Smithsonian Miscellaneous Collections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bird Responses to Shade Coffee Production
Animal Conservation (2004) 7, 169–179 C 2004 The Zoological Society of London. Printed in the United Kingdom DOI:10.1017/S1367943004001258 Bird responses to shade coffee production Cesar´ Tejeda-Cruz and William J. Sutherland Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK (Received 2 June 2003; accepted 16 October 2003) Abstract It has been documented that certain types of shade coffee plantations have both biodiversity levels similar to natural forest and high concentrations of wintering migratory bird species. These findings have triggered a campaign to promote shade coffee as a means of protecting Neotropical migratory birds. Bird censuses conducted in the El Triunfo Biosphere reserve in southern Mexico have confirmed that shade coffee plantations may have bird diversity levels similar to, or higher than, natural forest. However, coffee and forest differed in species composition. Species with a high sensitivity to disturbance were significantly more diverse and abundant in primary ecosystems. Neotropical migratory birds, granivorous and omnivorous species were more abundant in disturbed habitats. Insectivorous bird species were less abundant only in shaded monoculture. Foraging generalists and species that prefer the upper foraging stratum were more abundant in disturbed habitats, while a decline in low and middle strata foragers was found there. Findings suggests that shade coffee may be beneficial for generalist species (including several migratory species), but poor for forest specialists. Although shade coffee plantations may play an important role in maintaining local biodiversity, and as buffer areas for forest patches, promotion of shade coffee may lead to the transformation of forest into shade coffee, with the consequent loss of forest species. -
Systematic Relationships and Biogeography of the Tracheophone Suboscines (Aves: Passeriformes)
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 499–512 www.academicpress.com Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes) Martin Irestedt,a,b,* Jon Fjeldsaa,c Ulf S. Johansson,a,b and Per G.P. Ericsona a Department of Vertebrate Zoology and Molecular Systematics Laboratory, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden b Department of Zoology, University of Stockholm, SE-106 91 Stockholm, Sweden c Zoological Museum, University of Copenhagen, Copenhagen, Denmark Received 29 August 2001; received in revised form 17 January 2002 Abstract Based on their highly specialized ‘‘tracheophone’’ syrinx, the avian families Furnariidae (ovenbirds), Dendrocolaptidae (woodcreepers), Formicariidae (ground antbirds), Thamnophilidae (typical antbirds), Rhinocryptidae (tapaculos), and Conop- ophagidae (gnateaters) have long been recognized to constitute a monophyletic group of suboscine passerines. However, the monophyly of these families have been contested and their interrelationships are poorly understood, and this constrains the pos- sibilities for interpreting adaptive tendencies in this very diverse group. In this study we present a higher-level phylogeny and classification for the tracheophone birds based on phylogenetic analyses of sequence data obtained from 32 ingroup taxa. Both mitochondrial (cytochrome b) and nuclear genes (c-myc, RAG-1, and myoglobin) have been sequenced, and more than 3000 bp were subjected to parsimony and maximum-likelihood analyses. The phylogenetic signals in the mitochondrial and nuclear genes were compared and found to be very similar. The results from the analysis of the combined dataset (all genes, but with transitions at third codon positions in the cytochrome b excluded) partly corroborate previous phylogenetic hypotheses, but several novel arrangements were also suggested. -
A Multi-Gene Phylogeny of Aquiline Eagles (Aves: Accipitriformes) Reveals Extensive Paraphyly at the Genus Level
