Originally published as: Champagnac, J.-D., Schunegger, F., Norton, K., von Blanckenburg, F., Abbühl, L. M., Schwab, M. (2009): Erosion-driven uplift of the modern Central Alps. - Tectonophysics, 474, 1-2, 236-249 DOI: 10.1016/j.tecto.2009.02.024 Erosion-driven uplift of the modern Central Alps Tectonophysics 2009 Jean-Daniel Champagnac (1)*, Fritz Schlunegger (2), Kevin Norton (1), Friedhelm von Blanckenburg (1,3), Luca M. Abbühl (2) and Marco Schwab (2) 1. Institut für Mineralogie, Universität Hannover, Callinstrasse 1, D-30167 Hannover, Germany. 2. Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, CH-3012 Bern, Switzerland. 3. GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg , D-14473 Potsdam, Germany. *Corresponding author: Jean-Daniel Champagnac, Institut für Mineralogie, Universität Hannover, Callinstrasse 1, D-30167 Hannover.
[email protected] Keywords: Passive unloading, sediment redistribution, isostatic rebound, Holocene deformation, rock uplift, lithosphere flexure. Abstract We present a compilation of data of modern tectono-geomorphic processes in the Central European Alps which suggest that observed rock uplift is a response to climate-driven denudation. This interpretation is predominantly based on the recent quantification of basin- averaged Late Holocene denudation rates that are so similar to the pattern and rates of rock uplift rates as determined by geodetic leveling. Furthermore, a GPS data-based synthesis of Adriatic microplate kinematics suggests that the Central Alps are currently not in a state of active convergence. Finally, we illustrate that the Central Alps have acted as a closed system for Holocene redistribution of sediment in which the peri-Alpine lakes have operated as a sink for the erosional products of the inner Central Alps.