Combination of Oxoplatin with Other FDA-Approved Oncology Drugs

Total Page:16

File Type:pdf, Size:1020Kb

Combination of Oxoplatin with Other FDA-Approved Oncology Drugs International Journal of Molecular Sciences Article Theoretical Prediction of Dual-Potency Anti-Tumor Agents: Combination of Oxoplatin with Other FDA-Approved Oncology Drugs José Pedro Cerón-Carrasco Reconocimiento y Encapsulación Molecular, Universidad Católica San Antonio de Murcia Campus los Jerónimos, 30107 Murcia, Spain; [email protected] Received: 16 April 2020; Accepted: 2 July 2020; Published: 3 July 2020 Abstract: Although Pt(II)-based drugs are widely used to treat cancer, very few molecules have been approved for routine use in chemotherapy due to their side-effects on healthy tissues. A new approach to reducing the toxicity of these drugs is generating a prodrug by increasing the oxidation state of the metallic center to Pt(IV), a less reactive form that is only activated once it enters a cell. We used theoretical tools to combine the parent Pt(IV) prodrug, oxoplatin, with the most recent FDA-approved anti-cancer drug set published by the National Institute of Health (NIH). The only prerequisite imposed for the latter was the presence of one carboxylic group in the structure, a chemical feature that ensures a link to the coordination sphere via a simple esterification procedure. Our calculations led to a series of bifunctional prodrugs ranked according to their relative stabilities and activation profiles. Of all the designed molecules, the combination of oxoplatin with aminolevulinic acid as the bioactive ligand emerged as the most promising strategy by which to design enhanced dual-potency oncology drugs. Keywords: cancer; drug design; organometallics; platinum-based drugs; bifunctional compounds; theoretical tools 1. Introduction The unexpected discovery of the bioactivity of Pt salts by Rosenberg about 60 years ago opened the door to a new type of cancer treatment: chemotherapy with transition metals [1]. Unfortunately, only three anti-cancer drugs are routinely used in hospitals—the original cisplatin and two derivatives, carboplatin and oxoplatin [2]. Figure1 shows that the final step in the action of cisplatin-like drugs is an attack on the cell’s DNA, which eventually blocks cell replication by disrupting the natural double helix architecture of the DNA molecule [3]. The cisplatin derivatives were not specifically designed to target cancer cells, and they react with a wide spectrum of biomolecules present in the extracellular media, which is the source of the undesirable side-effects associated with this type of chemotherapy [4]. With the aim of minimizing the risks of chemotherapy related to the high reactivity of the classical Pt(II) salts, Sadler and co-workers proposed increasing the oxidation state of the Pt to the less reactive Pt(IV) by inserting additional axial ligands into the parent cisplatin structure [5]. Figure1 shows how the parent Pt(IV) prodrug, oxoplatin, is less toxic than the cisplatin-like drugs because it does not react in the extracellular region. Simultaneously, oxoplatin presents valuable pharmacokinetics and can be self-activated by redox reactions once it has reached the intracellular medium. The driving force for oxoplatin activation is based on the natural gradient of the concentration of ascorbic acid in the human body, which is higher inside than outside the cell, rather than on an exogenous chemical or physical agent [6]. Accordingly, the prodrug becomes reactive by only forming cisplatin within the intracellular medium. Int. J. Mol. Sci. 2020, 21, 4741; doi:10.3390/ijms21134741 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 4741 2 of 11 Int. J. Mol. Sci. 2020, 25, x FOR PEER REVIEW 2 of 11 OH H3N Cl H3N Cl OH Pt H N Cl Pt Cl 3 H3N Pt H3N Cl OH H3N Cl cisplatin oxoplatin O -x O x- O activation asplatin side effectsx- attack Extracellular Intracellular activation dual effects * 43 Figure 1. Chemical structures of the parent Pt(II)-based drug (cisplatin) and the Pt(IV) prodrugs 44 Figure(oxoplatin 1. Chemical and