Available online at www.sciencedirect.com MOLECULAR SCIENCE•NCE /W\/Q^DIRI DIRECT® PHYLOGENETICS AND EVOLUTION ELSEVIER Molecular Phylogenetics and Evolution 35 (2005) 147-164 www.elsevier.com/locate/ympev A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level Andreas J. Helbig'^*, Annett Kocum'^, Ingrid Seibold^, Michael J. Braun^ '^ Institute of Zoology, University of Greifswald, Vogelwarte Hiddensee, D-18565 Kloster, Germany Department of Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746, USA Received 19 March 2004; revised 21 September 2004 Available online 24 December 2004 Abstract The phylogeny of the tribe Aquilini (eagles with fully feathered tarsi) was investigated using 4.2 kb of DNA sequence of one mito- chondrial (cyt b) and three nuclear loci (RAG-1 coding region, LDH intron 3, and adenylate-kinase intron 5). Phylogenetic signal was highly congruent and complementary between mtDNA and nuclear genes. In addition to single-nucleotide variation, shared deletions in nuclear introns supported one basal and two peripheral clades within the Aquilini. Monophyly of the Aquilini relative to other birds of prey was confirmed. However, all polytypic genera within the tribe, Spizaetus, Aquila, Hieraaetus, turned out to be non-monophyletic. Old World Spizaetus and Stephanoaetus together appear to be the sister group of the rest of the Aquilini. Spiza- stur melanoleucus and Oroaetus isidori axe nested among the New World Spizaetus species and should be merged with that genus. The Old World 'Spizaetus' species should be assigned to the genus Nisaetus (Hodgson, 1836). The sister species of the two spotted eagles (Aquila clanga and Aquila pomarina) is the African Long-crested Eagle (Lophaetus occipitalis). -
Houde2009chap64.Pdf
Cranes, rails, and allies (Gruiformes) Peter Houde of these features are subject to allometric scaling. Cranes Department of Biology, New Mexico State University, Box 30001 are exceptional migrators. While most rails are generally MSC 3AF, Las Cruces, NM 88003-8001, USA ([email protected]) more sedentary, they are nevertheless good dispersers. Many have secondarily evolved P ightlessness aJ er col- onizing remote oceanic islands. Other members of the Abstract Grues are nonmigratory. 7 ey include the A nfoots and The cranes, rails, and allies (Order Gruiformes) form a mor- sungrebe (Heliornithidae), with three species in as many phologically eclectic group of bird families typifi ed by poor genera that are distributed pantropically and disjunctly. species diversity and disjunct distributions. Molecular data Finfoots are foot-propelled swimmers of rivers and lakes. indicate that Gruiformes is not a natural group, but that it 7 eir toes, like those of coots, are lobate rather than pal- includes a evolutionary clade of six “core gruiform” fam- mate. Adzebills (Aptornithidae) include two recently ilies (Suborder Grues) and a separate pair of closely related extinct species of P ightless, turkey-sized, rail-like birds families (Suborder Eurypygae). The basal split of Grues into from New Zealand. Other extant Grues resemble small rail-like and crane-like lineages (Ralloidea and Gruoidea, cranes or are morphologically intermediate between respectively) occurred sometime near the Mesozoic– cranes and rails, and are exclusively neotropical. 7 ey Cenozoic boundary (66 million years ago, Ma), possibly on include three species in one genus of forest-dwelling the southern continents. Interfamilial diversifi cation within trumpeters (Psophiidae) and the monotypic Limpkin each of the ralloids, gruoids, and Eurypygae occurred within (Aramidae) of both forested and open wetlands. -
Bald Eagle Haliaeetus Leucocephalus
