozeman, MT. 1989 – 1996: Chief Preparator, Denver Museum of Nature and Science, Denver, CO. 1996 – 2010: Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2006 – 2007; 2008-2009: Acting Department Head, Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2010 – present: Director, Prehistoric Museum, Price, UT 2010 – present: Associate Vice Chancellor, Utah State University Professional Services: 1991 – 1998: Science Advisor, Garden Park Paleontological Society 1994: Senior Organizer, Symposium "The Upper Jurassic Morrison Formation: An Interdisciplinary Study" 1996: Scientific Consultant Walking With Dinosaurs , BBC, England 2000: Scientific Consultant Ballad of Big Al , BBC, England 2000 – 2003: Associate Editor, Journal of Vertebrate Paleontology 2001 – 2003: Associate Editor, Earth Sciences History journal 2003 – present: Scientific Advisor, HAN Project 21 Dinosaur Expos, Tokyo, Japan.
    [Show full text]
  • Mesaverde Group and Wasatch Formation - Piceance Basin, Colorado
    NONTRIBUTARY GROUNDWATER ASSESSMENT: MESAVERDE GROUP AND WASATCH FORMATION - PICEANCE BASIN, COLORADO Submitted to: OXY USA INC. AND OXY USA WTP LP Date: November 4, 2009 Norwest Corporation 950 South Cherry Street, Suite 800 Denver, CO 80246 Tel: (303) 782-0164 Fax: (303) 782-2560 Email [email protected] www.norwestcorp.com 004280 TABLE OF CONTENTS EXECUTIVE SUMMARY ..............................................................................................................1 1 INTRODUCTION.................................................................................................................1-1 2 CONCEPTUAL MODEL .....................................................................................................2-1 2.1 GEOLOGIC SETTING ....................................................................................................2-1 2.1.1 Mancos Shale ..............................................................................................2-1 2.1.2 Iles Formation ..............................................................................................2-2 2.1.3 Williams Fork Formation ..............................................................................2-2 2.1.4 Wasatch Formation......................................................................................2-3 2.2 HYDROLOGIC DATA .....................................................................................................2-3 3 HYDROLOGEOLOGIC PARAMETERS.............................................................................3-1
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Stratigraphy, Petrology, and Paleontology of the Late Cretaceous Campanian Mesaverde Group in Northeastern Utah
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 8-2017 Stratigraphy, Petrology, and Paleontology of the Late Cretaceous Campanian Mesaverde Group in Northeastern Utah Christopher Ward Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Geology Commons, Paleontology Commons, and the Sedimentology Commons Recommended Citation Ward, Christopher, "Stratigraphy, Petrology, and Paleontology of the Late Cretaceous Campanian Mesaverde Group in Northeastern Utah" (2017). All Graduate Plan B and other Reports. 1049. https://digitalcommons.usu.edu/gradreports/1049 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies Fall 8-10-2017 Stratigraphy, Petrology, and Paleontology of the Late Cretaceous (Campanian) Mesaverde Group in Northeastern Utah Christopher Ward Follow this and additional works at: http://digitalcommons.usu.edu/gradreports Part of the Geology Commons, Paleontology Commons, and the Sedimentology Commons This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. STRATIGRAPHY, PETROLOGY, AND PALEONTOLOGY OF THE LATE CRETACEOUS (CAMPANIAN) MESAVERDE GROUP IN NORTHEASTERN UTAH By Christopher J. Ward A report submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Applied Environmental Geoscience Approved: ____________________ __________________ Benjamin J.
    [Show full text]
  • THE BIBLIOGRAPHY of HADROSAURIAN DINOSAURS the First 150 Years: 1856 - 2006
    THE BIBLIOGRAPHY OF HADROSAURIAN DINOSAURS The First 150 Years: 1856 - 2006. complied by M.K. Brett-Surman © Smithsonian Institution 1985-2008 The Department of Paleobiology of the National Museum of Natural History, Smithsonian Institution, currently houses approximately 44 million fossil plant, invertebrate, and vertebrate fossils in more than 480 separate collections. In addition, Paleobiology also maintains a reference collection of over 120,000 stratigraphic and sediment samples. This listing represents a service provided to the public as part of our Outreach Program and as part of the Smithsonian Institution’s mission "for the increase and diffusion of knowledge...". Papers are listed by author and year. Author's names are capitalized. The viewer should be aware of any searches that are case sensitive. The papers listed here, in a majority of instances, do NOT contain abstracts, papers on ichnites, or popular articles or books, unless they present new information or cover an aspect of the history of dinosaur paleontology. At present, some of the legacy software that was used to maintain this list only allowed basic ASCII characters, therefore foreign accents (such as in French and Spanish) did not translate. This will be fixed at a later date. The Bibliography of Hadrosaurian Dinosaurs was written, compiled, and maintained by M.K. Brett-Surman, (Museum Specialist), P.O. Box 37012, Department of Paleobiology, National Museum of Natural History, MRC-121, Washington, DC 20013-7012. He can be reached electronically at: [email protected]., and by FAX at 202-786-2832. Please send all corrections and additions to the e-mail address. This file will be no longer be updated, except for entries prior to 2007.