asplatin). structures Schematic of the representation parent Pt(II)-bas of theed mechanism drug (cisplatin) by which and a metallodrugthe Pt(IV) prodrugs damages 45 (oxoplatinDNA. Cisplatin and asplatin). (shown in Schematic green) is very representa reactive,tion and of the the final mechanism step of the by reaction whichproduces a metallodrug a large 46 damagesdistortion DNA. in the Cisplatin double (shown helix structure in green) of is the very DNA. reactive, However, and the it final also reactsstep of withthe reaction the biomolecules produces 47 apresent large indistortion the extracellular in the media.double Thesehelix non-specificstructure of interactions the DNA. areHowever, the source it ofalso the reacts main side-ewithff ectsthe 48 biomoleculesof this drug (X present marked in inthe purple). extrace Oxoplatinllular media. (shown These in non-specific red) is less reactive interactions andenters are the the source cell directly of the 49 mainwithout side-effects any other of reactions. this drug It is(X activatedmarked in thepurple intracellular). Oxoplatin medium (shown by ascorbicin red) is acid, less which reactive reduces and 50 entersthe Pt(IV) the centerscell directly to Pt(II), without leading any to theother in situ reactions. generation It is of activated cisplatin. in In asplatinthe intracellular (shown as medium red–orange by 51 ascorbicballs), one acid, of thewhich axial reducesOH ligands the Pt(IV) is replaced centers byto Pt(I aspirin.I), leading It is also to activatedthe in situ to generation cisplatin inside of cisplatin. the cell − 52 Inby asplatin the action (shown of ascorbic as red–orange acid. The balls), free form one of of aspirin the axial (orange −OH ball)ligands produces is replaced a dual-potency by aspirin. anti-tumor It is also 53 activatedeffect (denoted to cisplatin as an asterisk).inside the cell by the action of ascorbic acid. The free form of aspirin (orange 54 ball) produces a dual-potency anti-tumor effect (denoted as an asterisk). Inspired by Sadler’s work [7], two different groups proposed the injection of a bifunctional 55 prodrugInspired by covering by Sadler’s the Pt(IV) work center[7], two with different an active gr ratheroups proposed than a passive the injection ligand, e.g., of a aspirin. bifunctional In this 56 prodrugsynthetic by strategy, covering aspirin the Pt(IV) replaces center one with of the an axial activeOH rather ligands, than leading a passive to asplatin,ligand, e.g., also aspirin. called platin-A In this − 57 synthetic(Figure1)[ strategy,8,9]. The aspirin subsequent replaces release one of of the cisplatin axial −OH upon ligands, reduction leading leads to asplatin, to the highly also called reactive platin- Pt(II) 58 Aagent (Figure and 1) the [8,9]. free formThe subsequent of the bioactive release ligand. of cisplatin The former upon attacks reduction the DNA leads ofthe to malignantthe highlycell reactive while 59 Pt(II)the latter agent reduces and the the free mechanism form of the of cancerbioactive growth ligand. and The/or helps former to mitigateattacks the the DNA side-e offfects the ofmalignant the drug. 60 cellBecause while they the latter contain reduces two active the mechanism moieties (metallic of cancer center growth+ bioactive and/or helps ligand), to mitigate asplatin-like the side-effects molecules 61 ofcan the be drug. designed Because to produce they contain a dual-potency two active emoietiffect.es We (metallic used computational center + bioactive methods ligand), to predict asplatin- the 62 likeeffects molecules of replacing can be aspirin designed with to other produce bioactive a dual-p ligands.otency This effect. work We is used therefore computational a further step methods towards to 63 predictdesigning the enhancedeffects of bifunctionalreplacing aspirin prodrugs. with other bioactive ligands. This work is therefore a further 64 step towards designing enhanced bifunctional prodrugs. 