Wyoming Species Account Bald Eagle Haliaeetus leucocephalus REGULATORY STATUS USFWS: Delisted; Migratory Bird USFS R2: Sensitive USFS R4: Sensitive Wyoming BLM: Sensitive State of Wyoming: Protected Bird CONSERVATION RANKS USFWS: Bird of Conservation Concern WGFD: NSS3 (Bb), Tier II WYNDD: G5, S4B/S5N Wyoming Contribution: LOW IUCN: Least Concern PIF Continental Concern Score: 9 STATUS AND RANK COMMENTS Bald Eagle (Haliaeetus leucocephalus) is provided international protection under the Federal Migratory Bird Treaty Act of 1918, as amended 1. In 1940, Bald Eagle was provided protection under the Bald and Golden Eagle Protection Act 2. In 1966, the southern subspecies was listed as federally endangered under the Endangered Species Preservation Act; the entire population in the contiguous United States was listed as endangered in 1978 under the 1973 Endangered Species Act (ESA). A significant increase in numbers of nesting pairs, productivity, and distribution allowed Bald Eagle to be reclassified from Endangered to Threatened in 1995 under the ESA 3. Bald Eagle was delisted in 2007, and numbers are considered to be stable to increasing across its range 4. The species has been assigned different state conservation ranks by the Wyoming Natural Diversity Database for the breeding season and nonbreeding season because the abundance of the species is different between seasons. NATURAL HISTORY Taxonomy: Bald Eagle is a member of the family Accipitridae, which includes kites, eagles, harriers, and hawks 5. There are two subspecies of Bald Eagle; H. l. alascanus is found north of 40 degrees latitude across North America, including Wyoming, while H. l. leucocephalus is found south of 40 degrees latitude in the Gulf coast states 6. -
A Classification of the Rallidae
A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times. -
Predation on Vertebrates by Neotropical Passerine Birds Leonardo E
Lundiana 6(1):57-66, 2005 © 2005 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Predation on vertebrates by Neotropical passerine birds Leonardo E. Lopes1,2, Alexandre M. Fernandes1,3 & Miguel Â. Marini1,4 1 Depto. de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-910, Belo Horizonte, MG, Brazil. 2 Current address: Lab. de Ornitologia, Depto. de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-910, Belo Horizonte, MG, Brazil. E-mail: [email protected]. 3 Current address: Coleções Zoológicas, Aves, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, INPA II, 69083-000, Manaus, AM, Brazil. E-mail: [email protected]. 4 Current address: Lab. de Ornitologia, Depto. de Zoologia, Instituto de Biologia, Universidade de Brasília, 70910-900, Brasília, DF, Brazil. E-mail: [email protected] Abstract We investigated if passerine birds act as important predators of small vertebrates within the Neotropics. We surveyed published studies on bird diets, and information on labels of museum specimens, compiling data on the contents of 5,221 stomachs. Eighteen samples (0.3%) presented evidence of predation on vertebrates. Our bibliographic survey also provided records of 203 passerine species preying upon vertebrates, mainly frogs and lizards. Our data suggest that vertebrate predation by passerines is relatively uncommon in the Neotropics and not characteristic of any family. On the other hand, although rare, the ability to prey on vertebrates seems to be widely distributed among Neotropical passerines, which may respond opportunistically to the stimulus of a potential food item. -
Henicorhina Anachoreta (Troglodytidae), Another Endemic Bird Species for the Sierra Nevada De Santa Marta, Colombia
Henicorhina anachoreta (Troglodytidae), another endemic bird Breve Nota species for the Sierra Nevada de Santa Marta, Colombia Henichorhina anachoreta (Troglodytidae), otra especie de ave endémica de la Sierra Nevada de Santa Marta, Colombia Carlos Daniel Cadena1, Lina María Caro1, Paula C. Caycedo2, Andrés M. Cuervo1,3, Rauri C. K. Bowie4 & Hans Slabbekoorn5 1Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia. 2Institute of Biodiversity and Ecosystem Dynamics, Ecology and Evolution Program, Universiteit van Amsterdam, Amsterdam, Ornitología Colombiana Ornitología The Netherlands 3Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, USA 4Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, USA 5Behavioral