    [Show full text]
  • Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018
    U.S. Department of the Interior Bureau of Land Management Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018 Table of Contents 1.0 Introduction ......................................................................................................................................... 1 2.0 Regional Setting .................................................................................................................................. 1 3.0 Inventory Methodology ....................................................................................................................... 1 4.0 Potential Fossil-Bearing Geologic Formations ................................................................................... 4 4.1 Browns Park Formation (PFYC 3) ............................................................................................ 4 4.2 White River Formation or Group (PFYC 5) .............................................................................. 5 4.3 Wind River Formation (PFYC 5) .............................................................................................. 5 4.4 Green River Formation (PFYC 5) ............................................................................................. 5 4.5 Wasatch Formation (PFYC 5) ................................................................................................... 5 4.6 Battle Spring Formation (PFYC 3)............................................................................................ 6 4.7 Bridger Formation
    [Show full text]
  • Upper Cretaceous Stratigraphy of the Uinta Basin, Utah
    BULL. GEOL. SOC. AM., VOL. 55 WALTON, PL. 1 ^ UPPER CRETACEOUS STRATIGRAPHY OF THE UINTA BASIN, UTAH Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/55/1/91/3431325/BUL55_1-0091.pdf by guest on 29 September 2021 BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 55, PP. 91-130, 10 PLS., 1 FIG. JANUARY 1, 1944 GEOLOGY OF THE CRETACEOUS OF THE UINTA BASIN, UTAH BY PATJL T. WALTON CONTENTS - Page Abstract.................................................................................................................................................................... 92 Introduction............................................................................................................................................................ 93 General features of the area...................................................................................................................... 93 Previous geologic work................................................................................................................................ 94 Present investigation.................................................................................................................................... 94 Acknowledgements....................................................................................................................................... 95 Stratigraphy............................................................................................................................................................ 95
    [Show full text]
  • Stratigraphy of the Cretaceous Rocks and the Tertiary Ojo Alamo Sandstone, Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah
    Stratigraphy of the Cretaceous Rocks and the Tertiary Ojo Alamo Sandstone, Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah GEOLOGICAL SURVEY PROFESSIONAL PAPER 521-E Prepared in cooperation with the Bureau of .Indian -L1Jfairs and the Navajo Tribe ;. ~:0 ..J :i.ui._lll{c,/1 II- Stratigraphy of the Cretaceous > Rocks and the Tertiary Ojo I Alamo Sandstone, Navajo and .. .... Hopi Indian Reservations, .. Arizona, New Mexico, and Utah By R. B. O'SULLIVAN, C. A. REPENNING, E. C. BEAUMONT, and H. G. PAGE HYDROGEOLOGY OF THE NAVAJO AND HOPI INDIAN RESERVATIONS, ARIZONA, NEW MEXICO, AND UTAH GEOLOGICAL SURVEY PROFESSIONAL PAPER 521-E Prepared in cooperation with the Bureau of Indian Affairs and the Navajo Tribe .I .. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 ~· ·. UN.ITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY W. A. Radlinski, Acting Director Library of Congress catalog-card No. 76-180659 ·~ For sale by the Sup~rintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- (paper cover) Stock Number 2401-1184 CONTENTS Page Page Abst1·act ------------------------------------------ El Upper Cretaceous rocks-Continued Introduction -------------------------------------­ 2 Mesaverde Group-Continued Location and land-net system ------------------ 2 Lower part of the Mesaverde Group in San Present work -------------------------------­ 3 Juan Basin-Continued Previous investigations and nomenclature ------ 5 Crevasse Canyon Formation ---------- E31 Lower
