Tiltotor Thrust Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tethered Fixed-Wing Aircraft to Lift Payloads…
Tethered Fixed-Wing Aircraft to Lift Payloads: A Concept Enabled by Electric Propulsion David Rancourt Etienne Demers Bouchard Université de Sherbrooke Georgia Institute of Technology 3000 boul. Université – Pavillon P2 275 Ferst Drive NW Sherbrooke, QC Atlanta, GA CANADA USA [email protected] [email protected] Keywords: Electric propulsion, novel aircraft concept, VTOL, hybrid-electric powertrain ABSTRACT Helicopters have been essential to the military as they have been one of the only solutions for air-transporting substantial payloads with no need for complex mile-long runway infrastructures. However, they are fundamentally limited with high fuel consumption and reduced range. A disruptive concept to vertical lift uses tethered fixed-wing aircraft to lift a payload, where multiple aircraft collaborate and fly along a near circular flight path in hover. The Electric-Powered Reconfigurable Rotor concept (EPR2) leverages the recent progress in electric propulsion and modern controls to enable efficient load lifting using fixed-wing aircraft. The novel idea is to replace tethered manned aircraft (with onboard energy, fuel) with electric-powered fixed-wing aircraft with remote energy source to enable efficient collaborative load lifting. This paper presents the conceptual design of a heavy-lifting aircraft concept using electric-powered tethered fixed-wing aircraft for a ~30 metric ton lifting capability. A physics-based multidisciplinary design and simulation environment is used to predict the performance and optimize the aircraft flight path. It is demonstrated that this concept could hover with only 3.01 MW of power yet be able to translate to over 80 kts with minimal power increase by leveraging the benefits of complex non-circular flight paths. -
VTOL Hybrids: Tiltrotors Are Gaining Acceptance Nihad E Daidzic,, Ph.D., Sc.D
Minnesota State University, Mankato From the SelectedWorks of Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI February, 2017 VTOL hybrids: Tiltrotors are gaining acceptance Nihad E Daidzic,, Ph.D., Sc.D. This work is licensed under a Creative Commons CC_BY-NC-ND International License. Available at: https://works.bepress.com/nihad-daidzic/30/ VTOL HYBRIDS Tiltrotors are gaining acceptance Led by Bell’s XV3 and XV15 and military service-proven Bell-Boeing V22, Leonardo will market the AW609 with other wing & rotor hybrids forthcoming. ry-wing VTOL aircraft that can hov- er, ly vertically up and down, and ly forward, sideways and backward – simply amazing machines. Heli- copters produce thrust as a vector component of the total lift force by effectively tilting the main rotor disc. Gyroplanes, on the other hand, 1st lown in 1923, are hybrids between helicopters and airplanes in which case the lift-producing rotary-wing is in the constant state of autorota- tion (windmilling), while horizontal thrust is normally produced by an internal combustion engine driving conventional propellers. So why do Photo courtesy Leonardo we need yet another airplane-heli- Leonardo AW609, jointly developed by Bell Helicopter and AgustaWestland, holds promise to be copter crossbreed? We need it be- the 1st tiltrotor aircraft certified for civilian operations. Configuration options include corporate, cause helicopters and gyroplanes SAR and EMS. Projected max range is 1100 nm with aux fuel tank, cruise speed of up to 275 kts. are limited by low cruising airspeeds and ranges, while airplanes are not By Nihad Daidzic, PhD, ScD cipal innovations in the published VTOL-capable. -
PROGRAM #Aiaascitech
9–13 JANUARY 2017 GRAPEVINE, TX Addressing Full Spectrum Disruptions Across the Global Aerospace Community PROGRAM www.aiaa-SciTech.org #aiaaSciTech 17-4000 WHAT’S IMPOSSIBLE TODAY WON’T BE TOMORROW. AT LOCKHEED MARTIN, WE’RE ENGINEERING A BETTER TOMORROW. We are partnering with our customers to accelerate manufacturing innovation from the laboratory to production. We push the limits in additive manufacturing, advanced materials, digital manufacturing and next generation electronics. Whether it is solving a global crisis like the need for clean drinking water or travelling even deeper into space, advanced manufacturing is opening the doors to the next great human revolution. Learn more at lockheedmartin.com © 2014 LOCKHEED MARTIN CORPORATION VC377_164 Executive Steering Committee AIAA SciTech Forum Welcome Welcome to the 2017 AIAA Science and Technology Forum and Exposition (AIAA SciTech Forum) – the world’s largest event for aerospace research, development, and technology! Only here will you find the diversity of topics, caliber of speakers, and level of discourse about issues that directly impact your work, your career, and your industry – we are confident you will leave Grapevine prepared to shape the future of aerospace in new and exciting ways. Chuck Gustafson Jill Marlowe By bringing together 11 aerospace science and technology conferences, and by attracting attendees The Aerospace NASA Langley from across academia, industry, and government, AIAA SciTech will give you an unparalleled Corporation Research Center opportunity to hear from industry thought leaders, interact with your peers, and begin the inspired exchange of ideas that so often leads to breakthroughs in our community. Our organizing committee has worked hard over the past year to ensure that our plenary sessions examine some of the most critical issues facing aerospace today, especially the role that disruption plays in our community for better or worse. -