2. Results 65 2. ResultsWith the aim of proposing molecules applicable to the treatment of cancer rather than conducting 66 a gedankenexperiment,With the aim of proposing we adapted molecules the computational applicable strategy to the of treatment Ponte et al. of [10 cancer] to screen rather the latestthan 67 conductingFood and Drug a gedankenexperiment, Administration (FDA)-approved we adapted oncology the computational drug set (AOD9) strategy published of Ponte by et the al. National [10] to 68 screenCancer the Institute, latest partFood of theand US Drug National Administrati Instituteson of (FDA)-approved Health (NIH). This oncology set contains drug the set most (AOD9) recent 69 published147 approved by the anti-cancer National drugs Cancer [11 ].Institute, We imposed part of only the one US prerequisite:National Institutes the presence of Health of one (NIH). carboxylic This 70 setgroup contains in the the structure most recent that 147 ensures approved a link anti-can to the Ptcer coordination drugs [11]. We sphere imposed via aonly simple one prerequisite: esterification 71 the presence of one carboxylic group in the structure that ensures a link to the Pt coordination sphere Int. J. Mol. Sci. 2020, 25, x FOR PEER REVIEW 3 of 11 72 via a simple esterification reaction [12]. This systematic selection yielded five drugs: melphalan, 73 bendamustine, chlorambucil, aminolevulinic acid and tretinoin (retinoic acid). Figure 2 shows the 74 structures of these drugs as deposited in the PubChem database [13,14]. 75 The successful design of asplatin suggests an effective synthetic strategy for coordinating a 76 bioactive ligand to oxoplatin by forming a carboxylate bridge at one of the hydroxyl groups. This is, 77 however, not a trivial task because an efficient prodrug has to fulfil two prerequisites: (1) the Pt(IV)– 78 ligand bond must be sufficiently stable so as not to dissociate prior to reaching the cancerous tissues; 79 and (2) there must be an efficient activation pathway in the intracellular media of the malignant cells 80 [12]. These two crucially important points have been assessed in a recent theoretical contribution by 81 Ponte, Russo and Sicilia [10], who used density functional theory (DFT) calculations to simulate the 82 mechanism for the reduction of asplatin.
Recommended publications
  • Cisplatin and Phenanthriplatin Modulate Long-Noncoding
    www.nature.com/scientificreports OPEN Cisplatin and phenanthriplatin modulate long‑noncoding RNA expression in A549 and IMR90 cells revealing regulation of microRNAs, Wnt/β‑catenin and TGF‑β signaling Jerry D. Monroe1,2, Satya A. Moolani2,3, Elvin N. Irihamye2,4, Katheryn E. Lett1, Michael D. Hebert1, Yann Gibert1* & Michael E. Smith2* The monofunctional platinum(II) complex, phenanthriplatin, acts by blocking transcription, but its regulatory efects on long‑noncoding RNAs (lncRNAs) have not been elucidated relative to traditional platinum‑based chemotherapeutics, e.g., cisplatin. Here, we treated A549 non‑small cell lung cancer and IMR90 lung fbroblast cells for 24 h with either cisplatin, phenanthriplatin or a solvent control, and then performed microarray analysis to identify regulated lncRNAs. RNA22 v2 microRNA software was subsequently used to identify microRNAs (miRNAs) that might be suppressed by the most regulated lncRNAs. We found that miR‑25‑5p, ‑30a‑3p, ‑138‑5p, ‑149‑3p, ‑185‑5p, ‑378j, ‑608, ‑650, ‑708‑5p, ‑1253, ‑1254, ‑4458, and ‑4516, were predicted to target the cisplatin upregulated lncRNAs, IMMP2L‑1, CBR3‑1 and ATAD2B‑5, and the phenanthriplatin downregulated lncRNAs, AGO2‑1, COX7A1‑2 and SLC26A3‑1. Then, we used qRT‑PCR to measure the expression of miR‑25‑5p, ‑378j, ‑4516 (A549) and miR‑149‑3p, ‑608, and ‑4458 (IMR90) to identify distinct signaling efects associated with cisplatin and phenanthriplatin. The signaling pathways associated with these miRNAs suggests that phenanthriplatin may modulate Wnt/β‑catenin and TGF‑β signaling through the MAPK/ ERK and PTEN/AKT pathways diferently than cisplatin. Further, as some of these miRNAs may be subject to dissimilar lncRNA targeting in A549 and IMR90 cells, the monofunctional complex may not cause toxicity in normal lung compared to cancer cells by acting through distinct lncRNA and miRNA networks.
