Characterization of the 4-Carboxy-2-Hydroxymuconate

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the 4-Carboxy-2-Hydroxymuconate Characterization of the 4-carboxy-2-hydroxymuconate hydratase and the 4-carboxy-4-hydroxy-2-oxoadipate/4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas putida by Scott Mazurkewich A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Scott Mazurkewich, May, 2016 ABSTRACT CHARACTERIZATION OF THE 4-CARBOXY-2-HYDROXYMUCONATE HYDRATASE AND THE 4-CARBOXY-4-HYDROXY-2-OXOADIPATE/4-HYDROXY-4- METHYL-2-OXOGLUTARATE ALDOLASE FROM PSEUDOMONAS PUTIDA Scott Mazurkewich Advisor: University of Guelph, 2016 Dr. Stephen Y.K. G. Seah The protocatechuate and gallate 4,5-cleavage pathways are important bacterial catabolic pathways for environmental carbon cycling and xenobiotic remediation. This thesis focuses on the characterization of the 4-carboxy-2-hydroxymuconate (CHM) hydratase and the 4-hydroxy- 4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase which are the last two steps of the protocatechuate and gallate 4,5-cleavage pathways. HMG/CHA aldolases are class II pyruvate aldolases that have structural similarity to a group of proteins termed Regulators of RNase E activity A (RraA). The Escherichia coli RraA (EcRraA) binds to the regulatory domain of RNase E, inhibiting ribonuclease activity. Sequence and kinetic analyses of homologous RraA-like proteins identified minimal motifs, either a D- X20-R-D or a G-X20-R-D-X2-E/D motif, required for metal binding and aldolase activity amongst homologs. The EcRraA, which lacked sequence conservation to either motif, lacked detectable C-C lyase activity. Upon restoration of the G-X20-R-D-X2-E/D motif, the EcRraA was able to catalyze oxaloacetate decarboxylation. RraA-like gene products are found across all the domains of life with a large proportion containing one of the sequence motifs, implying that the proteins likely support a metal dependent enzyme function. iii The HMG/CHA aldolase is activated in the presence of inorganic phosphate (Pi), increasing its turnover rate >10-fold, which is unique for a class II aldolase. The HMG/CHA aldolases pyruvate methyl proton exchange rate was increased 300-fold in the presence of 1 mM Pi. Docking studies revealed a potential Pi binding site close to the proposed general acid water site. The residues which comprise the putative binding pocket were probed through mutagenesis studies with substitution of either of the residues leading to a reduction in Pi activation, supporting the mechanism of Pi activation through the general acid half reaction. The CHM hydratase (GalB) from the gallate degradation pathway of Pseudomonas putida KT2440 has only 12% sequence identity to a previously identified CHM hydratase (LigJ) from Sphingomonas sp. SYK-6. The structure of GalB was determined and found to be a member of the PIG-L N-acetyl glucosamine deacetylase family, and is structurally distinct from the amidohydrolase fold of LigJ. LigJ has the same stereo-specificity as GalB, providing an example of convergent evolution in bacterial aromatic degradation pathways. iv Acknowledgements Throughout my studies I have utilized several facilities, resources, and funding sources that made the projects possible and without whom the answers we sought may not have been obtainable. In relation to the investigation into the RraA proteins, I would like to thank Brian Bryska, Douglas Grahame and Dr. Rickey Yada for their help and support with the DSC experiments. In relation to the characterization of the CHM hydratase GalB, I would like to thank: Elyse Roach and Cezar Khursigara for their assistance and expertise with use of anaerobic chamber, Prof David Rose and colleagues from his lab at the University of Waterloo for providing an X-ray source and assistance in screening several crystals, and Robert Reed for his assistance with polarimetry assays. I would also like to thank the government of Ontario which provided funds that supported me through portions of my studies through the Ontario Graduate Scholarship (OGS) and Ontario Graduate Fellowship (OGF). I would also like to thank the University of Guelph, Graduate Student Association, department of Molecular and Cellular Biology, and other communities on campus for a number of research and academic awards. I would like to thank all of the past and present members of Stephen Seah’s lab group for all their support throughout the years. I have been truly blessed with the opportunity to work with and befriend several amazing people over these years. In particular I would like to thank Dr. Weijun Wang, Dr. Perrin Baker, and Dr. Jason Carere who served as mentors and colleagues throughout the early years of my studies. Additionally, I would like to thank Amanda Ruprecht, Alexander Sterling, and Stephanie Gilbert for creating a great work environment over last few years and who entertained me through the many breaks needed from writing. I also need to thank a very special person, Ashley Brott, who started in the lab as a volunteer and who became v undergraduate research project student. She put in countless hours on the GalB project and even lied to me to let her work late the day of her birthday. I would like to sincerely thank her for all the hard work she put into the project and for her continued