Non-Digestible Polysaccharides to Support the Intestinal Immune Barrier: in Vitro Models to Unravel Molecular Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Non-Digestible Polysaccharides to Support the Intestinal Immune Barrier: in Vitro Models to Unravel Molecular Mechanisms Non - digestible polysaccharides to support the intestinal immune barrier: Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms Yongfu Tang in in vitro models to unravel molecular M cell mechanisms Yongfu 2017 Tang Macrophage Propositions: 1. To support the immune system by dietary fibers, one should eat whole grain food. (this thesis) 2. Fibers steer macrophages. (this thesis) 3. Artificial intelligence is smarter than humans. 4. Plants have an adaptive immune system. (Spoel et al., Nature Reviews Immunology. 2012. 12(2): 89-100) 5. Amyloid-ß peptide protects the brain. (Kumar et al., Science Translational Medicine. 2016. 8(340): 340ra72) 6. To be yourself, select food smartly, otherwise you will be controlled by microbiota. 7. A guaranteed result of research is that it leads to new scientific questions. Propositions belonging to the thesis, entitled: Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms Yongfu Tang Wageningen, 18 December 2017 Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms Yongfu Tang Thesis committee Promotors Prof. Dr H.J. Wichers Special Professor Immune modulation by food Wageningen University & Research Co-promotors Dr J.J. Mes Senior Scientist, Fresh Food & Chains Wageningen University & Research Dr C.C.F.M. Govers Scientist, Fresh Food & Chains Wageningen University & Research Other members Prof. Dr R. F. Witkamp, Wageningen University & Research Dr F. Liu, The University of Texas Health Science Center at Houston, USA Dr W. Chanput, Kasetsart University, Thailand Dr C. Soler Rivas, Universidad Autonoma de Madrid, Spain This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms Yongfu Tang Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 18 December 2017 at 11 a.m. in the Aula. Yongfu Tang Non-digestible polysaccharides to support the intestinal immune barrier: in vitro models to unravel molecular mechanisms 168 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2017) With references, with summary in English ISBN: 978-94-6343-713-4 DOI: 10.18174/425674 For my family Table of contents Chapter 1 General introduction 9 Chapter 2 Microarray analysis of Caco-2 exposed to non-digestible 27 polysaccharides reveals differential regulation of immune and cholesterol-related genes Chapter 3 Non-digestible polysaccharide treated macrophages 57 demonstrate a transcriptionally unique subtype Chapter 4 Human macrophages stimulated with non-digestible 85 polysaccharides are in function and chemokine production different from inflammatory and tolerant macrophages Chapter 5 Macrophage plasticity is modulated by non-digestible 109 polysaccharides Chapter 6 General discussion 137 Summary 155 Acknowledgements 159 About the author 163 Chapter 1 General introduction Chapter 1 Intestinal immune barrier The intestine has an intestinal immune barrier which is composed of, firstly, the epithelial barrier that is formed by a single layer of intestinal epithelial cells (IECs) composed of various cell lineages, such as enterocytes, enteroendocrine cells, Paneth cells, goblet cells, and Microfold cells (M cells), all differentiated from a common intestinal epithelial stem cells [1]. IECs provide a physical protective barrier for luminal factors harmful/undesired for the body and are involved in regulation of inflammatory processes [2]. IECs can regulate inflammation in response to antigens by secreting cytokines that attract and/or activate immune cells. IECs not only function as barrier but also absorb nutrients and other compounds from the intestinal lumen. This leads to the passage of an enormous number of antigens into the body. These antigens can be derived from commensal microbiota, pathogens, or ingested foods. To respond to these antigens, there is a large body of immune cells present in the intestines that have a gatekeeper function and form a second part of the intestinal immune barrier (Figure 1). These can be found in the lamina propria of the intestine, but also in Peyers paches (PPs), mesenteric lymph nodes (MLNs), colon patches, and appendix. The intestinal immune system includes B cells, T cells, monocytes, macrophages, dendritic cells, and recently discovered innate lymphoid cells (ILCs) [3]. The intestinal homeostatic balance between tolerance and inflammation, requires complex interactions between intestinal microbiota, IECs, and intestinal immune cells. Intestinal homeostasis is jeopardized upon imbalance of tolerance and inflammation, and can lead to intestinal dysfunction. As IECs and macrophages are in the first line of immune defense, their response towards food components is pivotal to analyze the immunomodulatory effects of foods. Intestinal epithelial cells The intestinal epithelium is the largest surface of the human body. Often, its surface is described as approximately 300 m2, but recent estimates are more in the order of 30 m2 [4]. The principal function of IECs is that of absorptive enterocytes, to process and absorb nutrients to serve metabolic and digestive functions. Besides that, it also serves as a physical barrier that aids in maintaining intestinal homeostasis. IECs form an essential part of immunity, by maintaining the integrity, and through secretion of mucins by goblet cells, antimicrobial proteins by Paneth cells, and transcytosis of IgA after secretion by plasma cells [5]. IECs also express Toll-like receptors (TLRs) that respond to LPS, LPA, or flagellin which are pathogen-associated molecular patterns (PAMPs) from 10 General introduction microorganisms [6]. TLR2 and TLR4 are reported to be limitedly expressed by IECs. However, when intestinal damage induces inflammatory stress, TLR2 stimulation effectively preserves tight junction integrity and controls intestinal inflammation [7]. Mucosal inflammation and apoptosis in colitis were suppressed by oral TLR2 ligand treatment which resulted in restoring tight junction-associated barrier [7]. In addition, it was shown that TLR2 could be activated by a dietary fibre (Inulin β 2→1-fructans) [8]. Small intestine Villus Commensal Lumen bacteria Goblet cell Enterocyte M cell Dendritic cell M1 T cell B cell Crypt IgA Lamina propria Innate lymphoid cell Epithelial stem cell Enteroendocrine cell Paneth cell Antimicrobial proteins Muscularis propria M2 Figure 1. The intestinal immune barrier is composed of an epithelial barrier formed by various cell types with immune cells residing in the lamina propria, Peyer’s path, mesenteric lymph nodes, colon patches, and appendix (Adapted and modified from [9]). M cells as specialized IECs, sample antigens and interact with microbiota to communicate with immune cells. These immune cells are concentrated in Peyer’s patches. In addition, IECs recognize and integrate signals from the luminal side to intestinal immune cells [10] by secreting cytokines and chemokines that in turn modulate cytokine production by immune cells [11, 12]. Cytokines produced by the IECs in a steady-status function as anti- inflammatory and include TSLP, TGFβ, IL8, CCL20, CXCL10, IL18, IL33, and IL37. Those anti- 11 Chapter 1 inflammatory cytokines are important to maintain immune tolerance, wound healing and also to recruit monocytes, neutrophils, eosinophils, lymphocytes, T cells, B cells, macrophages, and dendritic cells [11, 13, 14]. Specifically the role of TSLP in maintaining immune homeostasis by IEC that attenuate inflammation status and promote anti- inflammation is important, since TSLP secretion could inhibit IL12 production by DCs and activates Th2 polarizing cells [15]. Intestinal macrophages Macrophages are described as one of the largest populations of cells which function in maintaining intestinal immune barrier [16]. Macrophages can be differentiated from monocytes in response to antigens presented by IECs or other immune cells [17]. In the steady state, these signals will be anti-inflammatory, produced by the IECs that are in close contact with the macrophages and resident Treg cells. This will lead to tolerant macrophages. In inflammatory status, those anti-inflammatory signals are reduced and inflammatory signals are produced which lead to inflammatory macrophages. Macrophages work as effector cells of the intestinal innate immune system. The contact between macrophages