    [Show full text]
  • Claudio Vallotto
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/104986 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Electron Paramagnetic Resonance Techniques for Pharmaceutical Characterization and Drug Design by Claudio Vallotto Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Department of Chemistry August 2017 Contents Title page .................................................................................................................................... i Contents ..................................................................................................................................... ii List of Figures ........................................................................................................................... ix Acknowledgments .................................................................................................................... xv Declaration and published work ............................................................................................. xvi Abstract ..................................................................................................................................
    [Show full text]
  • Induction with Mitomycin C, Doxorubicin, Cisplatin And
    British Journal of Cancer (1999) 80(12), 1962–1967 © 1999 Cancer Research Campaign Article no. bjoc.1999.0627 Induction with mitomycin C, doxorubicin, cisplatin and maintenance with weekly 5-fluorouracil, leucovorin for treatment of metastatic nasopharyngeal carcinoma: a phase II study RL Hong1, TS Sheen2, JY Ko2, MM Hsu2, CC Wang1 and LL Ting3 Departments of 1Oncology, 2Otolaryngology and 3Radiation Therapy, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan Summary The combination of cisplatin and 5-fluorouracil (5-FU) (PF) is the most popular regimen for treating metastatic nasopharyngeal carcinoma (NPC) but it is limited by severe stomatitis and chronic cisplatin-related toxicity. A novel approach including induction with mitomycin C, doxorubicin and cisplatin (MAP) and subsequent maintenance with weekly 5-FU and leucovorin (FL) were designed with an aim to reduce acute and chronic toxicity of PF. Thirty-two patients of NPC with measurable metastatic lesions in the liver or lung were entered into this phase II trial. Mitomycin C 8 mg m–2, doxorubicin 40 mg m–2 and cisplatin 60 mg m–2 were given on day 1 every 3 weeks as initial induction. After either four courses or remission was achieved, patients received weekly dose of 5-FU 450 mg m–2 and leucovorin 30 mg m–2 for maintenance until disease progression. With 105 courses of MAP given, 5% were accompanied by grade 3 and 0% were accompanied by grade 4 stomatitis. The dose-limiting toxicity of MAP was myelosuppression. Forty per cent of courses had grade 3 and 13% of courses had grade 4 leukopenia.
    [Show full text]
  • A Dissertation Entitled the Role of Base Excision Repair And
    A Dissertation Entitled The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links. by Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science Dr. Stephan M. Patrick, Committee Chair Dr. Kandace Williams, Committee Member Dr. William Maltese, Committee Member Dr. Manohar Ratnam, Committee Member Dr. David Giovannucci, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2014 Copyright 2014, Akshada Sawant This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links By Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science The University of Toledo August 2014 Cisplatin is a well-known anticancer agent that forms a part of many combination chemotherapeutic treatments used against a variety of human cancers. Despite successful treatment, the development of resistance is the major limitation of the cisplatin based therapy. Base excision repair modulates cisplatin cytotoxicity. Moreover, mismatch repair deficiency gives rise to cisplatin resistance and leads to poor prognosis of the disease. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Our studies showed that these mismatches lead to the activation and the recruitment of mismatch repair proteins.
