VTOL Hybrids: Tiltrotors Are Gaining Acceptance Nihad E Daidzic,, Ph.D., Sc.D

Total Page:16

File Type:pdf, Size:1020Kb

VTOL Hybrids: Tiltrotors Are Gaining Acceptance Nihad E Daidzic,, Ph.D., Sc.D Minnesota State University, Mankato From the SelectedWorks of Nihad E. Daidzic, Dr.-Ing., D.Sc., ATP, CFII, MEI February, 2017 VTOL hybrids: Tiltrotors are gaining acceptance Nihad E Daidzic,, Ph.D., Sc.D. This work is licensed under a Creative Commons CC_BY-NC-ND International License. Available at: https://works.bepress.com/nihad-daidzic/30/ VTOL HYBRIDS Tiltrotors are gaining acceptance Led by Bell’s XV3 and XV15 and military service-proven Bell-Boeing V22, Leonardo will market the AW609 with other wing & rotor hybrids forthcoming. ry-wing VTOL aircraft that can hov- er, ly vertically up and down, and ly forward, sideways and backward – simply amazing machines. Heli- copters produce thrust as a vector component of the total lift force by effectively tilting the main rotor disc. Gyroplanes, on the other hand, 1st lown in 1923, are hybrids between helicopters and airplanes in which case the lift-producing rotary-wing is in the constant state of autorota- tion (windmilling), while horizontal thrust is normally produced by an internal combustion engine driving conventional propellers. So why do Photo courtesy Leonardo we need yet another airplane-heli- Leonardo AW609, jointly developed by Bell Helicopter and AgustaWestland, holds promise to be copter crossbreed? We need it be- the 1st tiltrotor aircraft certified for civilian operations. Configuration options include corporate, cause helicopters and gyroplanes SAR and EMS. Projected max range is 1100 nm with aux fuel tank, cruise speed of up to 275 kts. are limited by low cruising airspeeds and ranges, while airplanes are not By Nihad Daidzic, PhD, ScD cipal innovations in the published VTOL-capable. ATP/CFII, MEI, CFIG, AGI/IGI patented solution is the low-wing de- Gyroplanes, though marvelous Pres, AAR Aerospace Consulting sign to prevent heavy high-wing and STOL machines that are far simpler, Professor, Minnesota State Univ engines from possibly crushing the lighter and cheaper than any V/STOL fuselage during crashes (crash surviv- concept, have currently little com- n Oct 25, 2016, Boeing was ability) and to simplify maintenance, mercial use and are not VTOL-capa- awarded the US patent # servicing and airport operations of- ble either. They cannot sustain pure O9,475,585 for a particular fered by low-wing designs. All pre- vertical light or hover without aux- tiltrotor vertical-lift regional trans- vious experimental tiltrotor aircraft iliary energy storage systems, and if port aircraft design capable of carry- have utilized high-wing designs. they do it is only for short periods ing 100 passengers. The patent prior- (Pro Pilot, Sep 2013, p 78). And al- ity/iling date was June 25, 2014 and Powered lift though helicopters do have great Boeing’s original claims and intellec- VTOL utility, they are still limited tual property will be thus protected If pure trust-vectoring (or rocket by low cruising airspeeds (around until 2034. This may signal the intent mode) is discounted, only 2 terres- 200 kts max) and short operation- of Boeing to build such aircraft in the trial atmospheric light principles are al range. Some success has been future. However, that will depend on practical for long-duration air travel. achieved in designing high-speed many other internal (company) and One is the light utilizing the buoy- helicopters, but these are really external (market) factors, and Boeing ancy principle, which applies to special and expensive machines of may also choose never to build such lighter-than-air aircraft such as hot/ complex designs. So why not marry aircraft, sell the patent, license the gas air balloons and airships that are airplane and helicopter again? This invention to another manufacturer, hybrids of air/gas-balloons and pow- time let’s a utilize tilting propulsive or simply abandon the patent. ered aircraft (airplane). The