and IECs includes numerous immunoregulatory signals. This contact is in part mediated by the interaction of IECs and microbiota [18]. Through those interactions, macrophages direct the appropriate innate and adaptive immune cell responses and limited intestinal inflammation [19]. Two extreme phenotypes have been described for macrophages, and termed as classical macrophages (inflammatory macrophages or M1) [20] or alternative macrophages (tolerant macrophages or M2) [21]. Based on the most recent insights, an even larger variation of macrophage phenotypes has been described with an almost infinite continuum between the two most extremes. Therefore, it was suggested to indicate specific
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Characterization of the 4-Carboxy-2-Hydroxymuconate
    Characterization of the 4-carboxy-2-hydroxymuconate hydratase and the 4-carboxy-4-hydroxy-2-oxoadipate/4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas putida by Scott Mazurkewich A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Scott Mazurkewich, May, 2016 ABSTRACT CHARACTERIZATION OF THE 4-CARBOXY-2-HYDROXYMUCONATE HYDRATASE AND THE 4-CARBOXY-4-HYDROXY-2-OXOADIPATE/4-HYDROXY-4- METHYL-2-OXOGLUTARATE ALDOLASE FROM PSEUDOMONAS PUTIDA Scott Mazurkewich Advisor: University of Guelph, 2016 Dr. Stephen Y.K. G. Seah The protocatechuate and gallate 4,5-cleavage pathways are important bacterial catabolic pathways for environmental carbon cycling and xenobiotic remediation. This thesis focuses on the characterization of the 4-carboxy-2-hydroxymuconate (CHM) hydratase and the 4-hydroxy- 4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase which are the last two steps of the protocatechuate and gallate 4,5-cleavage pathways. HMG/CHA aldolases are class II pyruvate aldolases that have structural similarity to a group of proteins termed Regulators of RNase E activity A (RraA). The Escherichia coli RraA (EcRraA) binds to the regulatory domain of RNase E, inhibiting ribonuclease activity. Sequence and kinetic analyses of homologous RraA-like proteins identified minimal motifs, either a D- X20-R-D or a G-X20-R-D-X2-E/D motif, required for metal binding and aldolase activity amongst homologs. The EcRraA, which lacked sequence conservation to either motif, lacked detectable C-C lyase activity.
    [Show full text]
  • Signal Adaptor DAP10 Associates with MDL-1 and Triggers Osteoclastogenesis in Cooperation with DAP12
    Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12 Masanori Inuia,1, Yuki Kikuchia,1, Naoko Aokib, Shota Endoa, Tsutomu Maedaa, Akiko Sugahara-Tobinaia, Shion Fujimuraa, Akira Nakamuraa, Atsushi Kumanogohc, Marco Colonnad, and Toshiyuki Takaia,2 aDepartment of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan; bDepartment of Pathology, Asahikawa Medical College, Higashi 2-1-1, Midorigaoka, Asahikawa 078-8510, Japan; cDepartment of Immunopathology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and dDepartment of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110 Communicated by Jeffrey V. Ravetch, The Rockfeller University, New York, NY, January 22, 2009 (received for review May 14, 2008) Osteoclasts, cells of myeloid lineage, play a unique role in bone the Ig superfamily or C-type lectin family. They primarily mediate resorption, maintaining skeletal homeostasis in concert with bone- a Src-family kinase-initiated activation signal, leading to a series of producing osteoblasts. Osteoclast development and maturation (os- events including Syk kinase recruitment, triggering of calcium teoclastogenesis) is driven by receptor activator of NF-␬B ligand and signaling mediated by phospholipase C␥ (PLC␥), and activation of macrophage-colony stimulating factor and invariably requires a sig- the MAPK cascade, culminating in cell proliferation and cytokine nal initiated by immunoreceptor tyrosine-based activation motif production as the output of cellular responses. In osteoclast pre- (ITAM)-harboring Fc receptor common ␥ chain or DNAX-activating cursor cells, FcR␥ and DAP12 associate with several cognate protein (DAP)12 (also referred to as KARAP or TYROBP) that associates cell-surface immunoreceptors (9) such as osteoclast-associated with the cognate immunoreceptors.
