Recombinant Expression and Characterization of a Prokaryotic Lipoxygenase from Pseudomonas Aeruginosa. Investigations Into the Biological Role of This Enzyme

Total Page:16

File Type:pdf, Size:1020Kb

Recombinant Expression and Characterization of a Prokaryotic Lipoxygenase from Pseudomonas Aeruginosa. Investigations Into the Biological Role of This Enzyme Recombinant expression and characterization of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. Investigations into the biological role of this enzyme Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by SWATHI BANTHIYA from Bangalore, India 2017 This work was carried out between 01.01.2014 and 16.02.2017 at the Institute for Biochemistry, Universitätsmedizin Berlin Charitè, under the supervision of Prof. Dr. sc. Med. Hartmut Kühn. 1st Reviewer: Prof. Rudolf Tauber 2nd Reviewer: Prof. Hartmut Kühn Date of defence: 22.06.2017 Acknowledgement I ACKNOWLEDGEMENT None of us got to where we are alone. Whether the assistance we received was obvious or subtle, acknowledging someone's help is a big part of understanding the importance of saying thank you. - Harvey Mackay It has been a wholly gratifying experience, but the vast majority of it were the joy I received by working with Prof. Hartmut Kühn. He has been a great mentor. I am honored to have worked under him. He is an amazing teacher who made the journey of my doctoral studies enjoyable and at the same time extremely productive. I have learnt a lot from him that will stay with me for the rest of my life. He was always there when we needed his time and made sure we always excelled in anything we attempted to venture into. Prof. Rudolf Tauber actively took interest in the progress of my project throughout. His valuable feedback and suggestions always motivated me to work better. I am grateful for his assistance and being a catalyst for achieving my goal. I am thankful to Dr. Dagmar Heydeck, Dr. Astrid Borchert and Dr. Christoph Ufer for their excellent scientific guidance throughout the tenure of my doctoral study and for constantly encouraging me in the most optimistic manner towards achieving my goals. A special mention goes to Mrs. Sabine Stehling, for her excellent technical guidance and for always patiently guiding me with new techniques. A memorable note to Maria, Marlena, Eugenia, Felix, Sajad, Sophia, and Ilya for being a part of and sharing my learning experiences. In addition, I extend my thanks to Dr. Patrick Scheerer, Jacqueline Kalms, Etienne Galemou Yoga, Dr. Valerie O’Donnell, Dr. Maceler Aldrovandi, Prof. Mats Hamberg, Prof. Dr. Hermann-Georg Holzhütter and Dr. Igor Ivanov for their successful collaboration throughout the duration of my study. To my parents, Dr. Ummed Singh Banthiya and Mrs. Surajkala Banthiya, I am forever indebted. My biggest supporters, Sandeep and Shruthi, a huge applause. To my husband, Aakash, my north star, I don’t have enough words to express my gratitude to him. Lots of love to my nephews for being the best stress-busters ever. There are a lot more people who have helped me to reach where I am today and I would like to include all of them in my grace for being a part of my life and fueling my ambition. Table of contents II TABLE OF CONTENTS ACKNOWLEDGEMENT ..................................................................................... I LIST OF ABBREVIATIONS ............................................................................. VII 1. INTRODUCTION ............................................................................................ 1 1.1. Lipoxygenases ............................................................................................ 1 1.1.1. History of lipoxygenases ........................................................................... 1 1.1.2. Distribution of lipoxygenases in terrestrial life ........................................... 3 1.1.3. Lipoxygenase reaction.............................................................................. 6 1.1.4. Nomenclature of lipoxygenases ............................................................... 7 1.2. Biological role of LOX-isoforms ................................................................... 8 1.2.1. In mammals .............................................................................................. 8 1.2.2. In plants .................................................................................................. 11 1.2.3. In prokaryotes ......................................................................................... 12 1.3. Properties of lipoxygenases ...................................................................... 14 1.3.1. Protein-chemical properties of lipoxygenases ........................................ 14 1.3.1.1. Structural properties of lipoxygenases ................................................. 14 1.3.1.2. Mutant variants of lipoxygenases ........................................................ 16 1.3.2. Enzymatic properties of lipoxygenases .................................................. 20 1.3.2.1. Reaction conditions favored by different LOX-isoforms ....................... 20 1.3.2.2. Substrate specificity of lipoxygenases ................................................. 22 1.3.2.3. Reaction stereochemistry of lipoxygenases ........................................ 25 1.4. Aims of this project .................................................................................... 27 2. MATERIALS AND METHODS ..................................................................... 28 2.1. Materials .................................................................................................... 28 2.1.1. Chemicals ............................................................................................... 