Biology, Institute of Biology, Leiden University, Leiden, The Netherlands [email protected] Abstract In a previous study, we presented evidence that the Henicorhina wood-wren inhabiting the upper slopes of the Sierra Neva- da de Santa Marta, H. anachoreta, merits status as a species distinct from the lower élevation taxon, H. bangsi, based on genetic and phenotypic evidence as well as differences in song. Moreover, in a narrow zone of sympatry we found that they showed differential responses to the songs of their own vs. the other form. However, we did not present the differences in plumage and morphometrics in detail, and did not make a formal taxonomic recommendation regarding their taxonomic status. We do so here, and present more detailed description of the differences in plumage and morphometrics in support of this recommendation. colombiana/ colombiana/ - Key words: Henichorhina wrens, speciation, Sierra Nevada de Santa Marta, taxonomy. Resumen ornitologia - En un estudio previo, presentamos evidencia que el cucaracho del género Henichorhina que habita las elevaciones superio- res de la Sierra Nevada de Santa Marta, H. -
Divergence in Nest Placement and Parental Care of Neotropical Foliage‐Gleaners and Treehunters (Furnariidae: Philydorini)
J. Field Ornithol. 88(4):336–348, 2017 DOI: 10.1111/jofo.12227 Divergence in nest placement and parental care of Neotropical foliage-gleaners and treehunters (Furnariidae: Philydorini) Kristina L. Cockle,1,2,3,4 and Alejandro Bodrati2 1Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET-UNSa), 9 de julio 14, Rosario de Lerma, Salta 4405, Argentina 2Proyecto Selva de Pino Parana, Velez Sarsfield y San Jurjo SN, San Pedro, Misiones 3352, Argentina 3Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada Received 25 July 2017; accepted 23 September 2017 ABSTRACT. The Neotropical ovenbirds (Furnariidae) are an adaptive radiation of suboscines renowned for the diversity of their nests. Like most altricial insectivores, they generally exhibit biparental care. One tribe, Philydorini, includes 46 species thought to nest in either underground burrows or tree cavities, nest types traditionally treated as equivalent in phylogenetic studies. Their parental care systems are poorly known, but could help illuminate how uniparental care – typically associated with frugivory – can arise in insectivores. We examined the extent to which nest placement, parental care, and associated reproductive traits map onto two major clades of Philydorini identified by genetic hypotheses. We review published literature and present new information from the Atlantic Forest of Argentina, including the first nest descriptions for Ochre-breasted Foliage-gleaners (Anabacerthia lichtensteini) and Sharp-billed Treehunters (Heliobletus contaminatus). In the Automolus-Thripadectes-Clibanornis clade (including Philydor rufum), 134 of 138 reported nests were in underground burrows. In the Syndactyla-Anabacerthia-Anabazenops clade (including Heliobletus, Philydor atricapillus, and Philydor erythrocercum), 44 of 48 nests were in tree cavities. -
HONEYGUIDE BRAZIL – Jaguars, Jabirus & Other Jewels of Pantanal’S Wildlife Unique Itinerary with a Full Circle Cruise in the Pantanal by Ecotours
HONEYGUIDE BRAZIL – Jaguars, Jabirus & other Jewels of Pantanal’s Wildlife Unique itinerary with a full circle cruise in the Pantanal by Ecotours with PANTANAL BRAZIL TRIP REPORT - 22October-3November 2017 The following is a detailed Trip Report of the first Honeyguide Pantanal, Brazil tour which was organized and led by Gabor and Andrea, owners of Ecotours & Kondor Ecolodge Ltd. This holiday, as for every Honeyguide holiday, also puts something into conservation in our host country by way of a contribution to the wildlife that we enjoyed. With the holiday’s conservation contributions plus gift aid Honeyguide sent £300 to SAVE Brasil, the BirdLife partner in Brazil. This gives us a running total for all conservation contributions through Honeyguide of £119,322 