    [Show full text]
  • Distinct Gene Expression Pathways in Islets from Individuals with Short- and Long
    Mastracci Teresa (Orcid ID: 0000-0003-1956-1951) Distinct Gene Expression Pathways in Islets from Individuals with Short- and Long- Duration Type 1 Diabetes Teresa L. Mastracci1,2*, Jean-Valery Turatsinze3, Benita K. Book4, Ivan A. Restrepo5, Michael J. Pugia1, Eric A. Wiebke4, Mark D. Pescovitz4, Decio L. Eizirik3 and Raghavendra G. Mirmira2,5,6,7 1 Indiana Biosciences Research Institute, Indianapolis, IN, USA. 2 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA. 3 ULB Center for Diabetes Research, Universite Libre de Bruxelles, Brussels, Belgium. 4 Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA. 5 Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA. 6 Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA. 7 Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. * Corresponding Author: Teresa L. Mastracci, 1345 W. 16th St., Suite 300, Indianapolis, IN 46202 USA. E-mail: [email protected] Running Title: Functional Genomics Analysis of T1D Islets Abstract word count: 272 This is the author's manuscript of the article published in final edited form as: Mastracci, T. L., Turatsinze, J.-V., Book, B. K., Restrepo, I. A., Pugia, M. J., Wiebke, E. A., … Mirmira, R. G. (n.d.). Distinct Gene Expression Pathways in Islets from Individuals with Short‐ and Long‐Duration Type 1 Diabetes. Diabetes, Obesity and Metabolism. https://doi.org/10.1111/dom.13298 Main text word count: 2730 References: 27; Tables: 2; Figures: 3 Abstract Aims: Our current understanding of the pathogenesis of type 1 diabetes (T1D) arose in large part from studies using the non-obese diabetic (NOD) mouse model.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Supplemental Figure S1. Distinct difference in expression of 576 sensome genes comparing cortex versus microglia. (A) This heatmap shows all 576 sensome candidate genes ordered by DE and with the left column shows if the gene is present in the “Hickman et al. sensome” Supplemental Figure S2. Mouse sensome and human sensome genes categorized by group. (A) Bar graph showing the number of mouse and human sensome genes per group (Cell-Cell Interactions, Chemokine and related receptors, Cytokine receptors, ECM receptors, Endogenous ligands receptors, sensors and transporters, Fc receptors, Pattern recognition and related receptors, Potential sensors but no known ligands and Purinergic and related receptors). Supplementary Figure S3. Overlap of ligands recognized by microglia sensome (A) Overlap between the ligands of the receptors from respectively human and mouse core sensome was shown using Venn Diagrams. (B) Ligands of human and mouse receptors categorized in groups (Glycoproteins, Cytokines, Immunoglobulin, Amino acids, Carbohydrates, Electrolytes, Lipopeptides, Chemokines, Neuraminic acids, Nucleic acids, Receptors, Lipids, Fatty acids, Leukotrienes, Hormones, Steroids and Phospholipids) and spread of different groups shown as parts of whole again highlighting that the distribution of ligands what the human and mouse sensome genes can sense (Categorization of ligands in Supplementary Table S1). Supplementary Figure S4. Microglia core sensome expression during aging. (A) Two-log fold change of microglia core sensome genes in aging mice derived from Holtman et al. [12]. (B) Accelerated aging model (ERCC1), with impaired DNA repair mechanism, shows changes of microglia core sensome expression [12]. (C) Microglia core sensome expression during aging in human derived from Olah et al.
    [Show full text]
  • A Transcriptomic Atlas of Aged Human Microglia
    ARTICLE DOI: 10.1038/s41467-018-02926-5 OPEN A transcriptomic atlas of aged human microglia Marta Olah1,2, Ellis Patrick 3, Alexandra-Chloe Villani2,4, Jishu Xu 2, Charles C. White2, Katie J. Ryan5, Paul Piehowski 6, Alifiya Kapasi6, Parham Nejad2, Maria Cimpean 5, Sarah Connor1,2, Christina J. Yung1, Michael Frangieh5, Allison McHenry5, Wassim Elyaman1,2, Vlad Petyuk 6, Julie A. Schneider7, David A. Bennett7, Philip L. De Jager 1,2 & Elizabeth M. Bradshaw1,2 With a rapidly aging global human population, finding a cure for late onset neurodegenerative diseases has become an urgent enterprise. However, these efforts are hindered by the lack of 1234567890():,; understanding of what constitutes the phenotype of aged human microglia—the cell type that has been strongly implicated by genetic studies in the pathogenesis of age-related neuro- degenerative disease. Here, we establish the set of genes that is preferentially expressed by microglia in the aged human brain. This HuMi_Aged gene set captures a unique phenotype, which we confirm at the protein level. Furthermore, we find this gene set to be enriched in susceptibility genes for Alzheimer’s disease and multiple sclerosis, to be increased with advancing age, and to be reduced by the protective APOEε2 haplotype. APOEε4 has no effect. These findings confirm the existence of an aging-related microglial phenotype in the aged human brain and its involvement in the pathological processes associated with brain aging. 1 Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY 10032, USA. 2 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA.