friendship. She is a truly amazing person and scientist. Lastly, I would like to sincerely thank Dr. Stephen Seah for his all of his support throughout my studies. He is an amazing advisor who instilled in me a passion for science. None of this work would be possible without the love and support of my family and friends. In particular I would like to thank Ken and Erika Russell for their support throughout the years and for providing weekends of escape from Guelph and science. I would like to thank my sisters, Mandy and Amy, and the newer additions to our family, my brother-in-law Craig and my nephew Ronan, for their love and support. To my parents, who have supported through the many years of studies, I truly appreciate everything you have done for me and our whole family. You have been great parents and without your love and support none of this would have been possible: thank you. Lastly, I would like to thank my partner, Aurora Patchett. You are my everything. You inspire me to be a better person and I couldn’t have done this without you. I look forward to all the adventures that await us. Authors Declaration of Work Completed I declare that, unless otherwise stated, I have completed all the work presented in this thesis. vi Table of Contents Abstract ....................................................................................................................................... ii Acknowledgements .................................................................................................................... iv Authors Declaration of Work Completed ................................................................................... v Table of Contents ....................................................................................................................... vi List of Figures ............................................................................................................................. x List of Tables ............................................................................................................................ xii List of Equations ...................................................................................................................... xiv List of Abbreviations ................................................................................................................ xv Chapter 1: Introduction ............................................................................................................... 1 1.1 Aromatic compounds in the environment ............................................................................. 1 1.1.1 Lignin ............................................................................................................................. 1 1.1.2 Aromatic pollutants ........................................................................................................ 3 1.2 Bacterial aromatic metabolism ............................................................................................. 5 1.2.1 Protocatechuate 4,5-cleavage pathway .......................................................................... 8 1.2.2 Gallate degradation pathway ....................................................................................... 11 1.2.3 Comparison with other aromatic meta-cleavage pathways ......................................... 11 1.3 Hydratases from bacterial aromatic cleavage pathways ..................................................... 12 1.3.1 The CHM hydratases (LigJ and GalB) ........................................................................ 12 1.4 Aldolases ............................................................................................................................. 13 1.4.1 Classes ......................................................................................................................... 13 1.4.2 Pyruvate specific class II aldolases .............................................................................. 14 1.5 The HMG/CHA aldolase .................................................................................................... 15 1.5.1 Enzyme structure ........................................................................................................
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: Jr.; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 G06F 19/00 (201 1.01) (US). HOWARD, Brian, Wilson; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 (US). (21) International Application Number: PCT/US20 13/044497 (74) Agents: GUFFEY, Timothy, B. et al; c/o The Procter & Gamble Company, Global Patent Services, 299 East 6th (22) Date: International Filing Street, Sycamore Building, 4th Floor, Cincinnati, Ohio 6 June 2013 (06.06.2013) 45202 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/656,218 6 June 2012 (06.06.2012) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: THE PROCTER & GAMBLE COMPANY HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, [US/US]; One Procter & Gamble Plaza, Cincinnati, Ohio KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 45202 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (72) Inventors: XU, Jun; One Procter & Gamble Plaza, Cincin SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, nati, Ohio 45202 (US).
