Platinum Complexes in Colorectal Cancer and Other Solid Tumors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cisplatin and Phenanthriplatin Modulate Long-Noncoding
www.nature.com/scientificreports OPEN Cisplatin and phenanthriplatin modulate long‑noncoding RNA expression in A549 and IMR90 cells revealing regulation of microRNAs, Wnt/β‑catenin and TGF‑β signaling Jerry D. Monroe1,2, Satya A. Moolani2,3, Elvin N. Irihamye2,4, Katheryn E. Lett1, Michael D. Hebert1, Yann Gibert1* & Michael E. Smith2* The monofunctional platinum(II) complex, phenanthriplatin, acts by blocking transcription, but its regulatory efects on long‑noncoding RNAs (lncRNAs) have not been elucidated relative to traditional platinum‑based chemotherapeutics, e.g., cisplatin. Here, we treated A549 non‑small cell lung cancer and IMR90 lung fbroblast cells for 24 h with either cisplatin, phenanthriplatin or a solvent control, and then performed microarray analysis to identify regulated lncRNAs. RNA22 v2 microRNA software was subsequently used to identify microRNAs (miRNAs) that might be suppressed by the most regulated lncRNAs. We found that miR‑25‑5p, ‑30a‑3p, ‑138‑5p, ‑149‑3p, ‑185‑5p, ‑378j, ‑608, ‑650, ‑708‑5p, ‑1253, ‑1254, ‑4458, and ‑4516, were predicted to target the cisplatin upregulated lncRNAs, IMMP2L‑1, CBR3‑1 and ATAD2B‑5, and the phenanthriplatin downregulated lncRNAs, AGO2‑1, COX7A1‑2 and SLC26A3‑1. Then, we used qRT‑PCR to measure the expression of miR‑25‑5p, ‑378j, ‑4516 (A549) and miR‑149‑3p, ‑608, and ‑4458 (IMR90) to identify distinct signaling efects associated with cisplatin and phenanthriplatin. The signaling pathways associated with these miRNAs suggests that phenanthriplatin may modulate Wnt/β‑catenin and TGF‑β signaling through the MAPK/ ERK and PTEN/AKT pathways diferently than cisplatin. Further, as some of these miRNAs may be subject to dissimilar lncRNA targeting in A549 and IMR90 cells, the monofunctional complex may not cause toxicity in normal lung compared to cancer cells by acting through distinct lncRNA and miRNA networks. -
Claudio Vallotto
A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/104986 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Electron Paramagnetic Resonance Techniques for Pharmaceutical Characterization and Drug Design by Claudio Vallotto Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Chemistry August 2017 Contents Title page .................................................................................................................................... i Contents ..................................................................................................................................... ii List of Figures ........................................................................................................................... ix Acknowledgments .................................................................................................................... xv Declaration and published work ............................................................................................. xvi Abstract .................................................................................................................................. -
A Dissertation Entitled the Role of Base Excision Repair And
A Dissertation Entitled The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links. by Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science Dr. Stephan M. Patrick, Committee Chair Dr. Kandace Williams, Committee Member Dr. William Maltese, Committee Member Dr. Manohar Ratnam, Committee Member Dr. David Giovannucci, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2014 Copyright 2014, Akshada Sawant This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links By Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science The University of Toledo August 2014 Cisplatin is a well-known anticancer agent that forms a part of many combination chemotherapeutic treatments used against a variety of human cancers. Despite successful treatment, the development of resistance is the major limitation of the cisplatin based therapy. Base excision repair modulates cisplatin cytotoxicity. Moreover, mismatch repair deficiency gives rise to cisplatin resistance and leads to poor prognosis of the disease. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Our studies showed that these mismatches lead to the activation and the recruitment of mismatch repair proteins. -
Preclinical Activity of the Liposomal Cisplatin Lipoplatin in Ovarian Cancer
