Yunjie Xiong Dissertation Submitted to the Faculty of the Virginia Polytechnic Institute and State University in Partial Fulfill

Total Page:16

File Type:pdf, Size:1020Kb

Yunjie Xiong Dissertation Submitted to the Faculty of the Virginia Polytechnic Institute and State University in Partial Fulfill A BIM-based Interoperability Platform in Support of Building Operation and Energy Management Yunjie Xiong Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Environmental Design and Planning Georg Reichard, Chair Tanyel Bulbul Farrokh Karimi Nazila Roofigari-Esfahan Feb 21, 2020 Blacksburg, VA Keywords: Building Information Modelling (BIM), energy simulation, operational data Copyright © 2020 Yunjie Xiong A BIM-based Interoperability Platform in Support of Building Operation and Energy Management Yunjie Xiong ACADEMIC ABSTRACT Building energy efficiency is progressively becoming a crucial topic in the architecture, engineering, and construction (AEC) sector. Energy management tools have been developed to promise appropriate energy savings. Building energy simulation (BES) is a tool mainly used to analyze and compare the energy consumption of various design/operation scenarios, while building automation systems (BAS) works as another energy management tool to monitor, measure and collect operational data, all in an effort to optimize energy consumption. By integrating the energy simulated data and actual operational data, the accuracy of a building energy model can be increased while the calibrated energy model can be applied as a benchmark for guiding the operational strategies. This research predicted that building information modeling (BIM) would link BES and BAS by acting as a visual model and a database throughout the lifecycle of a building. The intent of the research was to use BIM to document energy-related information and to allow its exchange between BES and BAS. Thus, the energy-related data exchange process would be simplified, and the productive efficiency of facility management processes would increase. A systematic literature review has been conducted in investigating the most popular used data formats and data exchange methods for the integration of BIM/BES and BAS, the results showed the industry foundation classes (IFC) was the most common choice for BIM tools mainly and database is a key solution for managing huge actual operational datasets, which was a reference for the next step in research. Then a BIM-based framework was proposed to supporting the data exchange process among BIM/BES/BAS. 4 modules including BIM Module, Operational Data Module, Energy Simulation Module and Analysis & Visualization Module with an interface were designed in the framework to document energy-related information and to allow its exchange between BES and BAS. A prototype of the framework was developed as a platform and a case study of an entire office suite was conducted using the platform to validate this framework. The results showed that the proposed framework enables automated or semi-automated multiple-model development and data analytics processes. In addition, the research explored how BIM can enhance the application of energy modeling during building operation processes as a means to improve overall energy performance and facility management productivity. iii A BIM-based Interoperability Platform in Support of Building Operation and Energy Management Yunjie Xiong GENERAL AUDIENCE ABSTRACT Building energy efficiency is progressively becoming a crucial topic in the architecture, engineering, and construction (AEC) sector, promising appropriate energy savings can be achieved over the life cycle of buildings through proper design, construction, and operation. Energy management tools have been developed towards this end. Building energy simulation (BES) is a tool mainly used to analyze and compare the energy consumption of various design/operation scenarios. These instances include the selection of both new and retrofit designs and for building codes, building commissioning, and real-time optimal control, among others. The main challenge surrounding BES is the discrepancy between quantitative results and actual performance data. Building automation systems (BAS), or a part of BAS which is often referred to as building energy management systems (BEMS), works as another energy management tool to monitor, measure and collect operational data, all in an effort to optimize energy consumption. The key disadvantage to the more general tool of BAS in energy management is that the data sets collected by BAS are typically too large to be analyzed effectively. One potential solution to the lack of effective energy management analysis may lie in the integration of BES and BAS. Actual operational data can be compared with simulation results in assessing the accuracy of an energy model while the energy model can be applied as a benchmark for evaluating the actual energy consumption and optimizing control strategies. The presented research predicted that building information modeling (BIM) would link BES and BAS by acting as a visual model and a database throughout the lifecycle of a building. The intent of the research was to use BIM to document energy- related information and to allow its exchange between BES and BAS. Thus, the energy- related data exchange process would be simplified, and the productive efficiency of facility management processes would increase. iv More specifically, this research posits the framework of integrating BIM, BES, and BAS to produce a seamless and real-time energy-related information exchange system. The proposed framework enables automated or semi-automated multiple-model development and data analytics processes. In addition, the research explored how BIM can enhance