    [Show full text]
  • Arsenic Trioxide Is Highly Cytotoxic to Small Cell Lung Carcinoma Cells
    160 Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells 1 1 Helen M. Pettersson, Alexander Pietras, effect of As2O3 on SCLC growth, as suggested by an Matilda Munksgaard Persson,1 Jenny Karlsson,1 increase in neuroendocrine markers in cultured cells. [Mol Leif Johansson,2 Maria C. Shoshan,3 Cancer Ther 2009;8(1):160–70] and Sven Pa˚hlman1 1Center for Molecular Pathology, CREATE Health and 2Division of Introduction Pathology, Department of Laboratory Medicine, Lund University, 3 Lung cancer is the most frequent cause of cancer deaths University Hospital MAS, Malmo¨, Sweden; and Department of f Oncology-Pathology, Cancer Center Karolinska, Karolinska worldwide and results in 1 million deaths each year (1). Institute and Hospital, Stockholm, Sweden Despite novel treatment strategies, the 5-year survival rate of lung cancer patients is only f15%. Small cell lung carcinoma (SCLC) accounts for 15% to 20% of all lung Abstract cancers diagnosed and is a very aggressive malignancy Small cell lung carcinoma (SCLC) is an extremely with early metastatic spread (2). Despite an initially high aggressive form of cancer and current treatment protocols rate of response to chemotherapy, which currently com- are insufficient. SCLC have neuroendocrine characteristics bines a platinum-based drug with another cytotoxic drug and show phenotypical similarities to the childhood tumor (3, 4), relapses occur in the absolute majority of SCLC neuroblastoma. As multidrug-resistant neuroblastoma patients. At relapse, the efficacy of further chemotherapy is cells are highly sensitive to arsenic trioxide (As2O3) poor and the need for alternative treatments is obvious. in vitro and in vivo, we here studied the cytotoxic effects Arsenic-containing compounds have been used in tradi- of As2O3 on SCLC cells.
    [Show full text]
  • Comparison of Phenanthriplatin, a Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, a Classic Bifunctional Anticancer Drug
    Comparison of Phenanthriplatin, A Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, A Classic Bifunctional Anticancer Drug by Meiyi Li B.S., Chemistry Fudan University, 2010 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of A1CH %r Master of Science in Inorganic Chemistry y At the Massachusetts Institute of Technology September 2012 5 212 @2012 Meiyi Li. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: I '_ Department of Chemistry July 20, 2012 Certified by: Stephen J. Lippard Arthur Amc s Noyes Professor of Chemistry Thesis Supervisor Accepted by: Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Departmental Committee for Graduate Students Comparison of Phenanthriplatin, A Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, A Classic Bifunctional Anticancer Drug by Meiyi Li B.S., Chemistry Fudan University, 2010 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Master of Science in Inorganic Chemistry at the Massachusetts Institute of Technology July 2012 @2012 Meiyi Li. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. 1 Comparison of Phenanthriplatin, A Novel Monofunctional Platinum Based Anticancer Drug Candidate, with Cisplatin, A Classic Bifunctional Anticancer Drug by Meiyi Li Submitted to the Department of Chemistry on 2 0 th July, 2012, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Inorganic Chemistry Abstract Nucleotide excision repair, a DNA repair mechanism, is the major repair pathway responsible for removal of platinum-based anticancer drugs.
    [Show full text]
  • Small Cell Lung Cancer (SCLC) Algorithm
    Small Cell Lung Cancer (SCLC) Page 1 of 8 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women. Note: Consider Clinical Trials as treatment options for eligible patients. INITIAL EVALUATION STAGE ● Pathology consistent with SCLC Limited Stage ● History and physical AJCC Stage I-III2, see Page 2 ● Laboratory studies to include hematological and full chemistry panels ● FDG PET/CT and CT chest with IV contrast ○ If FDG PET/CT not available: nuclear medicine bone scan and CT chest, abdomen, and pelvis with IV contrast ● MRI brain with IV contrast (preferred) or CT head with IV contrast ● MRI spine, lumbar puncture and bone marrow aspirate/biopsy as indicated ● Pulmonary function tests 1 Extensive Stage ● Lifestyle risk assessment AJCC Stage IV3, see Page 3 ● Molecular profiling (for never smokers) AJCC = American Joint Committee on Cancer 1 See Physical Activity, Nutrition, and Tobacco Cessation algorithms; ongoing reassessment of lifestyle risks should be a part of routine clinical practice 2 Limited stage: Stage I-III (T any, N any, M0) per AJCC 8th edition or disease confined to the ipsilateral hemithorax
    [Show full text]
  • Cisplatin and Etoposide (Lung)