Author Manuscript Published OnlineFirst on September 17, 2014; DOI: 10.1158/1078-0432.CCR-14-0713 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Preclinical activity of the liposomal cisplatin Lipoplatin in ovarian cancer 1Naike Casagrande, 1Marta Celegato, 1Cinzia Borghese, 1Maurizio Mongiat, 1,2 Alfonso Colombatti, 1*Donatella Aldinucci 1Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, PN, Italy; 2Department of Medical and Biological Science Technology and MATI (Microgravity Ageing Training Immobility) Excellence Center, University of Udine, Italy. *Corresponding Author: Donatella Aldinucci, Experimental Oncology 2, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano I-33081, Italy. Phone: Italy-0434- 659234; Fax: Italy-0434-659428; e-mail: [email protected] Running title: Preclinical activity of Lipoplatin in ovarian cancer Key words: ovarian cancer; liposomal Cisplatin; spheroids; migration; cancer stem cells. Acknowledgments: This research was supported by Ministero della Salute, Ricerca Finalizzata FSN, I.R.C.C.S., Rome, Italy The authors declare no potential conflicts of interest. Word count: 4703 Figures: 5 Table: 1 Statement of translational relevance At present, standard treatment for ovarian cancer involves tumor debulking with platinum- based chemotherapy. The response to this regimen is at least 70% of patients; however, 60- 80% of the first responders relapse within 18 months with a platinum-resistant disease. Lipoplatin is one of the most promising liposomal platinum drug formulations under clinical investigation. Our preclinical data demonstrated that Lipoplatin was active in a panel of ovarian cancer cell lines, including Cisplatin-resistant cells. We have shown that Lipoplatin induced apoptosis and ROS production, reduced spheroid growth and migration, reduced cancer stem cell number, and inhibited more than 90% tumor xenograft growth with low toxicity, while cisplatin resulted either un-effective or effective but too toxic. -
WO 2017/176265 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/176265 A l 12 October 2017 (12.10.2017) P O P C T (51) International Patent Classification: (74) Agent: COLLINS, Daniel W.; Foley & Lardner LLP, A61K 9/00 (2006.01) A61K 9/51 (2006.01) 3000 K Street, NW, 6th Floor, Washington, DC 20007- A61K 47/42 (20 ) 5109 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 16/026270 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 6 April 2016 (06.04.2016) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, EST, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (71) Applicant: MAYO FOUNDATION FOR MEDICAL PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, EDUCATION AND RESEARCH [US/US]; 200 First SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Street, NW, Rochester, Minnesota 55905 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (72) Inventors: MARKOVIC, Svetomir N.; c/o Mayo Founda (unless otherwise indicated, for every tion For Medical Education And Research, 200 First kind of regional protection available): ARIPO (BW, GH, Street, NW, Rochester, Minnesota 55905 (US). -
Comparison of Phenanthriplatin, a Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, a Classic Bifunctional Anticancer Drug
Comparison of Phenanthriplatin, A Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, A Classic Bifunctional Anticancer Drug by Meiyi Li B.S., Chemistry Fudan University, 2010 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of A1CH %r Master of Science in Inorganic Chemistry y At the Massachusetts Institute of Technology September 2012 5 212 @2012 Meiyi Li. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: I '_ Department of Chemistry July 20, 2012 Certified by: Stephen J. Lippard Arthur Amc s Noyes Professor of Chemistry Thesis Supervisor Accepted by: Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Departmental Committee for Graduate Students Comparison of Phenanthriplatin, A Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, A Classic Bifunctional Anticancer Drug by Meiyi Li B.S., Chemistry Fudan University, 2010 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Master of Science in Inorganic Chemistry at the Massachusetts Institute of Technology July 2012 @2012 Meiyi Li. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. 1 Comparison of Phenanthriplatin, A Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, A Classic Bifunctional Anticancer Drug by Meiyi Li Submitted to the Department of Chemistry on 2 0 th July, 2012, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Inorganic Chemistry Abstract Nucleotide excision repair, a DNA repair mechanism, is the major repair pathway responsible for removal of platinum-based anticancer drugs. -
In Vitro Investigation of DNA Damage Induced by the DNA Cross-Linking Agents Oxaliplatin and Satraplatin in Lymphocytes of Colorectal Cancer Patients