the application of energy modeling during building operation processes as a means to improve overall energy performance and facility management productivity. v ACKNOWLEDGMENTS Foremost, I would like to express my sincere gratitude to my advisor and dissertation chair, Dr. Georg Reichard for his patience, motivation, enthusiasm, and immense knowledge. His continuous support helped me in all the time of research and writing of this dissertation. Without his persistent help, the goal of this project would not have been realized. My sincere thanks also go to Dr. Tanyel Bulbul for providing me extensive personal and professional guidance and taught me a great deal about both research and teaching in general. I would like to extend my thanks to the rest of my committee thesis committee: Dr. Farrokh Karimi and Dr. Nazila Roofigari-Esfahan, for their encouragement, insightful comments, and solid questions. I would like to recognize the invaluable assistance that they all provided during my research. I am grateful to all of those with whom I have had the pleasure to work during this and other related research in the Virginia Tech Department of Building Construction. Special thanks to the Building Enclosure and Systems Technologies (BEST) Lab which provides me a chance to implement my experiment. I would especially like to show my gratitude to Dr. Ruben Avagyan who was in Virginia Tech Facilities for helping me collect the experiment data and providing important comments. Finally, I wish to thank my parents, Guosheng and Yi, my husband, Kanshu, and my son, Michael who provide support, encouragement and unending inspiration throughout my life. vi TABLE OF CONTENTS 1 Introduction .................................................................................................................. 1 1.1 Background ....................................................................................................... 1 1.1.1 Building Energy Simulation .................................................................. 1 1.1.2 Building Automation Systems ............................................................... 4 1.1.3 Building Information Modeling............................................................. 9 1.2 Statement of Problem ...................................................................................... 16 1.2.1 Challenge for Building Energy Simulation ......................................... 16 1.2.2 Building Automation System............................................................... 19 1.3 Challenges ....................................................................................................... 20 2 Literature Review....................................................................................................... 23 2.1 BIM Framework in Supporting Building Energy Performance ...................... 23 2.1.1 Interface and Model Developments for BIM ...................................... 24 2.2 BIM Interoperability with BES ....................................................................... 27 2.2.1 Application- Architectural Data Exchange .......................................... 28 2.2.2 MEP (Mechanical, electrical, and plumbing) Data Exchange ............. 29 2.3 BIM Interoperability with BAS for Energy Management ............................... 30 2.4 BES Interoperability with BAS for Energy Management ............................... 33 2.5 Integration of BAS, BIM, and BES ................................................................. 36 2.6 Research Gap ................................................................................................... 38 2.6.1 Limitations of BIM and BAS Integration ............................................ 38 2.6.2 Limitations of BES in Operation ......................................................... 39 2.6.3 Limitations of BIM and BES Integration ............................................ 39 2.6.4 Lack of Total Integration of BIM/BAS/BES
Recommended publications
  • A Thermal Simulation Tool for Building and Its Interoperability Through the Building Information Modeling (BIM) Platform
    Buildings 2013, 3, 380-398; doi:10.3390/buildings3020380 OPEN ACCESS buildings ISSN 2075-5309 www.mdpi.com/journal/buildings/ Article A Thermal Simulation Tool for Building and Its Interoperability through the Building Information Modeling (BIM) Platform Yudi Nugraha Bahar 1,*, Christian Pere 2, Jérémie Landrieu 2 and Christophe Nicolle 3 1 University of Bourgogne-France, Arts et Metiers ParisTech, LE2I, UMR CNRS 6306, Institut Image, Chalon-sur-Saône, France 2 Arts et Metiers ParisTech, CNRS, LE2I, Institut Image, 2 Rue T. Dumorey 71100 Chalon-sur-Saône, France; E-Mails: [email protected] (C.P.); [email protected] (J.L.) 3 IUT Dijon-Auxerre, University of Bourgogne, Laboratoire LE2I, UMR CNRS 6306, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mails: [email protected]; or [email protected]; Tel.: +33-602-309-823. Received: 1 March 2013; in revised form: 25 April 2013 / Accepted: 14 May 2013 / Published: 22 May 2013 Abstract: This paper describes potential challenges and opportunities for using thermal simulation tools to optimize building performance. After reviewing current trends in thermal simulation, it outlines major criteria for the evaluation of building thermal simulation tools based on specifications and capabilities in interoperability. Details are discussed including workflow of data exchange of multiple thermal analyses such as the BIM-based application. The present analysis focuses on selected thermal simulation tools that provide functionalities to exchange data with other tools in order to obtain a picture of its basic work principles and to identify selection criteria for generic thermal tools in BIM.