other is rotary-wing with passive ixed-wing Due to its ability to take off and heavier-than-air, the most common lifting surfaces in a convertible de- land vertically and/or use short hor- and important light principle, based sign. Then we will call this new V/ izontal distance (V/STOL), such pow- on the angle-of-attack (AOA) and the STOL system powered lift. Or we ered-lift aircraft could theoretically relative motion between the lift-gen- could tilt the entire wing with ixed operate from urban helipads or very erating surfaces and the surrounding attached propulsion engines. short runways, cruise at about 275 to air. Both ixed-wing or rotary-wing The propulsive force in heavier- 300 kts and land in V/STOL mode in aircraft generate AOA. than-air powered lift does not have another city center. One of the prin- Helicopters are powered rota- to come from proprotors only. In- 96 PROFESSIONAL PILOT / February 2017 Bell XV3 aircraft 1st flew in 1955 with a single P&W R985-AN-1 radi- NASA-funded Bell and Boeing-Vertol XV15 twin-engine tiltrotor technolo- al engine powering the wingtip tiltrotors via driveshafts. gy demonstrator from 1977. deed, few existing powered lift air- TW68 twin turboprop commuter de- the Leonardo AW609 and other sim- craft include specialized military jet signed and built by the Ishida Group ilar aircraft that may be produced in airplanes which also exhibit V/STOL from Japan. So at the moment, it the future. FARs (§61.157, §61.163, capabilities. For example, subsonic seems as if the tiltwing idea has been and §61.165) provide ATP certiica- military jets such as the British Hawk- abandoned. tion requirements for powered-lift er-Siddeley AV8A Harrier (1967) and In tiltrotors, the same propulsion category. Flying tiltrotors requires the Soviet/Russian Yakovlev Yak38 unit – very appropriately called pro- the piloting skills for both helicopters Forger (1971), and the superson- protors – provides vertical lift (rotors) and airplanes and very few pilots are ic Mach 1.4 Yak41/141 Freestyle in helicopter coniguration, and hor- currently certiied in the powered-lift (1987) use extreme thrust-vector- izontal thrust (propellers) when in category. ing concepts with special vectoring airplane coniguration. So tiltrotors nozzles that allow aircraft to lift off can operate in both VTOL and air- A little bit of tiltrotor history and land vertically. However, such plane modes. Such metamorphosing thrust-vectoring military designs aircraft are generically called con- The idea of tiltrotors is actually rel- eject pilots automatically if the air- vertiplanes. Airplanes need cruising atively old. It was conceived shortly craft becomes unstable (or engine thrust-to-weight (T/W) normally in after 1st successful helicopters: The failure) during VTOL operations, and the 0.05 to 0.15 range due to rela- Focke-Wulf Fw 61 (1936) and Igor therefore are not practical for large tively high aerodynamic eficiency. Sikorsky’s VS-300 (1939–1940). Bell aircraft designed to transport passen- But high-performance ighter jets Helicopter apparently started con- gers, equipment and materials. require T/W in excess of 1 to ac- sidering tiltrotor concepts as far back celerate in vertical climb as well as as 1944. Their 1st operational (ex- Tiltrotors or tiltwings? during VTOL operations if in a pow- perimental) tiltrotor aircraft, the Bell ered-lift coniguration. VTOL mode XV3, 1st lew in 1955 with a 450-hp The history of tiltrotors and tilt- of conventional helicopters or tiltro- fuselage-mounted P&W R985-AN-1 wing designs is rich and exciting. tors also requires T/W in excess of 1. radial engine transmitting torque/ In tiltrotor designs, the main wing(s) Tiltrotor aircraft typically utilize 2 power out to the wingtip rotors via remain ixed while the engines with wingtip engines that operate as main heavy driveshafts. The wingtip rotors proprotors switch from vertical (heli- rotors in helicopter mode and 2 pro- with associated gearboxes and blade copter mode) to horizontal (airplane pellers