Journal of Cancer Therapy, 2012, 3, 78-89 http://dx.doi.org/10.4236/jct.2012.31011 Published Online February 2012 (http://www.SciRP.org/journal/jct) In Vitro Investigation of DNA Damage Induced by the DNA Cross-Linking Agents Oxaliplatin and Satraplatin in Lymphocytes of Colorectal Cancer Patients Amal Alotaibi, Adolf Baumgartner, Mojgan Najafzadeh, Eduardo Cemeli, Diana Anderson Division of Biomedical Sciences, University of Bradford, Bradford, UK. Email: [email protected] Received October 12th, 2011; revised November 15th, 2011; accepted December 5th, 2011 ABSTRACT Exposure to toxic chemicals, especially chemotherapeutic drugs, may induce several DNA lesions, including DNA in- terstrand crosslinks. These crosslinks are considered toxic lesions to the dividing cells since they can induce mutations, chromosomal rearrangements, and cell death. Many DNA interstrand crosslinks lesions can be generated by plati- num-based chemotherapeutic agents. Satraplatin is a novel orally administered platinum-based chemotherapeutic agent. In the present study, we investigated DNA interstrand crosslinks lesions induced by oxaliplatin and satraplatin in lym- phocytes obtained from colorectal cancer patients and healthy volunteers. Satraplatin demonstrated an increase in inter- strand crosslinks in a dose-dependent manner in the Comet assay (p < 0.001). In addition, satraplatin and oxaliplatin increased significantly the number of sister chromatid exchanges up to 8.5-fold and 5.1-fold (p < 0.001) respectively, when treated with 2 µM concentration in comparison to untreated colorectal cancer cells. Further, the γH2AX foci for- mation was investigated by an immunofluorescence assay with oxaliplatin and satraplatin. The γH2AX foci formation rate was increased by approximately 9-fold when lymphocytes were treated with 2 μM oxaliplatin. -
Systemic Lipoplatin Infusion Results in Preferential Tumor Uptake in Human Studies
ANTICANCER RESEARCH 25: 3031-3040, (2005) _______________________________________________________________________________________________ Systemic Lipoplatin Infusion Results in Preferential Tumor Uptake in Human Studies T ENI BOULI K AS1, GEO RGE P. STAT HOPO U LOS 2, N IKOL A OS VO LAKA K IS1 and MARIA VOUG I OUKA 1 , 1Regulon, Inc. 715 Nor th Shoreline Blvd., Mountain View, C alifornia 94043, U.S.A. and Regulon AE, Grigoriou Afxentiou7, Athehs 174 55; 1Errik os Dunant Hos pital, Mes ogeion 107, Athens 15128, Gr eece ; Abstract. LipoplatinTM, a liposomal formulation of cisplatin, Key words: Lipoplatin, cisplatin, tumor targeting, gastric cancer, colon was developed with almost negligible nephrotoxicity, ototoxic ity , cancer, hepatocellular cancer. and ne urotoxicity as demonstrated in prec linical and Phase I human studies. A polyethy le ne-gly col c oating of the liposome w ith a m odel where Lipoplatin damage s more tumor c ompare d to nanoparticles is s upposed to r e sult in tumor accum ulation of the normal c ells. In c onclusion, Lipoplatin has the ability to drug by extravas ation through the altere d tumor vasculatur e. We prefe r entially conce ntr ate in malignant tis sue both of primar y and e xplored the hypothe s is that intrav e nous infusion of Lipoplatin m etastatic origin following intravenous infusion to patients. In r esults in tumor targeting in four independent patient c ases (one this respect, Lipoplatin emerges as a very promising drug in the w ith hepatocellular adenoc ar cinom a, two w ith gastr ic cancer, arsenal of chemotherapeutics. and one with colon c ancer ) w ho under went Lipoplatin infusion followed by a pr esche dule d s urger y ~ 20h later. -
Combination of Oxoplatin with Other FDA-Approved Oncology Drugs
International Journal of Molecular Sciences Article Theoretical Prediction of Dual-Potency Anti-Tumor Agents: Combination of Oxoplatin with Other FDA-Approved Oncology Drugs José Pedro Cerón-Carrasco Reconocimiento y Encapsulación Molecular, Universidad Católica San Antonio de Murcia Campus los Jerónimos, 30107 Murcia, Spain; [email protected] Received: 16 April 2020; Accepted: 2 July 2020; Published: 3 July 2020 Abstract: Although Pt(II)-based drugs are widely used to treat cancer, very few molecules have been approved for routine use in chemotherapy due to their side-effects on healthy tissues. A new approach to reducing the toxicity of these drugs is generating a prodrug by increasing the oxidation state of the metallic center to Pt(IV), a less reactive form that is only activated once it enters a cell. We used theoretical tools to combine the parent Pt(IV) prodrug, oxoplatin, with the most recent FDA-approved anti-cancer drug set published by the National Institute of Health (NIH). The only prerequisite imposed for the latter was the presence of one carboxylic group in the structure, a chemical feature that ensures a link to the coordination sphere via a simple esterification procedure. Our calculations led to a series of bifunctional prodrugs ranked according to their relative stabilities and activation profiles. Of all the designed molecules, the combination of oxoplatin with aminolevulinic acid as the bioactive ligand emerged as the most promising strategy by which to design enhanced dual-potency oncology drugs. Keywords: cancer; drug design; organometallics; platinum-based drugs; bifunctional compounds; theoretical tools 1. Introduction The unexpected discovery of the bioactivity of Pt salts by Rosenberg about 60 years ago opened the door to a new type of cancer treatment: chemotherapy with transition metals [1]. -