History of Solar Flight July 2008
History of Solar Flight July 2008 solar airplane aircraft continuous sustainable flight solar-powered solar cells mppt helios Sky-Sailor sun-powered HALE platform solaire avion vol continu dévelopement durable énergie solaire cellules plateforme History of Solar flight André Noth, [email protected] Autonomous Systems Lab, Swiss Federal Institute of Technology Zürich 1. The conjunction of two pioneer fields, electric flight and solar cells The use of electric power for flight vehicles propulsion is not new. The first one was the hydrogen- filled dirigible France in year 1884 that won a 10 km race around Villacoulbay and Medon. At this time, the electric system was superior to its only rival, the steam engine but then with the arrival of gasoline engines, work on electrical propulsion for air vehicles was abandoned and the field lay dormant for almost a century [2]. On the 30th June 1957, Colonel H. J. Taplin of the United Kingdom made the first officially recorded electric powered radio controlled flight with his model “Radio Queen”, which used a permanent-magnet motor and a silver-zinc battery. Unfortunately, he didn’t carry on these experiments. Further developments in the field came from the great German pioneer, Fred Militky, who first achieved a successful flight with a Radio Queen, 1957 free flight model in October 1957. Since this premises, electric flight continuously evolved with constant improvements in the fields of motors and batteries [12]. Three years before Taplin and Militky’s experiments, in 1954, photovoltaic technology was born at Bell Telephone Laboratories. Daryl Chapin, Calvin Fuller, and Gerald Pearson developed the first silicon photovoltaic cell capable of converting enough of the sun’s energy into power to run everyday electrical Gerald Pearson, Daryl Chapin equipment. -
Air-Breathing Engine Precooler Achieves Record-Breaking Mach 5 Performance 23 October 2019
Air-breathing engine precooler achieves record-breaking Mach 5 performance 23 October 2019 The Synergetic Air-Breathing Rocket Engine (SABRE) is uniquely designed to scoop up atmospheric air during the initial part of its ascent to space at up to five times the speed of sound. At about 25 km it would then switch to pure rocket mode for its final climb to orbit. In future SABRE could serve as the basis of a reusable launch vehicle that operates like an aircraft. Because the initial flight to Mach 5 uses the atmospheric air as one propellant it would carry much less heavy liquid oxygen on board. Such a system could deliver the same payload to orbit with a vehicle half the mass of current launchers, potentially offering a large reduction in cost and a higher launch rate. Reaction Engines' specially constructed facility at the Colorado Air and Space Port in the US, used for testing the innovative precooler of its air-breathing SABRE engine. Credit: Reaction Engines Ltd UK company Reaction Engines has tested its innovative precooler at airflow temperature conditions equivalent to Mach 5, or five times the speed of sound. This achievement marks a significant milestone in its ESA-supported Airflow through the precooler test item in the HTX heat exchanger test programme. UK company Reaction development of the air-breathing SABRE engine, Engines has tested its innovative precooler at airflow paving the way for a revolution in space access temperature conditions equivalent to Mach 5, or five and hypersonic flight. times the speed of sound. This achievement marks a significant milestone in the ESA-supported development The precooler heat exchanger is an essential of its air-breathing SABRE engine, paving the way for a SABRE element that cools the hot airstream revolution in hypersonic flight and space access. -
Design of a Micro-Aircraft Glider
Design of A Micro-Aircraft Glider Major Qualifying Project Report Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for The Degree of Bachelor of Science Submitted by: ______________________ ______________________ Zaki Akhtar Ryan Fredette ___________________ ___________________ Phil O’Sullivan Daniel Rosado Approved by: ______________________ _____________________ Professor David Olinger Professor Simon Evans 2 Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use. 3 Abstract The goal of this project was to design an aircraft to compete in the micro-class of the 2013 SAE Aero Design West competition. The competition scores are based on empty weight and payload fraction. The team chose to construct a glider, which reduces empty weight by not employing a propulsion system. Thus, a launching system was designed to launch the micro- aircraft to a sufficient height to allow the aircraft to complete the required flight by gliding. The rules state that all parts of the aircraft and launcher must be contained in a 24” x 18” x 8” box. This glider concept was unique because the team implemented fabric wings to save substantial weight and integrated the launcher into the box to allow as much space as possible for the aircraft components. The empty weight of the aircraft is 0.35 lb, while also carrying a payload weight of about 0.35 lb. Ultimately, the aircraft was not able to complete the required flight because the team achieved 50% of its desired altitude during tests. -
