A Multidisciplinary Palaeoenvironmental Reconstruction of the Campanian Foremost Formation of Southern Alberta

Total Page:16

File Type:pdf, Size:1020Kb

A Multidisciplinary Palaeoenvironmental Reconstruction of the Campanian Foremost Formation of Southern Alberta A Multidisciplinary Palaeoenvironmental Reconstruction of the Campanian Foremost Formation of Southern Alberta by Michael Glen Wenstob Thompson A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Carleton University Ottawa, Ontario © 2018, Michael Glen Wenstob Thompson Abstract The Foremost Formation of southern Alberta, Canada, is the basal member of the Cretaceous (Campanian) Belly River Group, and has been understudied relative to the overlying Oldman and Dinosaur Park formations of this group. Examined outcrop of the upper Foremost Formation preserves coastal estuarine or barrier island/lagoonal environments that transition upward into more inland coastal/ fluvial plain environments during the Claggett marine regression of the Western Interior Seaway. A low abundance, low diversity agglutinated benthic foraminiferal fauna, together with whole rock geochemical proxies, suggests commonly stressed oxygen and salinity conditions in marginal marine environments. Vertebrate microsite faunas display a primarily brackish water environmental influence, with an increase in diversity upsection in conjunction with increased terrestrial deposition. Hadrosaur remains suggest the previously unknown presence of kritosaurs and potentially a basal hadrosauroid, suggesting that the Foremost Formation dinosaur fauna was similarly diverse compared to faunas of well-characterized Campanian formations in North America. ii Acknowledgments My genuine thanks go out to Dr. Claudia Schröder-Adams and Dr. Michael Ryan for giving me the opportunity to work on such an exciting, multidisciplinary project and for their knowledge, advice, and encouragement throughout my time at Carleton University. I’d like to thank Kieran Shepherd and Margaret Currie at the Canadian Museum of Nature and Brandon Strilisky at the Royal Tyrrell Museum for allowing access to their institution’s vertebrate fossil collections and for the assistance they gave me during my research. I thank Dr. David Eberth and Dr. Don Brinkman for doing preliminary sample preparation for my microvertebrate material. I thank the graduate students of Carleton University for their friendship and comradery and the staff and faculty of the Earth Sciences Department for their constant support and hard work. Greg Froude is thanked for always being up for a friendly conversation about our work, birding and everything in between. Thanks goes to Dr. Hillary Maddin and her students, who invited me to many lab meetings, shared insightful advice and information and made me feel very welcome in their group. Special thanks to the Southern Alberta Dinosaur Project 2016 and 2017 field crews for their accommodations and assistance in the field and for making my field experiences some of the best memories I will ever have. Thank you to my committee members, Dr. Jordan Mallon and Dr. Quentin Gall, for their input regarding this thesis and its defense, and thanks to my defense chair Dr. Hanika Rizo for overseeing. My most heartfelt thanks are reserved for my parents, Linda and Murray, my brother Adam, my dog Lexi and the rest of my family and friends for their constant support regarding this degree and everything else I’ve ever wanted to do. iii This research was supporting by an NSERC Discovery Grant awarded to Dr. Schröder-Adams. Field work and conference travel was supported by a Paleontological Society Student Grant and a Dinosaur Research Institute student grant. Accommodations in the field were provided by Dr. Michael Ryan and Dr. David Evans and their funding form the Cleveland Museum of Natural History and the Royal Ontario Museum, respectively, for the Southern Alberta Dinosaur Project. iv Table of Contents Abstract .............................................................................................................................. ii Acknowledgments ............................................................................................................ iii Table of Contents .............................................................................................................. v List of Tables .................................................................................................................... ix List of Figures .................................................................................................................... x List of Appendices ........................................................................................................ xxiv Chapter 1: Introduction ................................................................................................... 1 1.1: Geology and Stratigraphy of the Belly River Group and the Foremost Formation .......................................................................................................................... 7 1.2: Foraminiferal Studies of the Foremost Formation. .............................................. 10 1.3: Geochemical Studies of the Belly River Group..................................................... 11 1.4: Vertebrate Microsite Analyses from the Belly River Group ............................... 12 1.5: Study Area ................................................................................................................ 16 1.6: Materials and Methods ........................................................................................... 22 Chapter 2: Lithostratigraphy ........................................................................................ 33 2.1: Geological Setting .................................................................................................... 