28 2.1.2. Fatty acid substrates .............................................................................. 29 2.1.3. Phospholipid substrates ......................................................................... 29 2.1.4. HPLC-standards ..................................................................................... 30 2.1.5. Lipoxin and Leukotriene synthesis ......................................................... 30 2.1.6. Cells and media ...................................................................................... 30 Table of contents III 2.1.7. Rabbit ALOX15 ...................................................................................... 31 2.1.8. Buffers .................................................................................................... 32 2.1.9. Kits ......................................................................................................... 32 2.2. Methods ..................................................................................................... 32 2.2.1. Site directed mutagenesis ...................................................................... 32 2.2.2. Protein expression .................................................................................. 34 2.2.3. Quantification of protein concentration and of the degree of purity ........ 36 2.2.4. Interaction of PA-LOX with different classes of substrates ..................... 37 2.2.4.1. Fatty acid oxygenase activity ............................................................... 37 2.2.4.2. Phospholipid oxygenase activity .......................................................... 38 2.2.4.3. Oxygenation of membrane bound phospholipids ................................ 39 2.2.4.4. Oxygenation of intact erythrocyte membranes .................................... 39 2.2.4.5. Leukotriene and lipoxin synthesis ........................................................ 40 2.2.5. Activity assay .......................................................................................... 41 2.2.5.1. Spectrophotometric analysis ............................................................... 41 2.2.5.1.1. PA-LOX with different PUFAs ........................................................... 41 2.2.5.1.2. Temperature profile .......................................................................... 41 2.2.5.1.3. Variable oxygen concentrations ....................................................... 41 2.2.5.1.4. Experiments with stereospecifically labeled substrates .................... 43 2.2.5.2. Oxygraphic activity assay .................................................................... 43 2.2.5.3. HPLC quantification of reaction products ............................................ 44 2.2.5.3.1. Reversed phase - HPLC (RP-HPLC) ................................................ 44 2.2.5.3.2. Straight phase - HPLC (SP-HPLC) ................................................... 45 2.2.5.3.3. Chiral phase - HPLC (CP-HPLC)...................................................... 46 2.2.6. Storage stability of purified enzyme ........................................................ 46 2.2.7. Determination of iron content ................................................................. 47 2.2.8. GC/MS and LC/MS/MS analysis ............................................................ 47 2.2.8.1. Analysis of fatty acid oxygenation products of PA-LOX ....................... 47 2.2.8.2. Analysis of products with stereospecifically labeled substrates ........... 47 2.2.8.3. Oxidized lipids of PA-LOX treated RBCs ............................................. 48 2.2.9. Protein crystallization.............................................................................. 49 Table of contents IV 2.2.9.1. Wildtype- PA-LOX ............................................................................... 49 2.2.9.2. Ala420Gly-PA-LOX.............................................................................. 51 3. RESULTS ....................................................................................................
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Bioinorganic Chemistry of Nickel
    inorganics Editorial Bioinorganic Chemistry of Nickel Michael J. Maroney 1,* and Stefano Ciurli 2,* 1 Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, 240 Thatcher Rd. Life Sciences, Laboratory Rm N373, Amherst, MA 01003, USA 2 Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy * Correspondence: [email protected] (M.J.M.); [email protected] (S.C.) Received: 11 October 2019; Accepted: 11 October 2019; Published: 30 October 2019 Following the discovery of the first specific and essential role of nickel in biology in 1975 (the dinuclear active site of the enzyme urease) [1], nickel has become a major player in bioinorganic chemistry,particularly in microorganisms, having impacts on both environmental settings and human pathologies. At least nine classes of enzymes are now known to require nickel in their active sites, including catalysis of redox [(Ni,Fe) hydrogenases, carbon monoxide dehydrogenase, methyl coenzyme M reductase, acetyl coenzyme A synthase, superoxide dismutase] and nonredox (glyoxalase I, acireductone dioxygenase, lactate isomerase, urease) chemistries. In addition, the dark side of nickel has been illuminated in regard to its participation in microbial pathogenesis, cancer, and immune responses. Knowledge gleaned from the investigations of inorganic chemists into the coordination and redox chemistry of this element have boosted the understanding of these biological roles of nickel in each context. In this issue, eleven contributions, including four original research articles and seven critical reviews, will update the reader on the broad spectrum of the role of nickel in biology.