in ixed-wing mode. Tiltro- pitch change mechanisms were de- mode) position. On the other hand, tor blades are longer than propeller signed to tilt 90° (vertical to horizon- in tiltwing designs the engines and blades but shorter than helicopter tal position). proprotors are ixed to the wing, and rotor blades. The tiltrotor wingspan With NASA funding, Bell and Boe- the entire wing rotates from vertical must obviously be longer than a ing-Vertol produced the XV15 tech- to horizontal in airplane mode. helicopter’s rotor disk diameter. Ac- nology demonstrator, which lew Tiltwings have 1 big advantage over cordingly, the rotation of proprotor successfully in 1977. Unlike XV3, the tiltrotors in that the wing does not in- blades will be somewhere between XV15 moved the 2 engines from fuse- terfere negatively with the propwash. the helicopter main rotor rotational lage out to the rotating wingtip pods, For example, in the Bell-Being V22 speeds (300–500 rpm) and the com- which were then directly coupled to Osprey, signiicant download on the mon turboprop propeller rotations the rotors. Ultimately, the successful ixed-wing is generated during hover (1500–2000 RPM). For example, the XV15 became the military Bell-Boe- and it is the reason why laperons are Leonardo AW609 blades rotate at ing V22 Osprey tiltrotor. delected vertically (90°) to reduce about 570 rpm in rotary-wing mode the interfering surface area. and at about 480 rpm while in air- V22 Osprey Boeing-Vertol VZ2 tiltwing aircraft plane mode, primarily due to unusu- lew for the 1st time in 1957, while ally long prop mode blades and high The V22 Osprey 1st lew in 1989. the Hiller X18 tiltwing 1st lew in cruising airspeeds. It was powered by 2 Rolls-Royce 1959. And a more recently canceled The powered-lift category was spe- AE 1107C (T406) turboshaft engines (1993) tiltwing concept was the ciically developed by the FAA for mounted at the wingtips developing PROFESSIONAL PILOT / February 2017 97 trol, and forward thrust is controlled by the thrust control lever (TCL) changing the pitch of constant-rpm proprotor blades collectively.
Recommended publications
  • 74Th Annual Vertical Flight Society Forum and Technology Display 2018 (FORUM 74)
    74th Annual Vertical Flight Society Forum and Technology Display 2018 (FORUM 74) The Future of Vertical Flight Phoenix, Arizona, USA 14 - 17 May 2018 Volume 1 of 5 ISBN: 978-1-5108-6329-3 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2018) by Vertical Flight Society All rights reserved. Printed by Curran Associates, Inc. (2018) For permission requests, please contact Vertical Flight Society at the address below. Vertical Flight Society 2701 Prosperity Ave, Suite 210 Fairfax, VA 22031 USA Phone: (703) 684-6777 Fax: (703) 739-9279 www.vtol.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 TECHNICAL SESSION A ADVANCED VERTICAL FLIGHT I – AIRCRAFT DESIGN I Assessing the Impact of Distributed Electric Propulsion On VTOL Aircraft Design & System Effectiveness.......................................1 Daniel Schrage, Apinut Sirirojvisuth, Kaydon Stanzione Models and Methods at ONERA for the Presizing of eVTOL Hybrid Aircraft Including Analysis of Failure Scenarios............................................................................................................................................................................................................12 Pierre-Marie Basset, Philippe
    [Show full text]
  • Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
    AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft
    [Show full text]
  • PROGRAM #Aiaascitech