    [Show full text]
  • Transcriptomic Gene Signatures Associated with Persistent Airflow Limitation
    Hekking et al Revised manuscript ERJ-02298-2016 Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma P.P. Hekking1, M.J. Loza2, S. Pavlidis3, B. De Meulder4, D. Lefaudeux4, F. Baribaud2, C. Auffray4, A.H. Wagener1, P. Brinkman1, R. Lutter1, A.T. Bansal5, A.R. Sousa6, S. Bates6, Y. Pandis3, L.J. Fleming3, D.E. Shaw7, S.J. Fowler8, Y. Guo3, A. Meiser3, K. Sun3, J. Corfield9, P. Howarth10, E.H. Bel1, I.M. Adcock11, K.F. Chung11, R. Djukanovic10, P.J. Sterk1, and the U-BIOPRED Study Group* 1: Respiratory Medicine, Academic Medical Centre, Amsterdam, the Netherlands; 2: Janssen research and development; Johnsen & Johnsen, Springhouse, US; 3: Data Science Institute, Imperial College, London, UK; 4: European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS- UCBL-INSERM, Université de Lyon, France; 5: Acclarogen Ltd, Cambridge, UK; 6: Discovery Medicine, GlaxoSmithKline, Brentford, UK; 7: Respiratory Research Unit, University of Nottingham, UK; 8: Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, UK; 9: Areteva, Nottingham, UK; 10: NIHR Southampton Centre for Biomedical Research, University of Southampton, UK; 11: National Heart & Lung institute - Imperial College, London, UK;*A list of the U-BIOPRED study group can be found in the online supplement Corresponding author: Pieter-Paul Hekking, Academic Medical Centre (AMC), Department of Respiratory Medicine, F5-260 1105 AZ, Amsterdam, the Netherlands Telephone: +31 (0) 20 566 1660 Fax: +31 (0) 20 566 9001 E-mail: [email protected] 1 Hekking et al Take home message Persistent airflow limitation in severe asthma is associated with a mechanism in which IL-13 and remodeling are involved.
    [Show full text]
  • Supplementary Figure 1. Network Map Associated with Upregulated Canonical Pathways Shows Interferon Alpha As a Key Regulator
    Supplementary Figure 1. Network map associated with upregulated canonical pathways shows interferon alpha as a key regulator. IPA core analysis determined interferon-alpha as an upstream regulator in the significantly upregulated genes from RNAseq data from nasopharyngeal swabs of COVID-19 patients (GSE152075). Network map was generated in IPA, overlaid with the Coronavirus Replication Pathway. Supplementary Figure 2. Network map associated with Cell Cycle, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair shows relationships among significant canonical pathways. Significant pathways were identified from pathway analysis of RNAseq from PBMCs of COVID-19 patients. Coronavirus Pathogenesis Pathway was also overlaid on the network map. The orange and blue colors in indicate predicted activation or predicted inhibition, respectively. Supplementary Figure 3. Significant biological processes affected in brochoalveolar lung fluid of severe COVID-19 patients. Network map was generated by IPA core analysis of differentially expressed genes for severe vs mild COVID-19 patients in bronchoalveolar lung fluid (BALF) from scRNA-seq profile of GSE145926. Orange color represents predicted activation. Red boxes highlight important cytokines involved. Supplementary Figure 4. 10X Genomics Human Immunology Panel filtered differentially expressed genes in each immune subset (NK cells, T cells, B cells, and Macrophages) of severe versus mild COVID-19 patients. Three genes (HLA-DQA2, IFIT1, and MX1) were found significantly and consistently differentially expressed. Gene expression is shown per the disease severity (mild, severe, recovered) is shown on the top row and expression across immune cell subsets are shown on the bottom row. Supplementary Figure 5. Network map shows interactions between differentially expressed genes in severe versus mild COVID-19 patients.