    [Show full text]
  • Downloaded from GEO
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Oxylipin metabolism is controlled by mitochondrial b-oxidation during bacterial inflammation. Mariya Misheva1, Konstantinos Kotzamanis1*, Luke C Davies1*, Victoria J Tyrrell1, Patricia R S Rodrigues1, Gloria A Benavides2, Christine Hinz1, Robert C Murphy3, Paul Kennedy4, Philip R Taylor1,5, Marcela Rosas1, Simon A Jones1, Sumukh Deshpande1, Robert Andrews1, Magdalena A Czubala1, Mark Gurney1, Maceler Aldrovandi1, Sven W Meckelmann1, Peter Ghazal1, Victor Darley-Usmar2, Daniel White1, and Valerie B O’Donnell1 1Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, UK, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA, 4Cayman Chemical 1180 E Ellsworth Rd, Ann Arbor, MI 48108, United States, 5UK Dementia Research Institute at Cardiff, Cardiff University, UK Address correspondence: Valerie O’Donnell, [email protected] or Daniel White, [email protected], Systems Immunity Research Institute, Cardiff University *Both authors contributed equally to the study 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Integrated Multivariate Analysis of Transcriptomic Data Reveals Immunological Mechanisms in Mice After Leishmania Infantum Infec
    1 Integrated multivariate analysis of transcriptomic data 2 reveals immunological mechanisms in mice after 3 Leishmania infantum infection 4 5 Génesis Palacios1, Raquel Diaz-Solano1, Basilio Valladares1,2,4, Roberto Dorta- 6 Guerra1,3, Emma Carmelo1,2,4*. 7 1 Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, 8 Universidad de la Laguna, La Laguna, Islas Canarias, Spain.2 Departamento de 9 Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, 10 Toxicología, Medicina Legal y Forense y Parasitología. 3 Departamento de 11 Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, 12 Universidad de La Laguna, La Laguna, Spain. 4 Red de Investigación Colaborativa 13 en Enfermedades Tropicales (RICET). 14 15 16 17 18 19 20 21 1 22 SUPPLEMENTAL MATERIAL 23 Supplementary file 1. List of TaqMan assays used for RT-qPCR analysis using 24 QuantStudioTM 12K Flex Real-Time PCR System. 25 PANEL 1. N° Assay ID GEN NOMBRE DEL GEN GRUPO 1 Mm00437762_m1 B2m beta-2 microglobulin 2 Mm00446968_m1 Hprt hypoxanthine guanine phosphoribosyl transferase 3 Mm00435617_m1 Pgk1 phosphoglycerate kinase 1 Endogenous gene 4 Mm01277042_m1 Tbp TATA box binding protein expression 5 Mm01201237_m1 Ubc ubiquitin C tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 6 Mm01722325_m1 Ywhaz protein, zeta polypeptide 7 Mm00599890_m1 Ifngr1 interferon gamma receptor 1 8 Mm00492626_m1 Ifngr2 interferon gamma receptor 2 9 Mm01168134_m1 Ifng interferon gamma 10 Mm01178820_m1 Tgfb1 transforming growth factor,
    [Show full text]
  • Characterization of the 4-Carboxy-2-Hydroxymuconate
    Characterization of the 4-carboxy-2-hydroxymuconate hydratase and the 4-carboxy-4-hydroxy-2-oxoadipate/4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas putida by Scott Mazurkewich A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Scott Mazurkewich, May, 2016 ABSTRACT CHARACTERIZATION OF THE 4-CARBOXY-2-HYDROXYMUCONATE HYDRATASE AND THE 4-CARBOXY-4-HYDROXY-2-OXOADIPATE/4-HYDROXY-4- METHYL-2-OXOGLUTARATE ALDOLASE FROM PSEUDOMONAS PUTIDA Scott Mazurkewich Advisor: University of Guelph, 2016 Dr. Stephen Y.K. G. Seah The protocatechuate and gallate 4,5-cleavage pathways are important bacterial catabolic pathways for environmental carbon cycling and xenobiotic remediation. This thesis focuses on the characterization of the 4-carboxy-2-hydroxymuconate (CHM) hydratase and the 4-hydroxy- 4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase which are the last two steps of the protocatechuate and gallate 4,5-cleavage pathways. HMG/CHA aldolases are class II pyruvate aldolases that have structural similarity to a group of proteins termed Regulators of RNase E activity A (RraA). The Escherichia coli RraA (EcRraA) binds to the regulatory domain of RNase E, inhibiting ribonuclease activity. Sequence and kinetic analyses of homologous RraA-like proteins identified minimal motifs, either a D- X20-R-D or a G-X20-R-D-X2-E/D motif, required for metal binding and aldolase activity amongst homologs. The EcRraA, which lacked sequence conservation to either motif, lacked detectable C-C lyase activity.