    [Show full text]
  • And Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid
    cells Review Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis Roxana Coras 1,2, Jessica D. Murillo-Saich 1 and Monica Guma 1,2,* 1 Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; [email protected] (R.C.); [email protected] (J.D.M.-S.) 2 Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain * Correspondence: [email protected] Received: 22 January 2020; Accepted: 18 March 2020; Published: 30 March 2020 Abstract: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory effects mediated by diet-related metabolites. In addition, recent literature has shown a link between diet-related metabolites and microbiome changes, since the gut microbiome is involved in the metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking, associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic profile and play a role in RA pathogenesis. This article summarizes what is known about circulating pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in their circulating concentrations and diet-related metabolites with a beneficial effect in RA.
    [Show full text]
  • Potential Mechanism of Ferroptosis in Pancreatic Cancer (Review)
    ONCOLOGY LETTERS 19: 579-587, 2020 Potential mechanism of ferroptosis in pancreatic cancer (Review) GANG CHEN1, GUANGQI GUO1, XIAODONG ZHOU1 and HONGXIA CHEN2 Departments of 1Gastroenterology, and 2Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China Received February 23, 2019; Accepted July 26, 2019 DOI: 10.3892/ol.2019.11159 Abstract. Despite the incidence rates of pancreatic cancer cancer are summarized, alongside other associated forms of being low worldwide, the mortality rates remain high. To digestive system cancer. The treatment of ferroptosis-based date, there is no effective drug treatment for pancreatic diseases is also addressed. cancer. Numerous signalling pathways and cytokines regu- late the occurrence and development of pancreatic cancer. Ferroptosis is a non-traditional form of cell death resulting Contents from iron-dependent lipid peroxide accumulation. Studies have demonstrated that ferroptosis is associated with a variety 1. Introduction of different types of cancer, such as breast cancer, hepatocel- 2. Molecular mechanism underlying ferroptosis and relative lular carcinoma and pancreatic cancer. The present study regulators in cancer demonstrated that ferroptosis controls the growth and prolif- 3. Potential roles of ferroptosis in pancreatic cancer eration of pancreatic cancer, providing a new approach for the 4. Summary and perspective treatment of pancreatic cancer. Iron metabolism and reactive oxygen species metabolism are the key pathways involved in 1. Introduction ferroptosis in pancreatic cancer. In addition, a number of regu- lators of ferroptosis, such as glutathione peroxidase 4 and the Pancreatic cancer is characterized by high mortality and cystine/glutamate antiporter system Xc-, also play pivotal roles metastasis rates (1); it is one of the four most common causes in the regulation of ferroptosis.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0294765 A1 Cojocaru Et Al
    US 20140294765A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0294765 A1 Cojocaru et al. (43) Pub. Date: Oct. 2, 2014 (54) LSRANTIBODIES, AND USES THEREOF FOR Publication Classification TREATMENT OF CANCER (51) Int. Cl. (71) Applicant: Compugen Ltd., Tel Aviv-Yafo (IL) C07K 6/28 (2006.01) (72) Inventors: Gad S. Cojocaru, Ramat HaSharon (IL); GOIN33/574 (2006.01) Liat Dassa, Yehud (IL); Galit Rotman, A63/675 (2006.01) Herzliyya (IL); Ofer Levi, Moshav A6II 45/06 (2006.01) Mesisraelat Zion (IL); Andrew Pow, San A 6LX39/395 (2006.01) Francisco, CA (US); Shirley Sameach-Greenwald, Kfar Saba (IL); (52) U.S. Cl. Zurit Levine, Herzliyya (IL) CPC ................. C07K 16/28 (2013.01); A61K 45/06 (2013.01); A61 K39/3955 (2013.01); A61 K (73) Assignee: COMPUGEN LTD., Tel Aviv-Yafo (IL) 31/675 (2013.01); G0IN33/57492 (2013.01) USPC ..... 424/85.2: 424/139.1; 424/85.7; 424/85.6; (21) Appl. No.: 14/361,571 424/85.5; 424/133.1; 424/136.1; 435/7.23 (22) PCT Fled: Jun. 19, 2013 (86) PCT NO.: PCT/IL2013/050527 (57) ABSTRACT S371 (c)(1), (2), (4) Date: May 29, 2014 This invention relates to antibodies and antigen binding frag Related U.S. Application Data ments and conjugates containing same, and/or alternative (60) Provisional application No. 61/662,470, filed on Jun. scaffolds, specific for LSR molecules, which are suitable 21, 2012. drugs for immunotherapy and treatment of specific cancer. Patent Application Publication Oct. 2, 2014 Sheet 1 of 30 US 2014/0294765 A1 FG.