    [Show full text]
  • 'Building' Architects and Use of Open-Source Tools Towards Achievement of Millennium Development Goals
    'Building' Architects and Use of Open-source Tools Towards Achievement of Millennium Development Goals. Oku, Onyeibo Chidozie Department of Architecture Faculty of Environmental Sciences Enugu State University of Science and Technology Email: [email protected] ABSTRACT Millennium Development Goals (MDGs) were established by the United Nations to improve the well-being of humans and their habitat. Whether they are the target beneficiaries or amongst the parties administering services for achieving the MDGs, humans must carry out these activities in a physical environment. Hence, the Seventh Goal of the MDG has an indirect and far-reaching relationship with the others because it deals with the sustainable development of the built environment. Architects deliver consultancy services that span the design, documentation and construction supervision of the built environment. This study sought to determine the extent to which these professionals can do this, with respect to the Seventh Millennium Development Goal, using mainly open-source tools. The study draws from literature reviews, end-user feedback or reports, interviews with developers of applicable open-source products, and statistics from a survey, launched in 2011, for capturing how architects use ICT in their businesses. Analysis of popular open-source technologies for the Architecture, Engineering and Construction (AEC) industry show a concentration of resources in favour of the later stages of the Architect's role, rather than the design and contract-drawing stages. Some of the better-implemented tools are either too cryptic for professionals who communicate in graphical terms, or heavily biased towards software engineering practices. The products that promise Building Information Modelling (BIM) capabilities are still at an early developmental stage.
    [Show full text]
  • Zigbee-Based System for Remote Monitoring and Control of Switches
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ZigBee-Based System for Remote Monitoring and Control of Switches A thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering at Massey University, Albany, New Zealand. © Matthew Lyon October 2010 1 Abstract Home automation technology has existed for nearly four decades, but is nonetheless mostly absent in the average home today. The systems that do exist are often highly customised and expensive, catering to a very niche market, or overly sophisticated and complicated. Many of these also require extensive, dedicated cabling as their communications backbone and as such are only practical to install during the construction of a new house. The core aims of this project are to develop a cheap and simple home automation system that can be easily installed in new and existing houses. These aims are achieved by creating a centralised system where most of the intelligence is managed by a PC server and the end nodes are kept as simple as possible. The server is responsible for basic security, maintaining awareness of the current system state and providing the user interface. At the outer edge of the system is a ZigBee network of wall switches and, in between, a home gateway provides a protocol translation service between the two. The new, “smart” switches are designed to be entirely compatible with existing wall switches in terms of their mounting and wiring requirements, and so ZigBee is chosen to provide a reliable wireless communication channel between the end nodes and the gateway.