The Design and Development of a Human-Powered
THE DESIGN AND DEVELOPMENT OF A HUMAN-POWERED AIRPLANE A THESIS Presented to the Faculty of the Graduate Division "by James Marion McAvoy^ Jr. In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering Georgia Institute of Technology June _, 1963 A/ :o TEE DESIGN AND DETERMENT OF A HUMAN-POWERED AIRPLANE Approved: Pate Approved "by Chairman: M(Ly Z7. /q£3 In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institution shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may he granted by the professor under whose direction it was written, or, in his absence, by the dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under stood that any copying from, or publication of, this disser tation which involves potential financial gain will not be allowed without written permission. i "J-lW* 11 ACKNOWLEDGMENTS The author wishes to express his most sincere appreciation to Pro fessor John J, Harper for acting as thesis advisor, and for his ready ad vice at all times. Thanks are due also to Doctor Rohin B. Gray and Doctor Thomas W. Jackson for serving on the reading committee and for their help and ad vice . Gratitude is also extended to,all those people who aided in the construction of the MPA and to those who provided moral and physical sup port for the project. -
Future of Vertical Flight
www.vtol.org Kenneth Swartz, Regional Director – Americas The Vertical Flight Society www.vtol.org | [email protected] Kitty Hawk Cora © Vertical Flight Society: CC-BY-SA 4.0 © Vertical Flight Society: CC-BY-SA 4.0 Released March 2018 1 www.vtol.org . Founded as “The American Helicopter Society, Inc.” 75 years ago in Connecticut on Feb. 25, 1943 – “For the purpose of collecting, compiling and disseminating information concerning the helicopter” – Sikorsky Aircraft received its order for the first American helicopters on January 5, 1943 (28 XR-4 helicopters) . The first and longest-serving helicopter non-profit Sikorsky XR-4 helicopter – Founding members Igor Sikorsky, Arthur Young, Frank Piasecki, Courtesy of Sikorsky Aircraft Corp. Stanley Hiller, Reggie Brie, A.A. Griffiths, etc. – Included engineers, pilots, operators and presidents from industry, academia and government in Allied countries . Now 6,000 individual and 95 corporate members . Advancing vertical flight worldwide First Annual AHS Awards Banquet Born with the American Helicopter Industry Oct. 7, 1944 © Vertical Flight Society: CC-BY-SA 4.0 2 www.vtol.org © Vertical Flight Society: CC-BY-SA 4.0 3 www.vtol.org . The international professional society for those working to advance vertical flight – Founded in 1943 as the American Helicopter Society – Everything from VTOL MAVs/UAS to helicopters and eVTOL to STOVL (everything vertical except rockets) CFD of Joby S4, Aug 2015 . Expands knowledge about vertical flight technology and promotes its application around the world . Advances safety and acceptability . Advocates for vertical flight R&D funding . Helps educate and support today’s and tomorrow’s vertical flight engineers and leaders VFF Scholarship Winners at AHS Forum 71, May 2015 © Vertical Flight Society: CC-BY-SA 4.0 4 www.vtol.org . -
Thrust and Power Available, Maximum and Minimum Cruise Velocity, Effects of Altitude on Power Thrust Available
Module-2 Lecture-7 Cruise Flight - Thrust and Power available, Maximum and minimum cruise velocity, Effects of altitude on power Thrust available • As we have seen earlier, thrust and power requirements are dictated by the aero- dynamic characteristics and weight of the airplane. In contrast, thrust and power available are strictly associated with the engine of the aircraft. • The thrust delivered by typical reciprocating piston engines used in aircraft with propellers varies with velocity as shown in Figure 1(a). • It should be noted that the thrust at zero velocity (static thrust) is maximum and it decreases with increase in forward velocity. The reason for this behavior is that the blade tip of the propellers encounter compressibility problems leading to abrupt decrease in the available thrust near speed of sound. • However, as seen from Figure 1(b), the thrust delivered by a turbojet engine stays relatively constant with increase in velocity. Figure 1: Variation in available thrust with velocity of the (a) reciprocating engine- propeller powered aircraft and (b) turbojet engine powered aircraft 1 Power Power required for any aircraft is a characteristic of the aerodynamic design and weight of that aircraft. However, the power available, PA is a characteristic of the power plant (engine) of the aircraft. Typically, a piston engine generates power by burning fuel in the cylinders and then using this energy to move pistons in a reciprocating fashion (Figure 2). The power delivered to the piston driven propeller engine by the crankshaft is termed Figure 2: Schematic of a reciprocating engine as the shaft brake power P . -