    [Show full text]
  • The Perspective of Diagnostic and Prognostic Values of Lipoxygenases Mrna Expression in Colon Adenocarcinoma
    OncoTargets and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH The Perspective of Diagnostic and Prognostic Values of Lipoxygenases mRNA Expression in Colon Adenocarcinoma This article was published in the following Dove Press journal: OncoTargets and Therapy Guo-Tian Ruan1,* Background: This study was mainly to explore and study the potential application of Yi-Zhen Gong 1,* lipoxygenases (ALOX) family genes in the diagnostic and prognostic values of colon Li-Chen Zhu2 adenocarcinoma (COAD). Feng Gao 1 Methods: Data sets related to the ALOX genes of COAD were obtained from The Cancer Xi-Wen Liao 3 Genome Atlas and the University of California, Santa Cruz Xena browser. Then, the relevant Xiang-Kun Wang3 biological information was downloaded from the public data platform. Finally, the bioinfor­ Guang-Zhi Zhu3 matics technologies and clinical verification were employed to comprehensively analyze the Cun Liao 1 potential values of ALOX genes. Shuai Wang1 Results: The Pearson correlation analysis indicated that there were correlations among Ling Yan1 ALOXE3, ALOX5, ALOX12, and ALOX12B. The diagnostic receiver operating characteristic Hai-Lun Xie1 (ROC) curves suggested that ALOXE3 and ALOX12 had significant diagnosis in COAD: ALOXE3; P<0.001, area under curve (AUC) 95%CI:=0.818 (0.773–0.862) and ALOX12; Xin Zhou3 P<0.001, AUC 95%CI=0.774 (0.682–0.807). Besides, the verification study indicated that Jun-Qi Liu3 ALOX12 had a diagnostic value in COAD. Finally, our multivariate survival
    [Show full text]
  • Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter Phenanthrenivorans Sphe3 and in Situ Reaction Monitoring in the NMR Tube
    International Journal of Molecular Sciences Article Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube Epameinondas Tsagogiannis 1, Elpiniki Vandera 1,†, Alexandra Primikyri 2,† , Stamatia Asimakoula 1, Andreas G. Tzakos 2 , Ioannis P. Gerothanassis 2 and Anna-Irini Koukkou 1,* 1 Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; [email protected] (E.T.); [email protected] (E.V.); [email protected] (S.A.) 2 Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; [email protected] (A.P.); [email protected] (A.G.T.); [email protected] (I.P.G.) * Correspondence: [email protected]; Tel.: +30-265-100-8371 † Equal contribution. Abstract: The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a Citation: Tsagogiannis, E.; Vandera, single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis– E.; Primikyri, A.; Asimakoula, S.; −1 Menten kinetics with Km and Vmax values of 21 ± 1.6 µM and 44.8 ± 4.0 U × mg , respectively, Tzakos, A.G.; Gerothanassis, I.P.; in pH 9.5 and at 20 ◦C. PcaA also converted gallate from a broad range of substrates tested. The Koukkou, A.-I.