    [Show full text]
  • SMART HOME SYSTEMS with the Contribution Of
    Branko Dvoršak Juraj Havelka Elena Mainardi Hrvoje Pandžić Tea Selič Mario Tretinjak SMART HOME SYSTEMS With the contribution of: Vanja Husein Claudia Pacchiega Goran Švast 2 This publication is part of the SHVET project (https://www.smart-hvet.eu/), and has been made possible with the contribution of (in alphabetical order): Center Republike Slovenije za poklicno Izobraževanje (Slovenia) Centoform (Italy) Ecipa Nordest (Italy) Območna Obrtno-Podjetniška zbornica Krško (Slovenia) Obrtničko učilište – ustanova za obrazovanje odraslih (Croatia) Šolski center Novo mesto (Slovenia) Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva (Croatia) This project has been funded with support from the European Commission. This publication reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein. 3 TABLE OF CONTENTS page 1 INTRODUCTION 4 1.1 WHAT EXACTLY IS A "SMART HOUSE" 5 1.2 HOME AND BUILDING AUTOMATION 6 1.3 FUNCTIONS YOU CAN DO WITH A SMART HOME SYSTEM 6 2 DIFFERENCE BETWEEN A SMART HOME SYSTEM AND A STANDARD ELECTRIC PLANT 13 2.1 ELEMENTS OF A CLASSIC RESIDENTIAL INSTALLATION 13 2.2 STRUCTURE OF A SMART HOME SYSTEM 18 2.3 MODULES OF A SMART HOME SYSTEM 20 3 SMART HOME SYSTEM TECHNOLOGIES 26 3.1 OVERVIEW OF AUTOMATION AND CONTROL TECHNOLOGIES 25 3.2 WHY KONNEX 28 4 KONNEX 30 4.1 HISTORY OF KNX/EIB AND KONNEX ORGANIZATION 30 4.2 TRANSMISSION MEDIA 30 4.3 NET ARCHITECTURE 32 4.4 TOPOLOGY 35 4.5 ADDRESSES 36 4.6 TELEGRAM 38 4.7 PARAMETERIZATION
    [Show full text]
  • Open Systems for Homes and Buildings: Comparing Lonworks and KNX Alan Kell Peter Colebrook I&I Limited
    Open Systems for Homes and Buildings: Comparing LonWorks and KNX Alan Kell Peter Colebrook i&i limited No part of this publication may be transmitted or reproduced in any form or by any means, electronic or mechanical, for any purpose, without the prior written permission of i&i limited. Trademarks and Logos i&i and Proplan are trademarks of i&i limited. KNX, EIB, European Installation Bus, EHS, European Home Systems and BatiBUS are trademarks of The Konnex Association and its constituent associations; European Installation Bus Association (EIBA), European Home Systems Association (EHSA) and Club BatiBUS International (BCI). Echelon, LON, LONWORKS, LONMARK, LonBuilder, NodeBuilder, LonManager, LonTalk, LonUsers, LonPoint, Digital Home, Neuron, 3120, 3150, LNS, i.LON, LONWORLD, the Echelon logo, and the LonUsers logo are trademarks of Echelon Corporation registered in the United States and other countries. LonMaker, Panoramix, and Networked Energy Services Powered by Echelon are trademarks of Echelon Corporation. All other brand names and product names are trademarks or registered trademarks of their respective holders. About i&i limited Alan Kell was the principal author of the 1993 study by DEGW etl1 entitled “Bus Systems for Building Control” which was the first detailed study in this area to compare, among others, EIB and LONWORKS in the context of building control. Peter Colebrook collaborated closely with Siemens in Regensburg in the late 1980’s, was one of the 12 founder signatories of the European Installation Bus Association (EIBA) and subsequently served as a Director of that Association. He was also one of the founders of the LONMARK Interoperability Association and similarly served as a Director of that Association.