Easy Access Rules for Balloons
Easy Access Rules for Balloons EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published September 20201 Copyright notice © European Union, 1998-2020 Except where otherwise stated, reuse of the EUR-Lex data for commercial or non-commercial purposes is authorised provided the source is acknowledged ('© European Union, http://eur-lex.europa.eu/, 1998-2020') 2. Cover page picture: © kadawittfeldarchitektur 1 The published date represents the date when the consolidated version of the document was generated. 2 Euro-Lex, Important Legal Notice: http://eur-lex.europa.eu/content/legal-notice/legal-notice.html. Powered by EASA eRules Page 2 of 345| Sep 2020 Easy Access Rules for Balloons Disclaimer DISCLAIMER This version is issued by the European Union Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication related to balloons. -
FINAL PROGRAM #Aiaascitech
4–8 JANUARY 2016 SAN DIEGO, CA The Largest Event for Aerospace Research, Development, and Technology FINAL PROGRAM www.aiaa-SciTech.org #aiaaSciTech 16-928 WHAT’S IMPOSSIBLE TODAY WON’T BE TOMORROW. AT LOCKHEED MARTIN, WE’RE ENGINEERING A BETTER TOMORROW. We are partnering with our customers to accelerate manufacturing innovation from the laboratory to production. We push the limits in additive manufacturing, advanced materials, digital manufacturing and next generation electronics. Whether it is solving a global crisis like the need for clean drinking water or travelling even deeper into space, advanced manufacturing is opening the doors to the next great human revolution. Learn more at lockheedmartin.com © 2014 LOCKHEED MARTIN CORPORATION VC377_164 Executive Steering Committee AIAA SciTech 2016 2O16 Welcome Welcome to the AIAA Science and Technology Forum and Exposition 2016 (AIAA SciTech 2016) – the world’s largest event for aerospace research, development, and technology. We are confident that you will come away from San Diego inspired and with the tools necessary to continue shaping the future of aerospace in new and exciting ways. From hearing preeminent industry thought leaders, to attending sessions where cutting- edge research will be unveiled, to interacting with peers – this will be a most fulfilling week! Our organizing committee has worked hard over the past year to ensure that our plenary sessions examine the most critical issues facing aerospace today, such as aerospace science and Richard George Lesieutre technology policy, lessons learned from a half century of aerospace innovation, resilient design, Christiansen The Pennsylvania and unmanned aerial systems. We will also focus on how AIAA and other stakeholders in State University Sierra Lobo, Inc. -
Aircraft Design Education at Linko¨Pings University C Jouannetã, P Berry, and P Krus Department of Mechanical Engineering, Linko¨Pings University, Linko¨Ping, Sweden
SPECIAL ISSUE PAPER 217 Aircraft design education at Linko¨pings University C JouannetÃ, P Berry, and P Krus Department of Mechanical Engineering, Linko¨pings University, Linko¨ping, Sweden The manuscript was received on 30 June 2006 and was accepted after revision for publication on 17 October 2006. DOI: 10.1243/09544100JAERO131 Abstract: Aircraft design is a complex multi-disciplinary task and teaching can easily tend to be too theoretical, not providing the students the tools they need to successfully participate in industrial projects. The approach chosen at Linko¨ping University is intended to create the right balance between theory and practice, and to place the student in the centre of the problem, in order to achieve an overall perspective of the aircraft design process. This article presents in brief layout of the courses, and in more detail, the aircraft design project course given in the last year of the aeronautical masters program, where flying hardware is designed and build, in response to a design challenge. Keywords: aircraft design, education, student project 1 INTRODUCTION their entire careers. This is in sharp contrast to the golden age, when an engineer was likely to be part Aircraft design at LiTH is a comparatively young of several projects during his career (Table 1). education; it started in full-scale in 1997. The initiat- This situation creates an issue regarding the edu- ive came from SAAB and LiTH with Saab, with SAAB cation of aircraft design engineers. When they start personnel giving a helping hand from the very start their professional life they will be integrated into an in building up education as well as in creating a ongoing project and may be involved in that process positive research environment in aircraft design.