    [Show full text]
  • The Nic Cluster from Pseudomonas Putida KT2440
    Deciphering the genetic determinants for aerobic nicotinic acid degradation: The nic cluster from Pseudomonas putida KT2440 Jose´I. Jime´nez*†, Angeles´ Canales‡, Jesu´s Jime´nez-Barbero‡, Krzysztof Ginalski§, Leszek Rychlewski¶, Jose´L. Garcı´a*, and Eduardo Dı´az*ʈ Departments of *Molecular Microbiology and ‡Protein Science, Centro de Investigaciones Biolo´gicas–Consejo Superior de Investigaciones Cientı´ficas,28040 Madrid, Spain; §Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, 02-106 Warsaw, Poland; and ¶BioInfoBank Institute, 60-744 Poznan, Poland Edited by David T. Gibson, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, and approved May 21, 2008 (received for review March 11, 2008) The aerobic catabolism of nicotinic acid (NA) is considered a model microorganisms for Ͼ50 years (1, 2, 5–7), the complete set of system for degradation of N-heterocyclic aromatic compounds, genes encoding this pathway as well as the structural–functional some of which are major environmental pollutants; however, the relationships of most of the enzymes involved in this process have complete set of genes as well as the structural–functional relation- not been reported and analyzed so far in any organism. In many ships of most of the enzymes involved in this process are still bacteria, the aerobic degradation of NA produces 2,5DHP as a unknown. We have characterized a gene cluster (nic genes) from central intermediate, which is further degraded according to a Pseudomonas putida KT2440 responsible for the aerobic NA deg- scheme (maleamate pathway) that has been outlined (Fig. 1) (1, radation in this bacterium and when expressed in heterologous 2, 6, 7).
    [Show full text]
  • Recombinant Expression and Characterization of a Prokaryotic Lipoxygenase from Pseudomonas Aeruginosa. Investigations Into the Biological Role of This Enzyme
    Recombinant expression and characterization of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. Investigations into the biological role of this enzyme Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by SWATHI BANTHIYA from Bangalore, India 2017 This work was carried out between 01.01.2014 and 16.02.2017 at the Institute for Biochemistry, Universitätsmedizin Berlin Charitè, under the supervision of Prof. Dr. sc. Med. Hartmut Kühn. 1st Reviewer: Prof. Rudolf Tauber 2nd Reviewer: Prof. Hartmut Kühn Date of defence: 22.06.2017 Acknowledgement I ACKNOWLEDGEMENT None of us got to where we are alone. Whether the assistance we received was obvious or subtle, acknowledging someone's help is a big part of understanding the importance of saying thank you. - Harvey Mackay It has been a wholly gratifying experience, but the vast majority of it were the joy I received by working with Prof. Hartmut Kühn. He has been a great mentor. I am honored to have worked under him. He is an amazing teacher who made the journey of my doctoral studies enjoyable and at the same time extremely productive. I have learnt a lot from him that will stay with me for the rest of my life. He was always there when we needed his time and made sure we always excelled in anything we attempted to venture into. Prof. Rudolf Tauber actively took interest in the progress of my project throughout. His valuable feedback and suggestions always motivated me to work better.