    Cisplatin and Etoposide (lung) _____________________________________________________________________________________________ Indication First line chemotherapy for patients with small cell lung cancer (SCLC), who have a good performance status (WHO PS 0-2). Concomitant radiotherapy may start with cycle 2. ICD-10 codes Codes pre-fixed with C34 Regimen details Day Drug Dose Route 1 Cisplatin 75-80mg/m² IV infusion 1 Etoposide 100mg/m² IV infusion 2 and 3 or Etoposide 100mg/m² IV infusion 2 and 3 Etoposide 200mg/m2 PO Cycle frequency 21 days Number of cycles 4 - 6 cycles (usually 4) Administration Cisplatin is administered in 500mL sodium chloride 0.9% over 60 minutes following the pre and post hydration protocol below. Infusion Fluid & Additives Volume Infusion Time Sodium Chloride 0.9% 1000mL 1 hour Mannitol 20% 200mL 30 minutes OR Mannitol 10% 400mL 30 minutes Ensure urine output > 100mL / hour prior to giving cisplatin. Give a single dose of furosemide 20mg iv if necessary. Cisplatin 500mL 1 hour Sodium Chloride 0.9% + 2g MgSO4 + 1000mL 2 hours 20mmol KCl TOTAL 2700mL or 2900mL 4 hours 30 minutes Note: Patients with magnesium or potassium below the normal range should have 2g MgSO4 and 20mmol KCl added to the pre-hydration bag and the duration of the infusion increased to 2 hours. All patients must be advised to drink at least 2 litres of fluid over the following 24 hours. IV etoposide is administered in 1000mL sodium chloride 0.9% and infused over a minimum of 1 hour. Version 1 Review date June 2018 Page 1 of 4 Oral etoposide is available as 50mg and 100mg capsules.
    [Show full text]
  • Arxiv:2003.01418V1 [Physics.Chem-Ph] 3 Mar 2020
    Blue moon ensemble simulation of aquation free energy profiles applied to mono and bifunctional platinum anticancer drugs Teruo Hirakawa,1, 2 David R. Bowler,3, 4, 5 Tsuyoshi Miyazaki,6, 5 Yoshitada Morikawa,1, 7, 8 and Lionel A. Truflandier2, 1, a) 1)Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan 2)Institut des Sciences Mol´eculaires (ISM), Universit´eBordeaux, CNRS UMR 5255, 351 cours de la Lib´eration, 33405 Talence cedex, France 3)Department of Physics & Astronomy, University College London (UCL), Gower St, London, WC1E 6BT, UK 4)London Centre for Nanotechnology, UCL, 17-19 Gordon St, London WC1H 0AH, UK 5)Centre for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 6)Computational Materials Science Unit (CMSU), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 7)Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan 8)Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan (Dated: 4 March 2020) Aquation free energy profiles of neutral cisplatin and cationic mono- functional derivatives, including triaminochloroplatinum(II) and cis- diammine(pyridine)chloroplatinum(II), were computed using state of the art thermodynamic integration, for which temperature and solvent were accounted for explicitly using density functional theory based canonical molecular dynamics (DFT-MD). For all the systems the "inverse-hydration" where the metal center acts as an acceptor of hydrogen bond has been observed.
    [Show full text]
  • Combination Chemotherapy with Estramustine Phosphate, Ifosfamide and Cisplatin for Hormone-Refractory Prostate Cancer
    Acta Med. Okayama, 2006 Vol. 60, No. 1, pp. 43ン49 CopyrightⒸ 2006 by Okayama University Medical School. Original Article http ://www.lib.okayama-u.ac.jp/www/acta/ Combination Chemotherapy with Estramustine Phosphate, Ifosfamide and Cisplatin for Hormone-refractory Prostate Cancer Haruki Kakua, Takashi Saikaa*, Tomoyasu Tsushimab, Atsushi Nagaia, Teruhiko Yokoyamaa, Fernando Abarzuaa, Shin Ebaraa, Daisuke Manabea, Yasutomo Nasua, and Hiromi Kumona aDepartment of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700ン8558, Japan, and bDepartment of Urology, Medival center of Okayama, Okayama 701-1192, Japan We evaluated the effi ciency and toxicity of estramustine phosphate (ECT), ifosfamide (IFM) and cis- platin (CDDP) combination chemotherapy in twenty-one patients with hormone-refractory prostate cancer (HRPC), for which there is currently no eff ective treatment. Patients received a daily dose of 560 mg ECT in combination with 1.2 g/m2 IFM on days 1 to 5 and 70 mg/m2 CDDP on day 1. This combination therapy was given every 3 to 4 weeks. An objective response of more than 50オ reduc- tion in prostate-specifi c antigen was observed in 9 of 18 patients (50オ), and a more than 50オ reduc- tion in bi-dimensionally measurable soft-tissue lesions was observed in 2 of 7 patients (29オ). The median duration of response among the cases showing partial response was 40 weeks, while the median duration of response of overall partial-response plus stable cases was 30 weeks. The median survival duration of all cases was 47 weeks. Toxicity was modest and acceptable. In conclusion, the ECT, IFM and CDDP combination chemotherapy regimen is a viable treatment option for HRPC.