33 2.2: Results ....................................................................................................................... 35 2.2.1: Stratigraphic Sections .......................................................................................... 35 2.2.2: Facies Description ................................................................................................. 50 v 2.2.3: Depositional Units of the Foremost Formation .................................................. 64 2.3: Summary .................................................................................................................. 66 Chapter 3: Foraminiferal Assemblages of the Foremost Formation ......................... 70 3.1: Foraminiferal Zonation of the Foremost Formation ............................................ 70 3.2: Results ....................................................................................................................... 73 3.3: Morphogroup Analysis ........................................................................................... 77 3.4: Morphogroups and Palaeoenvironmental Significance of Assemblages ............ 79 3.5: Summary .................................................................................................................. 83 Chapter 4: Whole Rock Geochemistry ......................................................................... 87 4.1: Chemostratigraphic Variations .............................................................................. 88 4.2: Summary .................................................................................................................. 99 Chapter 5: Vertebrate Microsite ................................................................................. 100 5.1: Systematic Palaeontology ...................................................................................... 101 5.2: Results ..................................................................................................................... 122 5.2.1: Taxonomic Abundance....................................................................................... 122 5.2.2: Taphonomic Data for C26 ................................................................................. 130 5.3: Comparison of Vertebrate Microsites from the Foremost Formation with C26 ......................................................................................................................................... 132 5.4: Belly River Group Microsite Assemblage Comparisons.................................... 141 5.5: Dinosaur Abundances of the Belly River Group based on Microsite Data ...... 155 vi 5.6: Dinosaur Assemblages of the Foremost Formation Based on Macrofossils..... 164 5.7: Summary ................................................................................................................ 165 Chapter 6: Hadrosaurs of the Foremost Formation .................................................. 167 6.1: Introduction ........................................................................................................... 167 6.2: Descriptions ............................................................................................................ 175 6.3: Phylogenetic Analyses ........................................................................................... 213 6.4: Results ..................................................................................................................... 214 6.5: Discussion ............................................................................................................... 220 6.6: Conclusion .............................................................................................................. 227 Chapter 7: Interpretations and Discussion................................................................
Recommended publications
  • Vertebral Morphology, Dentition, Age, Growth, and Ecology of the Large Lamniform Shark Cardabiodon Ricki
    Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki MICHAEL G. NEWBREY, MIKAEL SIVERSSON, TODD D. COOK, ALLISON M. FOTHERINGHAM, and REBECCA L. SANCHEZ Newbrey, M.G., Siversson, M., Cook, T.D., Fotheringham, A.M., and Sanchez, R.L. 2015. Vertebral morphology, denti- tion, age, growth, and ecology of the large lamniform shark Cardabiodon ricki. Acta Palaeontologica Polonica 60 (4): 877–897. Cardabiodon ricki and Cardabiodon venator were large lamniform sharks with a patchy but global distribution in the Cenomanian and Turonian. Their teeth are generally rare and skeletal elements are less common. The centra of Cardabiodon ricki can be distinguished from those of other lamniforms by their unique combination of characteristics: medium length, round articulating outline with a very thick corpus calcareum, a corpus calcareum with a laterally flat rim, robust radial lamellae, thick radial lamellae that occur in low density, concentric lamellae absent, small circular or subovate pores concentrated next to each corpus calcareum, and papillose circular ridges on the surface of the corpus calcareum. The large diameter and robustness of the centra of two examined specimens suggest that Cardabiodon was large, had a rigid vertebral column, and was a fast swimmer. The sectioned corpora calcarea show both individuals deposited 13 bands (assumed to represent annual increments) after the birth ring. The identification of the birth ring is supported in the holotype of Cardabiodon ricki as the back-calculated tooth size at age 0 is nearly equal to the size of the smallest known isolated tooth of this species. The birth ring size (5–6.6 mm radial distance [RD]) overlaps with that of Archaeolamna kopingensis (5.4 mm RD) and the range of variation of Cretoxyrhina mantelli (6–11.6 mm RD) from the Smoky Hill Chalk, Niobrara Formation.