    [Show full text]
  • Simultaneous Lignin Depolymerization and Product Generation by Bacteria Davinia Salvachúa, Eric M
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Towards Lignin Consolidated Bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria Davinia Salvachúa, Eric M. Karp, Claire T. Nimlos, Derek R. Vardon, Gregg T. Beckham Electronic Supplementary Information Supplementary Figures Xylotriose hC Cellobiose Xylose Xylobiose Cellotriose Xylotetraose Xylopentaose Glucose min Fig. S1. Detection of monosaccharides and cello- and xylo- oligosaccharides by High Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD) in alkaline pretreated liquor without bacterial treatment. Kingdom Phylum Class Order Family Genus Species P. putida KT2440 Pseudomonas P. putida mt2 P. fluorescens Pseudomonadaceae Azotobacter A. vinelandii Pseudomonadales Moraxellaceae Acinetobacter Gammaproteobacteria Gram (-) Citrobacter C. freundii Enterobacteriales Enterobacteriaceae Proteobacteria Enterobacter Betaproteobacteria Burkholderiales Ralstoniaceae Ralstonia R. eutropha R. jostii Nocardiaceae Rhodococcus Bacteria Actinobacteria Actinobacteridae Actinomycetales R. erythropolis Pseudonocardiaceae Amycolatopsis B. subtilis Gram (+) Bacillaceae Bacillus Firmicutes Bacilli Bacillales B. megaterium Paenibacillaceae Paenibacillus Fig. S2: Taxonomic tree of the bacterial species screened in the current study. The taxonomic tree also delineates Gram (-) and Gram (+) bacteria. S1 A 5 4.5 4 3.5 3 2.5 2 OD (600 nm) 1.5 1 0.5 0 0 24 48 72 96 120 144 168 Time (h) B 12 10 8 6 4 OD (600 nm) 2 0 0 24 48 72 96 120 144 168 Time (h) P. putida KT2440 P. putida mt-2 P. fluorescens C. necator A. vinelandii Acinetobacter sp. C. freundii E. lignolyticus R. jostii R. erythropolis Amycolatopsis sp. B. subtilis B. megaterium Paenibacillus sp. Fig. S3. Growth curves as a function of time (measured by OD600) of 14 bacterial strains on alkaline pretreated liquor over 7 days of incubation in (A) nitrogen-limiting and (B) nutrient-rich conditions.
    [Show full text]
  • The Enzymes of the Human Eicosanoid Pathway
    orts in ep Me R d d ic n a a l Research and Reports in Medical S h c c i r e a n e Biringer, Res Rep Med Sci 2018, 2:1 c s e e s R Sciences Review Article Open Access The Enzymes of the Human Eicosanoid Pathway Roger Gregory Biringer* College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA *Corresponding author: Roger Gregory Biringer, Associate Professor of Biochemistry, LECOM, College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA, Tel: 941-782-5925; Fax: 941-782-5729; E-mail: [email protected] Received date: November 08, 2018; Accepted date: December 19, 2018; Published date: December 24, 2018 Copyright: © 2018 Biringer RG. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Eicosanoids are amphipathic, bioactive signalling molecules involved in a wide range of biological processes from homeostasis of blood pressure and blood flow to inflammation, pain, cell survival, and the progression of numerous disease states. The purpose of this review is to present an up-to-date and comprehensive overview of the enzymes of the eicosanoid pathway, their substrates, products, structure, isoforms, and regulation. Keywords: Eicosanoid; Eoxin; Hepoxilin; Leukotriene; Lipoxin; Prostaglandin; Thromboxane Prostaglandin I2; PLAT: Polycystin-1-lipoxygenase, alpha toxin; PAVSM: Porcine Aortic Vascular
    [Show full text]
  • Computational Methods for Functional Interpretation of Diverse Omics Data by Sumaiya Nazeen B.Sc
    Computational Methods for Functional Interpretation of Diverse Omics Data by Sumaiya Nazeen B.Sc. Engg., Bangladesh University of Engineering and Technology (2011) S.M., Massachusetts Institute of Technology (2014) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2019 ○c Massachusetts Institute of Technology 2019. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science August 30, 2019 Certified by. Bonnie Berger Simons Professor of Mathematics Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students Computational Methods for Functional Interpretation of Diverse Omics Data by Sumaiya Nazeen Submitted to the Department of Electrical Engineering and Computer Science on August 30, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Recent technological advances have resulted in an explosive growth of various types of “omics” data, including genomic, transcriptomic, proteomic, and metagenomic data. Functional interpretation of these data is key to elucidating the potential role of different molecular levels (e.g., genome, transcriptome, proteome, metagenome) in human health and disease. However, the massive size and heterogeneity of raw data pose substantial computational and statistical challenges in integrating and inter- preting these data. To overcome these challenges, we need sophisticated approaches and scalable analytical frameworks. This thesis outlines two research efforts along these lines. First, we develop a novel three-tiered integrative omics framework for integrating and functionally analyzing heterogeneous omics datasets across a group of co-occurring diseases.
    [Show full text]