    [Show full text]
  • Low Cost Devices for Home Automation Systems
    INTERNATIONAL SCIENTIFIC JOURNAL "INNOVATIONS" WEB ISSN 2534-8469; PRINT ISSN 1314-8907 LOW COST DEVICES FOR HOME AUTOMATION SYSTEMS Pancho Tomov Technical University, Sofia, Bulgaria email: [email protected] Abstract: The article presents the design of Home Automation System (HAS) with low cost and wireless system. This system is intended to help and supply support so as to meet the requirements of older and disabled in home. Also, the good home conception within the system improves the quality living reception. The switch mode and voice mode square measure accustomed management the house appliances. The video feedback is received within the automaton application that streams the video of IP Camera. The main control system implements wireless technology to provide remote access from smart phone. The design remains the prevailing electrical switches and provides additional safety management on the switches with low voltage activating methodology. The switches standing is synchronized altogether the system whereby each computer program indicates the real time existing switches standing. The system meant to regulate electrical appliances and devices in house with comparatively low price style, user-friendly interface and ease of installation. Keywords: HOME AUTOMATION, AUTOMATION PROTOCOLS, LOW COST CONTROLLERS 1. Introduction Google in May 2011. The system is declared to figure with a mesh Home automation is outlined as single or networked devices and network within the 900MHz frequency bands. Google chose systems that raise the protection and snugness of homes, maintain 900MHz because it is least likely to be crowded than the wi_ 2400 pleasant indoor conditions energy efficiently, facilitate inhabitant’s spectrum. It is assumed that their protocol, announced in the residency and coping of everyday chores and enable.
    [Show full text]
  • Industrial Automation Automation Industrielle Industrielle Automation
    www.infoPLC.net Industrial Automation Automation Industrielle Industrielle Automation 3 Industrial Communication Systems Field bus: standards 3.3 Bus de terrain standard Standard-Feldbusse Prof. Dr. H. Kirrmann 2005 April, HK ABB Research Center, Baden, Switzerland Field busses: Standard field busses 3.1 Field bus types Classes Physical layer Networking 3.2 Field bus operation Centralized - Decentralized Cyclic and Event Driven Operation 3.3 Field bus standards International standard(s) HART ASI Interbus-S CAN Profibus LON Ethernet Automotive Busses Industrial Automation 2 3.3 Standard Field Busses Which field bus ? • A-bus • IEEE 1118 (Bitbus) • Partnerbus • Arcnet • Instabus • P-net • Arinc 625 • Interbus-S * * • Profibus-FMS * • ASI • ISA SP50 • Profibus-PA • Batibus • IsiBus • Profibus-DP • Bitbus • IHS * • CAN • ISP • PDV • ControlNet • J-1708 * • SERCOS • DeviceNet • J-1850 • SDS • DIN V 43322 • LAC • Sigma-i • DIN 66348(Meßbus) * • LON • Sinec H1 • FAIS • MAP • Sinec L1 • EIB • Master FB • Spabus • Ethernet • MB90 • Suconet • Factor • MIL 1553 • VAN • Fieldbus Foundation • MODBUS • WorldFIP • FIP * • MVB • ZB10 • Hart • P13/42 • ... • IEC 61158 • P14 Industrial Automation 3 3.3 Standard Field Busses Worldwide most popular field busses Bus User* Application Sponsor CANs 25% Automotive, Process control CiA, OVDA, Honeywell Profibus (3 kinds) 26% Process control Siemens, ABB LON 6% Building systems Echelon, ABB Ethernet 50% Plant bus all Interbus-S 7% Manufacturing Phoenix Contact Fieldbus Foundation, HART 7% Chemical Industry Fisher-Rosemount, ABB ASI 9% Building Systems Siemens Modbus 22% obsolete point-to-point many ControlNet 14% plant bus Rockwell *source: ISA, Jim Pinto (1999) Sum > 100%, since firms support more than one bus European market in 2002: 199 Mio €, 16.6 % increase (Profibus: 1/3 market share) **source: Elektronik, Heft 7 2002 Industrial Automation 4 3.3 Standard Field Busses Different classes of field busses One bus type cannot serve all applications and all device types efficiently..