    [Show full text]
  • WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: Jr.; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 G06F 19/00 (201 1.01) (US). HOWARD, Brian, Wilson; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 (US). (21) International Application Number: PCT/US20 13/044497 (74) Agents: GUFFEY, Timothy, B. et al; c/o The Procter & Gamble Company, Global Patent Services, 299 East 6th (22) Date: International Filing Street, Sycamore Building, 4th Floor, Cincinnati, Ohio 6 June 2013 (06.06.2013) 45202 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/656,218 6 June 2012 (06.06.2012) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: THE PROCTER & GAMBLE COMPANY HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, [US/US]; One Procter & Gamble Plaza, Cincinnati, Ohio KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 45202 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (72) Inventors: XU, Jun; One Procter & Gamble Plaza, Cincin SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, nati, Ohio 45202 (US).
    [Show full text]
  • And Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid
    cells Review Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis Roxana Coras 1,2, Jessica D. Murillo-Saich 1 and Monica Guma 1,2,* 1 Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; [email protected] (R.C.); [email protected] (J.D.M.-S.) 2 Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain * Correspondence: [email protected] Received: 22 January 2020; Accepted: 18 March 2020; Published: 30 March 2020 Abstract: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory effects mediated by diet-related metabolites. In addition, recent literature has shown a link between diet-related metabolites and microbiome changes, since the gut microbiome is involved in the metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking, associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic profile and play a role in RA pathogenesis. This article summarizes what is known about circulating pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in their circulating concentrations and diet-related metabolites with a beneficial effect in RA.
    [Show full text]
  • COVID-19: a Drug Repurposing and Biomarker Identification by Using Comprehensive Gene-Disease Associations Through Protein-Protein Interaction Network Analysis
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 March 2020 doi:10.20944/preprints202003.0440.v1 COVID-19: A drug repurposing and biomarker identification by using comprehensive gene-disease associations through protein-protein interaction network analysis Suresh Kumar* Department of Diagnostic and Allied Health Science, Faculty of Health & Life Sciences, Management & Science University, 40100 Shah Alam, Selangor, Malaysia *Corresponding author Suresh Kumar, PhD Department of Diagnostic and Allied Health Science, Faculty of Health & Life Sciences Management & Science University, 40100 Shah Alam, Selangor, Malaysia Email: [email protected] Abstract COVID-19 (2019-nCoV) is a pandemic disease with an estimated mortality rate of 3.4% (estimated by the WHO as of March 3, 2020). Until now there is no antiviral drug and vaccine for COVID-19. The current overwhelming situation by COVID-19 patients in hospitals is likely to increase in the next few months. About 15 percent of patients with serious disease in COVID-19 require immediate health services. Rather than waiting for new anti-viral drugs or vaccines that take a few months to years to develop and test, several researchers and public health agencies are attempting to repurpose medicines that are already approved for another similar disease and have proved to be fairly effective. This study aims to identify FDA approved drugs that can be used for drug repurposing and identify biomarkers among high- risk and asymptomatic groups. In this study gene-disease association related to COVID-19 reported mild, severe symptoms and clinical outcomes were determined. The high-risk group was studied related to SARS-CoV-2 viral entry and life cycle by using Disgenet and compared with curated COVID-19 gene data sets from the CTD database.
    [Show full text]
  • During Intestinal Inflammation Functions Contributes to Regulatory
    Reprogramming of Monocytes by GM-CSF Contributes to Regulatory Immune Functions during Intestinal Inflammation This information is current as Jan Däbritz, Toni Weinhage, Georg Varga, Timo Wirth, of October 2, 2021. Karoline Walscheid, Anne Brockhausen, David Schwarzmaier, Markus Brückner, Matthias Ross, Dominik Bettenworth, Johannes Roth, Jan M. Ehrchen and Dirk Foell J Immunol published online 4 February 2015 http://www.jimmunol.org/content/early/2015/02/04/jimmun ol.1401482 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/02/04/jimmunol.140148 Material 2.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 4, 2015, doi:10.4049/jimmunol.1401482 The Journal of Immunology Reprogramming of Monocytes by GM-CSF Contributes to Regulatory Immune Functions during Intestinal Inflammation Jan Da¨britz,*,†,‡,x,1 Toni Weinhage,*,1 Georg Varga,* Timo Wirth,* Karoline Walscheid,* Anne Brockhausen,{,‖ David Schwarzmaier,* Markus Bruckner,€ # Matthias Ross,# Dominik Bettenworth,# Johannes Roth,†,‖ Jan M.
    [Show full text]