    [Show full text]
  • Interactions Between the Parasite Philasterides Dicentrarchi and the Immune System of the Turbot Scophthalmus Maximus.A Transcriptomic Analysis
    biology Article Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus.A Transcriptomic Analysis Alejandra Valle 1 , José Manuel Leiro 2 , Patricia Pereiro 3 , Antonio Figueras 3 , Beatriz Novoa 3, Ron P. H. Dirks 4 and Jesús Lamas 1,* 1 Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 2 Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 3 Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; [email protected] (P.P.); antoniofi[email protected] (A.F.); [email protected] (B.N.) 4 Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +34-88-181-6951; Fax: +34-88-159-6904 Received: 4 September 2020; Accepted: 14 October 2020; Published: 15 October 2020 Simple Summary: Philasterides dicentrarchi is a free-living ciliate that causes high mortality in marine cultured fish, particularly flatfish, and in fish kept in aquaria. At present, there is still no clear picture of what makes this ciliate a fish pathogen and what makes fish resistant to this ciliate. In the present study, we used transcriptomic techniques to evaluate the interactions between P. dicentrarchi and turbot leucocytes during the early stages of infection. The findings enabled us to identify some parasite genes/proteins that may be involved in virulence and host resistance, some of which may be good candidates for inclusion in fish vaccines.
    [Show full text]
  • Cysteine Dioxygenase 1 Is a Metabolic Liability for Non-Small Cell Lung Cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M
    bioRxiv preprint doi: https://doi.org/10.1101/459602; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M. Asara3,4, Christian C. Dibble5,6 and Gina M. DeNicola1,* Affiliations: 1 Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA 2 Proteomics and Metabolomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA 3 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Department of Medicine, Harvard Medical School, Boston, MA, USA 5 Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA 6 Department of Pathology, Harvard Medical School, Boston, MA, USA *Correspondence to: [email protected]. Keywords: KEAP1, NRF2, cysteine, CDO1, sulfite Summary NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2.
    [Show full text]
  • The Role of Ferroptosis in Breast Cancer Patients: a Comprehensive Analysis Zeng-Hong Wu1,2, Yun Tang3,Hongyu1 and Hua-Dong Li4
    Wu et al. Cell Death Discovery (2021) 7:93 https://doi.org/10.1038/s41420-021-00473-5 Cell Death Discovery ARTICLE Open Access The role of ferroptosis in breast cancer patients: a comprehensive analysis Zeng-Hong Wu1,2, Yun Tang3,HongYu1 and Hua-Dong Li4 Abstract Breast cancer (BC) affects the breast tissue and is the second most common cause of mortalities among women. Ferroptosis is an iron-dependent cell death mode that is characterized by intracellular accumulation of reactive oxygenspecies(ROS).Weconstructed a prognostic multigene signature based on ferroptosis-associated differentially expressed genes (DEGs). Moreover, we comprehensively analyzed the role of ferroptosis-associated miRNAs, lncRNAs, and immune responses. A total of 259 ferroptosis-related genes wereextracted.KEGGfunction analysis of these genes revealed that they were mainly enriched in the HIF-1 signaling pathway, NOD-like receptor signaling pathway, central carbon metabolism in cancer, and PPAR signaling pathway. Fifteen differentially expressed genes (ALOX15, ALOX15B, ANO6, BRD4, CISD1, DRD5, FLT3, G6PD, IFNG, NGB, NOS2, PROM2, SLC1A4, SLC38A1,andTP63) were selected as independent prognostic factors for BC patients. Moreover, T cell functions, including the CCR score, immune checkpoint, cytolytic activity, HLA, inflammation promotion, para-inflammation, T cell co-stimulation, T cell co-inhibition, and type II INF responses were significantly different between the low- risk and high-risk groups of the TCGA cohort. Immune checkpoints between the two groups revealed that the expressions of PDCD-1 (PD-1), CTLA4, LAG3, TNFSF4/14, TNFRSF4/8/9/14/18/25,andIDO1/2 among others were significantly different. A total of 1185 ferroptosis-related lncRNAs and 219 ferroptosis-related miRNAs were also included in this study.