    [Show full text]
  • Extending Capabilities of Bim to Support Performance Based Design
    www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753 EXTENDING CAPABILITIES OF BIM TO SUPPORT PERFORMANCE BASED DESIGN SUBMITTED: January 2017 REVISED: October 2017 PUBLISHED: February 2018 at https://www.itcon.org/2018/2 EDITOR: Amor R. Nusrat Jung, M.Sc.,* VTT Technical Research Centre of Finland and Department of Mechanical Engineering, Aalto University, [email protected]; [email protected] Tarja Häkkinen, PhD., VTT Technical Research Centre of Finland [email protected] Mirkka Rekola, M.Sc., Senate Properties [email protected] SUMMARY: As we advance towards high-performance buildings, it is becoming necessary to reinforce and extend the role of building information modelling (BIM) to better support performance-based design. To achieve an optimally functioning building that fulfils the need of the end-user and is designed in an environmentally conscious manner necessitates considering energy performance, environmental performance, indoor air quality, lighting, and acoustics. To consider these multiple criteria, use of computer-based modelling tools and comprehensive simulation methods becomes essential. These criteria are typically assessed after the main phases of architectural design of the building, and the knowledge is passed on to the engineers for development of the technical design. During the technical design process, the exchange of data between the design model and a selected building performance aspect may occur. This paper investigates the potential of BIM-based models at the core of providing input data required for performance-based simulations (BPS) to enable iterative multi-criteria assessment towards high performance buildings. A comprehensive literature review of 249 documents was conducted to identify the current state of knowledge and provide future directions for design and simulation tools to better quantify and evaluate the performance aspects.
    [Show full text]
  • Fieldbus : Industrial Network Real Time Network
    FieldbusFieldbus :: IndustrialIndustrial NetworkNetwork RealReal TimeTime NetworkNetwork Jean-Pierre Thomesse Institut National Polytechnique de Lorraine Nancy, France ETR 2005 - Fieldbus - Industrial Network - Real Time Network Who’sWho’s whowho IEC 61784 PROFInet TT-CAN Hart ISO 8802.5 TTP Profibus-PA Unitelway SNMP Ethernet Batibus WorldFIP MIL 1553B IEC 61158 P-NET CiA BacNET SDS ICCP Sercos CSMA-BA EHS CSMA-DCR FieldBus Foundation EiBUS DeviceNet Interbus Profibus-FMS EN 50254 ControlNet CANOpen ASI M-PCCN TTP-A Profibus-DP DWF TCP-IP FDDI TTP-C Modbus FIPWay EN 50170 TASE2 IEC CASM ISO 8802.4 WDPF MMS ISO 8802.3 Sinec ControlFIP PLAN JBUS FIPIO LON CSMA-CA Seriplex TOP Mini-MAP CAN UCA F8000 CSMA-CD MAP Profisafe Proway Bitbus ARINC UIC 556 Digital Hart M-Bus WITBUS IEC 6375 CIP LocaFIP J1850 VAN Sycoway GENIUS OPTOBUS LIN FTT-CAN Euridis IEEE 802.11 Vnet/IP Anubis Sensoplex AFDX FireWire FlexRay EN 50 295 BlueTooth EPA CAMAC ARCNET Ethercat EtherLink ModBus-RTPS IEC 61 499 UWB ETR 2005 - Fieldbus - Industrial Network - Real Time Network contentcontent z 1st part : history and state of the art – fieldbus origins – development of fieldbus and standards z 2nd part : technical aspects – application relationships – Medium Access Control – Data Link Layer – architectures ETR 2005 - Fieldbus - Industrial Network - Real Time Network prehistoryprehistory z 60s : CAMAC in nuclear experiments z 70s : – MODBUS (PLC network) – WDPF (continuous process) – ARCNET (office communication and data acquisition) – Mil Std 1553B z Data HighWay (Allen
    [Show full text]
  • Building Energy Model Generation Using a Digital