    [Show full text]
  • Mesa Verde National Park Paleontological Resource Inventory (Non-Sensitive Version)
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Mesa Verde National Park Paleontological Resource Inventory (Non-Sensitive Version) Natural Resource Report NPS/MEVE/NRR—2017/1550 ON THE COVER An undescribed chimaera (ratfish) egg capsule of the ichnogenus Chimaerotheca found in the Cliff House Sandstone of Mesa Verde National Park during the work that led to the production of this report. Photograph by: G. William M. Harrison/NPS Photo (Geoscientists-in-the-Parks Intern) Mesa Verde National Park Paleontological Resources Inventory (Non-Sensitive Version) Natural Resource Report NPS/MEVE/NRR—2017/1550 G. William M. Harrison,1 Justin S. Tweet,2 Vincent L. Santucci,3 and George L. San Miguel4 1National Park Service Geoscientists-in-the-Park Program 2788 Ault Park Avenue Cincinnati, Ohio 45208 2National Park Service 9149 79th St. S. Cottage Grove, Minnesota 55016 3National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 4National Park Service Mesa Verde National Park PO Box 8 Mesa Verde CO 81330 November 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Geology of Mesa Verde National Park
    National Park Service Resource Brief U.S. Department of the Interior Mesa Verde National Park Geology of Mesa Verde National Park Table of Contents Geologic Features: Regional Geology: · Cuesta · Western Interior Seaway · Alcoves · Dakota Sandstone · Seep Springs · Mancos Shale · Solution Rills · Mesaverde Group · Concretions · Point Lookout Formation · Desert Varnish · Menefee Formation · Turtle Back Weathering · Cliff House Sandstone · Loess · Sea Retreat · Ripple Marks · Volcanism · Popcorn Texture · Laccoliths · Faults · Dikes · Landslides · Uplift and Erosion Introduction The geological history of Mesa Verde National Park is as diverse as the cultural history of the region. The Ancestral Puebloans recognized this diversity and used the geology of the area to create a sustainable and advanced lifestyle. These people thrived in the Southwest, supporting and nourishing their families with the remarkable natural resources on the mesa and from nearby areas. Geologic Features of the Park The first Spanish explorers to the area called it Mesa Verde, or “green table.” This expression is actually a mis- nomer. The correct geological term for the area is a cuesta, not a mesa. Mesas are isolated, flat-topped highlands with steeply sloping sides or cliffs, and are topped by a cap of much harder rocks that are resistant to erosion. The cap protects the softer underlying slopes or cliffs from being quickly weathered away. The only difference between a cuesta and a mesa is that a cuesta gently dips in one direction. Mesa Verde is inclined slightly to the south at about a 7º angle. This cuesta is made up of many separate, smaller “mesas” situated between the can- yons.
    [Show full text]
  • Southern Ute Reservation Upper Menefee UT CO AZ NM Lower Menefee
    Southern Ute Indian Reservation occurs throughout the coal seams underlying the Reservation. The coal, estimated to be in excess of 200 million tons of strippable coal, General Setting is high quality (10,000 BTUs per lb.) and with low sulfur content. U T A H C O L O R A D O The Southern Ute Indian Reservation is in southwestern Colorado Leasing of minerals and development agreements on the UTE MOUNTAIN UTE adjacent to the New Mexico border (Figs. SU-1 and -2). The reser- Southern Ute Indian Reservation are designed in accordance with the vation encompasses an area about 15 miles (24 km) wide by 72 miles Indian Mineral Development Act of 1982, and the rules and (116 km) long; total area is approximately 818,000 acres (331,000 regulations contained in 25 CFR, Part 225 (published in the Federal SOUTHERN UTE ha). Of the Indian land, 301,867 acres (122,256 ha) are tribally Register, March 30, 1994). The Tribe no longer performs lease owned and 4,966 acres (2,011 ha) are allotted lands; 277 acres (112 agreements under the old 1938 Act (since 1977). NAVAJO ha) are federally owned (U.S. Department of Commerce, 1974). The The 1982 Act provides increased flexibility to the Tribe and TAOS JICARILLA rest is either privately owned or National Forest Service Lands. The developer to tailor their agreements to the specific needs of each APACHE TAO Tribal land is fairly concentrated in two blocks; one in T 32-33 N, R party. It also allows the parties to draft agreements based on state-of- PICURIS 1-6 W, and the other in T 32 N, R 8-13 W and T 33 N, R 11 W.
    [Show full text]