from 1991 to 2017. We had 6 regular Honeyguiders on the tour (Maria Jose, Julia, Gill, Barbara, Jo and Mundi), joined by Flo and Everard to make it a perfectly sized group. Beside Gabor and Andrea we had several local guides to help find wildlife: Marcos at Transpantaneria, Max and Juliano on the boat and Ric amused everybody with his excellent photos duirng the whole tour. Most of the tour companies spend a few days alongside the Transpantaneria road and pay a quick visit to the nearest, always busy Jaguar watching sites close to Porto Jofre, but almost nobody does a full circle on the huge River system in the Southern Pantanal. It is ECOTOURS – Worldwide Travel Services ; EASTERN EUROPE & LATIN AMERICA Specialist Eastern European Office: Kondor Ecolodge - Balazspuszta 90 Szabadszallas, -
Bird) Species List
Aves (Bird) Species List Higher Classification1 Kingdom: Animalia, Phyllum: Chordata, Class: Reptilia, Diapsida, Archosauria, Aves Order (O:) and Family (F:) English Name2 Scientific Name3 O: Tinamiformes (Tinamous) F: Tinamidae (Tinamous) Great Tinamou Tinamus major Highland Tinamou Nothocercus bonapartei O: Galliformes (Turkeys, Pheasants & Quail) F: Cracidae Black Guan Chamaepetes unicolor (Chachalacas, Guans & Curassows) Gray-headed Chachalaca Ortalis cinereiceps F: Odontophoridae (New World Quail) Black-breasted Wood-quail Odontophorus leucolaemus Buffy-crowned Wood-Partridge Dendrortyx leucophrys Marbled Wood-Quail Odontophorus gujanensis Spotted Wood-Quail Odontophorus guttatus O: Suliformes (Cormorants) F: Fregatidae (Frigatebirds) Magnificent Frigatebird Fregata magnificens O: Pelecaniformes (Pelicans, Tropicbirds & Allies) F: Ardeidae (Herons, Egrets & Bitterns) Cattle Egret Bubulcus ibis O: Charadriiformes (Sandpipers & Allies) F: Scolopacidae (Sandpipers) Spotted Sandpiper Actitis macularius O: Gruiformes (Cranes & Allies) F: Rallidae (Rails) Gray-Cowled Wood-Rail Aramides cajaneus O: Accipitriformes (Diurnal Birds of Prey) F: Cathartidae (Vultures & Condors) Black Vulture Coragyps atratus Turkey Vulture Cathartes aura F: Pandionidae (Osprey) Osprey Pandion haliaetus F: Accipitridae (Hawks, Eagles & Kites) Barred Hawk Morphnarchus princeps Broad-winged Hawk Buteo platypterus Double-toothed Kite Harpagus bidentatus Gray-headed Kite Leptodon cayanensis Northern Harrier Circus cyaneus Ornate Hawk-Eagle Spizaetus ornatus Red-tailed -
Common Birds of the Estero Bay Area
Common Birds of the Estero Bay Area Jeremy Beaulieu Lisa Andreano Michael Walgren Introduction The following is a guide to the common birds of the Estero Bay Area. Brief descriptions are provided as well as active months and status listings. Photos are primarily courtesy of Greg Smith. Species are arranged by family according to the Sibley Guide to Birds (2000). Gaviidae Red-throated Loon Gavia stellata Occurrence: Common Active Months: November-April Federal Status: None State/Audubon Status: None Description: A small loon seldom seen far from salt water. In the non-breeding season they have a grey face and red throat. They have a long slender dark bill and white speckling on their dark back. Information: These birds are winter residents to the Central Coast. Wintering Red- throated Loons can gather in large numbers in Morro Bay if food is abundant. They are common on salt water of all depths but frequently forage in shallow bays and estuaries rather than far out at sea. Because their legs are located so far back, loons have difficulty walking on land and are rarely found far from water. Most loons must paddle furiously across the surface of the water before becoming airborne, but these small loons can practically spring directly into the air from land, a useful ability on its artic tundra breeding grounds. Pacific Loon Gavia pacifica Occurrence: Common Active Months: November-April Federal Status: None State/Audubon Status: None Description: The Pacific Loon has a shorter neck than the Red-throated Loon. The bill is very straight and the head is very smoothly rounded.