    BUILDING ENERGY MODEL GENERATION USING A DIGITAL PHOTOGRAMMETRY-BASED 3D MODEL A Thesis by MOHAMMAD S A A M ALAWADHI Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Wei Yan Committee Members, Jeff Haberl Julian Kang Head of Department, Robert Warden May 2017 Major Subject: Architecture Copyright 2017 Mohammad S A A M Alawadhi ABSTRACT Buildings consume a large amount of energy and environmental resources. At the same time, current practices for whole-building energy simulation are costly and require skilled labor. As Building Energy Modeling (BEM) and simulations are becoming increasingly important, there is a growing need to make environmental assessments of buildings more efficient and accessible. A building energy model is based on collecting input data from the real, physical world and representing them as a digital energy model. Real-world data is also collected in the field of 3D reconstruction and image analysis, where major developments have been happening in recent years. Current digital photogrammetry software can automatically match photographs taken with a simple smartphone camera and generate a 3D model. This thesis presents methods and techniques that can be used to generate a building energy model from a digital photogrammetry-based 3D model. To accomplish this, a prototype program was developed that uses 3D reconstructed data as geometric modeling inputs for BEM. To validate the prototype, an experiment was conducted where a case-study building was selected. Photographs of the building were taken using a small remotely- controlled Unmanned Aerial Vehicle (UAV) drone.
    [Show full text]
  • Innovations in Building Energy Modeling
    Innovations in Building Energy Modeling Research and Development Opportunities Report for Emerging Technologies November 2020 Innovations in Building Energy Modeling: Research and Development Opportunities Report Disclaimer This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, its contractors or subcontractors. ii Innovations in Building Energy Modeling: Research and Development Opportunities Report Acknowledgments Prepared by Amir Roth, Ph.D. Special thanks to the following individuals and groups. Robert Zogg and Emily Cross of Guidehouse (then Navigant Consulting) conducted the interviews, organized the stakeholder workshops, and wrote the first DRAFT BEM Roadmap. Janet Reyna of NREL (then an ORISE Fellow at BTO) provided extensive feedback on the initial DRAFT BEM Roadmap and helped create the organization for the subsequent DRAFT BEM Research and Development Opportunities (RDO) document.
    [Show full text]
  • A Model for Mobile-Instrumented Interaction and Object Orchestration in Smart Environments
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN A Model for Mobile-Instrumented Interaction and Object Orchestration in Smart Environments Tesis Doctoral LUCA BERGESIO Ingeniero en Informática Máster en Tecnologías y Sistémas de Comunicaciones 2017 Departamento de Señales, Sistemas y Radiocomunicaciones Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad Politécnica de Madrid A Model for Mobile-Instrumented Interaction and Object Orchestration in Smart Environments Tesis Doctoral Autor: Luca Bergesio Ingeniero en Informática Máster en Tecnologías y Sistémas de Comunicaciones Directores: Ana María Bernardos Barbolla Doctora Ingeniera de Telecomunicación José Ramón Casar Corredera Doctor Ingeniero de Telecomunicación June 28, 2017 “The jump from zero to whatever baud rate is the most important jump you can make. After that everyone always wants to go straight to the speed of light” J. T. Tengdin’s First (and Only) Law of Telecommunications “When you see a good move, look for a better one” Emanuel Lasker, World Chess Champion from 1894 to 1921 Abstract The proliferation of the smartphones has given a considerable boost to the spread of the smart objects and the consequent creation of smart spaces. Smart objects are electronic devices that are able to work interactively and au- tonomously, usually preserving the interaction metaphor of their non-electronic counterpart. Through a network interface, they can cooperate with other objects: their strengths do not lie in their hardware, but in the capabilities to manage in- teractions among them and in the resulting orchestrated behaviour. Smart spaces are environments composed of smart devices, where they work together, producing some behaviour of benefit to the dwellers.
    [Show full text]