New Insights Into Mechanisms of Cisplatin Resistance: from Tumor Cell to Microenvironment
International Journal of Molecular Sciences Review New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment Shang-Hung Chen 1,2 and Jang-Yang Chang 1,2,* 1 National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan 2 Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan * Correspondence: [email protected] or [email protected]; Tel.: +886-6-2757575 (ext. 50002) Received: 28 July 2019; Accepted: 21 August 2019; Published: 24 August 2019 Abstract: Although cisplatin has been a pivotal chemotherapy drug in treating patients with various types of cancer for decades, drug resistance has been a major clinical impediment. In general, cisplatin exerts cytotoxic effects in tumor cells mainly through the generation of DNA-platinum adducts and subsequent DNA damage response. Accordingly, considerable effort has been devoted to clarify the resistance mechanisms inside tumor cells, such as decreased drug accumulation, enhanced detoxification activity, promotion of DNA repair capacity, and inactivated cell death signaling. However, recent advances in high-throughput techniques, cell culture platforms, animal models, and analytic methods have also demonstrated that the tumor microenvironment plays a key role in the development of cisplatin resistance. Recent clinical successes in combination treatments with cisplatin and novel agents targeting components in the tumor microenvironment, such as angiogenesis and immune cells, have also supported the therapeutic value of these components in cisplatin resistance. In this review, we summarize resistance mechanisms with respect to a single tumor cell and crucial components in the tumor microenvironment, particularly focusing on favorable results from clinical studies. -
Arxiv:2003.01418V1 [Physics.Chem-Ph] 3 Mar 2020
Blue moon ensemble simulation of aquation free energy profiles applied to mono and bifunctional platinum anticancer drugs Teruo Hirakawa,1, 2 David R. Bowler,3, 4, 5 Tsuyoshi Miyazaki,6, 5 Yoshitada Morikawa,1, 7, 8 and Lionel A. Truflandier2, 1, a) 1)Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan 2)Institut des Sciences Mol´eculaires (ISM), Universit´eBordeaux, CNRS UMR 5255, 351 cours de la Lib´eration, 33405 Talence cedex, France 3)Department of Physics & Astronomy, University College London (UCL), Gower St, London, WC1E 6BT, UK 4)London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, UK 5)Centre for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 6)Computational Materials Science Unit (CMSU), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 7)Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan 8)Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan (Dated: 4 March 2020) Aquation free energy profiles of neutral cisplatin and cationic mono- functional derivatives, including triaminochloroplatinum(II) and cis- diammine(pyridine)chloroplatinum(II), were computed using state of the art thermodynamic integration, for which temperature and solvent were accounted for explicitly using density functional theory based canonical molecular dynamics (DFT-MD). For all the systems the "inverse-hydration" where the metal center acts as an acceptor of hydrogen bond has been observed. -
Lipoplatin™ As a Chemotherapy and Antiangiogenesis Drug. Cancer
Cancer Therapy Vol 5, page 351 Cancer Therapy Vol 5, 351-376, 2007 Molecular mechanisms of cisplatin and its liposomally encapsulated form, Lipoplatin™. Lipoplatin™ as a chemotherapy and antiangiogenesis drug Review Article Teni Boulikas1,2,* 1Regulon, Inc. 715 North Shoreline Blvd, Mountain View, California 94043, USA and 2Regulon AE, Afxentiou 7, Alimos, Athens 17455, Ellas (Greece) __________________________________________________________________________________ *Correspondence: Teni Boulikas, Ph.D., Regulon AE, Afxentiou 7, Alimos, Athens 17455, Greece; Tel: +30-210-9858454; Fax: +30- 210-9858453; E-mail: [email protected] Key words: Lipoplatin™, cisplatin, signaling, tumor targeting, angiogenesis, liposomes, nanoparticles, drug resistance, carboplatin, oxaliplatin, glutathione, caspase, apoptosis, ERK, stress signaling, FasL, DNA adducts, DNA repair, gene expression profiling, antiangiogenesis, HSP90 Abbreviations: 17-allylamino-17-demethoxygeldanamycin, (17-AAG); 7-ethyl-10-hydroxy-camptothecin, (SN-38); Brain-derived neurotrophic factor, (BDNF); chronic myelogenous leukemia, (CML); copper transporters, (CTRs); dipalmitoyl phosphatidyl glycerol, (DPPG); DNA-protein cross-links, (DPC); dose limiting toxicity, (DLT); epidermal growth factor receptor, (EGFR); epidermal growth factor, (EGF); extracellular signal-regulated kinase, (ERK); Focal adhesion kinase, (FAK); glutathione S-transferase P1, (GSTP1); Heat shock protein 90, (Hsp90); heparin-binding epidermal growth factor, (HB-EGF); high mobility group, (HMG); hypoxia-inducible factor-