    [Show full text]
  • The Grabenbach Formation (Gosau Group, Santonian – Lower
    The Grabenbach Formation (Gosau Group, Santonian – Lower Campanian) in the Lattengebirge (Germany): lithostratigraphy, biostratigraphy and strontium isotope stratigraphy Michael WAGREICH WAGREICH, M., 2003: The Grabenbach Formation (Gosau Group, Santonian – Lower Campanian) in the Lattengebirge (Germany): lithostratigraphy, biostratigraphy and strontium isotope stratigraphy. – In: Piller, W. E. (Ed.): Stratigraphia Austriaca. – Österr. Akad. Wiss., Schriftenr. Erdwiss. Komm. 16: 141–150, 3 Figs., 1 Tab., Wien. Abstract: The Gosau Group of Salzburg – Bad Reichenhall comprises basal red conglomerates (Kreuzgraben Formation), sandstones and sandy marls of the “Glanegger Schichten”, detrital carbonates of the “Untersberg Formation”, marls with tempestites of the Grabenbach Formation and deep-water marls and sandstones of the Nierental Formation. The Dalsenalm section within the Grabenbach Formation of the Lattengebirge was investigated in detail. The lithofacies is character- ized by shelf marls and minor tempestite sandstones. Biostratigraphic data indicate the asymetrica planktonic foraminiferal Zone, and CC16 and CC17 nannofossil standard zones of the Santonian to the earliest Campanian. Strontium isotope ratios can be compared to the standard strontium isotope curve and allow a detailed correlation of the Santonian – Campanian boundary to standard sections in Germany and England. Zusammenfassung: Die Gosau-Gruppe von Salzburg – Bad Reichenhall zeigt eine Abfolge von basalen roten Konglomeraten (Kreuzgraben-Formation), Sandsteinen und
    [Show full text]
  • Soil Survey and Reclamation Suitability Evaluation of the Proposed Nova Gas Transmission Ltd
    NOVA Gas Transmission Ltd. Environmental and Socio-Economic Assessment Norma Transmission Pipeline Project February 2013/8660 APPENDIX 3 SOIL SURVEY AND RECLAMATION SUITABILITY EVALUATION OF THE PROPOSED NOVA GAS TRANSMISSION LTD. NORMA TRANSMISSION PIPELINE PROJECT Page A3-1 SOIL SURVEY AND RECLAMATION SUITABILITY EVALUATION of the PROPOSED NOVA GAS TRANSMISSION LTD. NORMA TRANSMISSION PIPELINE Prepared for: TERA ENVIRONMENTAL CONSULTANTS On behalf of: NOVA GAS TRANSMISSION LTD. Prepared by: MENTIGA PEDOLOGY CONSULTANTS LTD. A.G. Twardy, M.Sc., P.Ag. B. Chernipeski, B.Sc., P.Ag. February 2013 11037B.1 TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................. 1 2.0 THE STUDY AREA .......................................................................................................... 3 2.1 Location and Extent ............................................................................................ 3 2.2 Bedrock Geology ................................................................................................ 3 2.3 Surficial Materials and Landform ........................................................................ 3 2.4 General Soil Patterns .......................................................................................... 4 2.5 Present Land Use ............................................................................................... 4 3.0 SOILS ...................................................................................................................
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • Stratigraphy, Age and Correlation of the Upper Cretaceous Tohatchi Formation, Western New Mexico Spencer G
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/54 Stratigraphy, age and correlation of the Upper Cretaceous Tohatchi Formation, western New Mexico Spencer G. Lucas, Dennis R. Braman, and Justin A. Spielmann, 2003, pp. 359-368 in: Geology of the Zuni Plateau, Lucas, Spencer G.; Semken, Steven C.; Berglof, William; Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 54th Annual Fall Field Conference Guidebook, 425 p. This is one of many related papers that were included in the 2003 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
    STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl­ vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity.
    [Show full text]
  • The Status of Three Uncommon Salamanders (Amphibia: Caudata) in Iowa
    Journal of the Iowa Academy of Science: JIAS Volume 95 Number Article 6 1988 The Status of Three Uncommon Salamanders (Amphibia: Caudata) in Iowa Jeffery D. Camper Drake University Let us know how access to this document benefits ouy Copyright © Copyright 1988 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Camper, Jeffery D. (1988) "The Status of Three Uncommon Salamanders (Amphibia: Caudata) in Iowa," Journal of the Iowa Academy of Science: JIAS, 95(4), 127-130. Available at: https://scholarworks.uni.edu/jias/vol95/iss4/6 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. )our. Iowa Acad. Sci. 95(4): 127-130, 1988 The Status of Three Uncommon Salamanders (Amphibia: Caudata) m Iowa JEFFREY D. CAMPER 1 Department of Biology, Drake University, Des Moines, Iowa 50311 The smallmouth salamander {Ambystoma texanum (Matthes)], blue-spotted salamander (Ambystoma laterale Hallowell), and central newt {Notophthalmus viridescens louisianensis (Wolterstorfl)] were studied in Iowa from fall 1982 through summer 1984. All three species have declined in abundance in Iowa. A. texanum is more abundant and widespread than was previously suspected, but is declining due to habitat destruction. Apparently, only two populations of A.