    [Show full text]
  • Quantitative Proteomics Analysis of Young and Elderly Skin with DIA Mass Spectrometry Reveals New Skin Aging-Related Proteins
    www.aging-us.com AGING 2020, Vol. 12, No. 13 Research Paper Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins Jing Ma1,2, Mengting Liu1,2, Yaochi Wang1,2, Cong Xin1,2, Hui Zhang1,2, Shirui Chen1,2, Xiaodong Zheng1,2, Xuejun Zhang1,2, Fengli Xiao1,2,3, Sen Yang1,2 1Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China 2Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China 3The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China Correspondence to: Fengli Xiao, Sen Yang; email: [email protected], [email protected] Keywords: aging, epidermal proteins, skin rejuvenation and aging, proteome, mass spectrometer Received: February 25, 2020 Accepted: May 27, 2020 Published: June 29, 2020 Copyright: Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis.
    [Show full text]
  • Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship, Research, and Creative Work at Bryn Mawr College | Bryn Mawr College... Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Chemistry Faculty Research and Scholarship Chemistry 2018 Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C. Prendergast William Paul Malachowski Bryn Mawr College, [email protected] Arpita Mondal Peggy Scherle Alexander J. Muller Let us know how access to this document benefits ouy . Follow this and additional works at: https://repository.brynmawr.edu/chem_pubs Part of the Chemistry Commons Custom Citation George C. Prendergast, William J. Malachowski, Arpita Mondal, Peggy Scherle, and Alexander J. Muller. 2018. "Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer." International Review of Cell and Molecular Biology 336: 175-203. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. https://repository.brynmawr.edu/chem_pubs/25 For more information, please contact [email protected]. Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C. Prendergast, William, Malachowski, Arpita Mondal, Peggy Scherle, and Alexander J. Muller International Review of Cell and Molecular Biology 336: 175-203. http://doi.org/10.1016/bs.ircmb.2017.07.004 ABSTRACT The tryptophan catabolic enzyme indoleamine 2,3-dioxygenase-1 (IDO1) has attracted enormous attention in driving cancer immunosuppression, neovascularization, and metastasis. IDO1 suppresses local CD8+ T effector cells and natural killer cells and induces CD4+ T regulatory cells (iTreg) and myeloid-derived suppressor cells (MDSC). The structurally distinct enzyme tryptophan dioxygenase (TDO) also has been implicated recently in immune escape and metastatic progression.
    [Show full text]
  • BPS Complete Catalog
    BPSCATALOG ENZYMES KITS CELL LINES SCREENING SERVICES INNOVATIVE PRODUCTS TO FUEL YOUR EXPERIMENTS Unique, expert portfolio 2017 OUR MISSION: To provide the highest quality life science products and services worldwide in a timely manner to assist in accelerating drug discovery research and development for the treatment of human diseases. INNOVATION WE CONTINUOUSLY STRIVE TO BE FIRST TO MARKET BY PROVIDING EXPERTISE IN EXPRESSING HIGHLY ACTIVE ENZYMES MULTIPLE ASSAY DETECTION FORMATS HUMAN, MURINE AND MONKEY VERSIONS OF RECOMBINANT PROTEINS BIOTINYLATED VERSIONS OF MANY IMMUNE CHECKPOINT RECEPTORS 1ST AND MOST EXTENSIVE PARP ISOZYME PORTFOLIO 1ST AND MOST EXTENSIVE PDE ISOZYME PORTFOLIO 1ST COMPLETE SUITE OF HDAC AND SIRT ENZYMES 1ST AVAILABLE PARP AND TANKYRASE PROFILING SERVICES 1ST COMMERCIALLY AVAILABLE HISTONE DEMETHYLASES LARGEST OFFERING OF METHYLTRANSFERASES LARGEST OFFERING OF DEMETHYLASES OVER 200 PRODUCTS AND SERVICES EXCLUSIVE TO BPS RELIABILITY BPS IS CITED IN PEER-REVIEWED JOURNALS AND PUBLICATIONS AROUND THE WORLD NATURE GENETICS THE JOURNAL OF BIOLOGICAL CHEMISTRY JOURNAL OF CELL SCIENCE ANALYTICAL BIOCHEMISTRY BBRC NATURE CHEMICAL BIOLOGY ACS MEDICINAL CHEMISTRY LETTERS JOURNAL OF NATURAL PRODUCTS CHEMMEDCHEM MOLECULAR CANCER THERAPEUTICS & MANY MORE TABLE OF CONTENTS ACETYLTRANSFERASE 4 APOPTOSIS 4-5 ANTIBODIES 6-9 BIOTINYLATION 10-11 BROMODOMAINS 12-14 CELL BASED ASSAY KITS 15 CELL LINES 16-17 CELL SURFACE RECEPTORS 18-20 CYTOKINE(S) 21-24 DEACETYLASE(S) 25-27 DEMETHYLASE(S) 28-29 HEAT SHOCK PROTEINS 30 IMMUNOTHERAPY
    [Show full text]