    [Show full text]
  • A Subset of Platinum-Containing Chemotherapeutic Agents Kill Cells by Inducing Ribosome Biogenesis Stress Rather Than by Engaging a DNA Damage Response
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by DSpace@MIT Author manuscript Author ManuscriptAuthor Manuscript Author Nat Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 October 01. Published in final edited form as: Nat Med. 2017 April ; 23(4): 461–471. doi:10.1038/nm.4291. A subset of platinum-containing chemotherapeutic agents kill cells by inducing ribosome biogenesis stress rather than by engaging a DNA damage response Peter M. Bruno1,2, Yunpeng Liu1,2, Ga Young Park3, Junko Murai4, Catherine E. Koch1,2, Timothy J. Eisen2,5, Justin R. Pritchard1,2, Yves Pommier4, Stephen J. Lippard1,3, and Michael T. Hemann1,2 1The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 4Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA 5Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA Abstract Cisplatin and its platinum analogues, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. However, although cisplatin and carboplatin are primarily used in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively in colorectal and other gastrointestinal cancers. Here, we utilize a unique multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents as well as more recently developed cisplatin analogues.
    [Show full text]
  • Utilization of Arsenic Trioxide As a Treatment of Cisplatin-Resistant Non-Small Cell Lung Cancer PC-9/CDDP and PC-14/CDDP Cells
    ONCOLOGY LETTERS 10: 805-809, 2015 Utilization of arsenic trioxide as a treatment of cisplatin-resistant non-small cell lung cancer PC-9/CDDP and PC-14/CDDP cells TOSHIHIRO SUZUKI1, KENICHI ISHIBASHI1, ATSUSHI YUMOTO1, KAZUTO NISHIO2 and YUKI OGASAWARA1 1Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204‑8588; 2Department of Genome Biology, Kinki University School of Medicine, Osaka-sayama, Osaka 589-8511, Japan Received August 26, 2014; Accepted May 20, 2015 DOI: 10.3892/ol.2015.3352 Abstract. Cisplatin is a commonly used drug in combination treatment of various cancers, including lung cancer. Cisplatin chemotherapy. However, various malignant tumors frequently is a commonly used drug for combination chemotherapy (1). acquire resistance to cisplatin. Arsenic trioxide (ATO) has Although cisplatin is a potent anticancer drug, various been approved as a chemotherapeutic drug for the treatment malignant tumors frequently acquire resistance to cisplatin, of acute promyelocytic leukemia, and the combination of limiting the clinical application of this agent (2,3). ATO and cisplatin has been revealed to demonstrate syner- Arsenite is a toxic metalloid that is widely distributed in gistic effects in ovarian and small cell lung cancer cells. Thus, the environment (4). Despite the toxicity, arsenic-containing it was hypothesized that ATO may also be active against compounds have been used in traditional Chinese medicine cisplatin-resistant non-small cell lung cancer (NSCLC) for >2,000 years (5). In addition, arsenic trioxide (ATO) has PC-9/CDDP and PC-14/CDDP cells. The present study been approved in numerous countries for the treatment of also evaluated the effects of ATO on the cisplatin-sensitive acute promyelocytic leukemia (APL) (6).
    [Show full text]