    [Show full text]
  • The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M
    The Dinosaur Park - Bearpaw Formation Transition in the Cypress Hills Region of Southwestern Saskatchewan, Canada Meagan M. Gilbert Department of Geological Sciences, University of Saskatchewan; [email protected] Summary The Upper Cretaceous Dinosaur Park Formation (DPF) is a south- and eastward-thinning fluvial to marginal marine clastic-wedge in the Western Canadian Sedimentary Basin. The DPF is overlain by the Bearpaw Formation (BF), a fully marine clastic succession representing the final major transgression of the epicontinental Western Interior Seaway (WIS) across western North America. In southwestern Saskatchewan, the DPF is comprised of marginal marine coal, carbonaceous shale, and heterolithic siltstone and sandstone grading vertically into marine sandstone and shale of the Bearpaw Formation. Due to Saskatchewan’s proximity to the paleocoastline, 5th order transgressive cycles resulted in the deposition of multiple coal seams (Lethbridge Coal Zone; LCZ) in the upper two-thirds of the DPF in the study area. The estimated total volume of coal is 48109 m3, with a gas potential of 46109 m3 (Frank, 2005). The focus of this study is to characterize the facies and facies associations of the DPF, the newly erected Manâtakâw Member, and the lower BF in the Cypress Hills region of southwestern Saskatchewan utilizing core, outcrop, and geophysical well log data. This study provides a comprehensive sequence stratigraphic overview of the DPF-BF transition in Saskatchewan and the potential for coalbed methane exploration. Introduction The Dinosaur Park and Bearpaw Formations in Alberta, and its equivalents in Montana, have been the focus of several sedimentologic and stratigraphic studies due to exceptional outcrop exposure and extensive subsurface data (e.g., McLean, 1971; Wood, 1985, 1989; Eberth and Hamblin, 1993; Tsujita, 1995; Catuneanu et al., 1997; Hamblin, 1997; Rogers et al., 2016).
    [Show full text]
  • The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation
    The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina) A Thesis Submitted to the Faculty of Drexel University by Victoria Margaret Egerton in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 © Copyright 2011 Victoria M. Egerton. All Rights Reserved. ii Dedications To my mother and father iii Acknowledgments The knowledge, guidance and commitment of a great number of people have led to my success while at Drexel University. I would first like to thank Drexel University and the College of Arts and Sciences for providing world-class facilities while I pursued my PhD. I would also like to thank the Department of Biology for its support and dedication. I would like to thank my advisor, Dr. Kenneth Lacovara, for his guidance and patience. Additionally, I would like to thank him for including me in his pursuit of knowledge of Argentine dinosaurs and their environments. I am also indebted to my committee members, Dr. Gail Hearn, Dr. Jake Russell, Dr. Mike O‘Connor, Dr. Matthew Lamanna, Dr. Christopher Williams and Professor Hermann Pfefferkorn for their valuable comments and time. The support of Argentine scientists has been essential for allowing me to pursue my research. I am thankful that I had the opportunity to work with such kind and knowledgeable people. I would like to thank Dr. Fernando Novas (Museo Argentino de Ciencias Naturales) for helping me obtain specimens that allowed this research to happen. I would also like to thank Dr. Viviana Barreda (Museo Argentino de Ciencias Naturales) for her allowing me use of her lab space while I was visiting Museo Argentino de Ciencias Naturales.
    [Show full text]
  • Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses By
    Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses by Elizabeth Kruk A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences University of Alberta © Elizabeth Kruk, 2015 Abstract Pachyrhinosaurus is a peculiar ceratopsian known only from Upper Cretaceous strata of Alberta and the North Slope of Alaska. The genus consists of three described species Pachyrhinosaurus canadensis, Pachyrhinosaurus lakustai, and Pachyrhinosaurus perotorum that are distinguishable by cranial characteristics, including parietal horn shape and orientation, absence/presence of a rostral comb, median parietal bar horns, and profile of the nasal boss. A fourth species of Pachyrhinosaurus is described herein and placed into its phylogenetic context within Centrosaurinae. This new species forms a polytomy at the crown with Pachyrhinosaurus canadensis and Pachyrhinosaurus perotorum, with Pachyrhinosaurus lakustai falling basal to that polytomy. The diagnostic features of this new species are an apomorphic, laterally curved Process 3 horns and a thick longitudinal ridge separating the supraorbital bosses. Another focus is investigating the ontogeny of Pachyrhinosaurus nasal bosses in a histological context. Previously, little work has been done on cranial histology in ceratopsians, focusing instead on potential integumentary structures, the parietals of Triceratops, and how surface texture relates to underlying histological structures. An ontogenetic series is established for the nasal bosses of Pachyrhinosaurus at both relative (subadult versus adult) and fine scale (Stages 1-5). It was demonstrated that histology alone can indicate relative ontogenetic level, but not stages of a finer scale. Through Pachyrhinosaurus ontogeny the nasal boss undergoes increased vascularity and secondary remodeling with a reduction in osteocyte lacunar density.
    [Show full text]
  • Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere.
    [Show full text]