    9–13 JANUARY 2017 GRAPEVINE, TX Addressing Full Spectrum Disruptions Across the Global Aerospace Community PROGRAM www.aiaa-SciTech.org #aiaaSciTech 17-4000 WHAT’S IMPOSSIBLE TODAY WON’T BE TOMORROW. AT LOCKHEED MARTIN, WE’RE ENGINEERING A BETTER TOMORROW. We are partnering with our customers to accelerate manufacturing innovation from the laboratory to production. We push the limits in additive manufacturing, advanced materials, digital manufacturing and next generation electronics. Whether it is solving a global crisis like the need for clean drinking water or travelling even deeper into space, advanced manufacturing is opening the doors to the next great human revolution. Learn more at lockheedmartin.com © 2014 LOCKHEED MARTIN CORPORATION VC377_164 Executive Steering Committee AIAA SciTech Forum Welcome Welcome to the 2017 AIAA Science and Technology Forum and Exposition (AIAA SciTech Forum) – the world’s largest event for aerospace research, development, and technology! Only here will you find the diversity of topics, caliber of speakers, and level of discourse about issues that directly impact your work, your career, and your industry – we are confident you will leave Grapevine prepared to shape the future of aerospace in new and exciting ways. Chuck Gustafson Jill Marlowe By bringing together 11 aerospace science and technology conferences, and by attracting attendees The Aerospace NASA Langley from across academia, industry, and government, AIAA SciTech will give you an unparalleled Corporation Research Center opportunity to hear from industry thought leaders, interact with your peers, and begin the inspired exchange of ideas that so often leads to breakthroughs in our community. Our organizing committee has worked hard over the past year to ensure that our plenary sessions examine some of the most critical issues facing aerospace today, especially the role that disruption plays in our community for better or worse.
    [Show full text]
  • Future of Vertical Flight
    www.vtol.org Kenneth Swartz, Regional Director – Americas The Vertical Flight Society www.vtol.org | [email protected] Kitty Hawk Cora © Vertical Flight Society: CC-BY-SA 4.0 © Vertical Flight Society: CC-BY-SA 4.0 Released March 2018 1 www.vtol.org . Founded as “The American Helicopter Society, Inc.” 75 years ago in Connecticut on Feb. 25, 1943 – “For the purpose of collecting, compiling and disseminating information concerning the helicopter” – Sikorsky Aircraft received its order for the first American helicopters on January 5, 1943 (28 XR-4 helicopters) . The first and longest-serving helicopter non-profit Sikorsky XR-4 helicopter – Founding members Igor Sikorsky, Arthur Young, Frank Piasecki, Courtesy of Sikorsky Aircraft Corp. Stanley Hiller, Reggie Brie, A.A. Griffiths, etc. – Included engineers, pilots, operators and presidents from industry, academia and government in Allied countries . Now 6,000 individual and 95 corporate members . Advancing vertical flight worldwide First Annual AHS Awards Banquet Born with the American Helicopter Industry Oct. 7, 1944 © Vertical Flight Society: CC-BY-SA 4.0 2 www.vtol.org © Vertical Flight Society: CC-BY-SA 4.0 3 www.vtol.org . The international professional society for those working to advance vertical flight – Founded in 1943 as the American Helicopter Society – Everything from VTOL MAVs/UAS to helicopters and eVTOL to STOVL (everything vertical except rockets) CFD of Joby S4, Aug 2015 . Expands knowledge about vertical flight technology and promotes its application around the world . Advances safety and acceptability . Advocates for vertical flight R&D funding . Helps educate and support today’s and tomorrow’s vertical flight engineers and leaders VFF Scholarship Winners at AHS Forum 71, May 2015 © Vertical Flight Society: CC-BY-SA 4.0 4 www.vtol.org .
    [Show full text]
  • The Raf Harrier Story
    THE RAF HARRIER STORY ROYAL AIR FORCE HISTORICAL SOCIETY 2 The opinions expressed in this publication are those of the contributors concerned and are not necessarily those held by the Royal Air Force Historical Society. Copyright 2006: Royal Air Force Historical Society First published in the UK in 2006 by the Royal Air Force Historical Society All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without permission from the Publisher in writing. ISBN 0-9530345-2-6 Printed by Advance Book Printing Unit 9 Northmoor Park Church Road Northmoor OX29 5UH 3 ROYAL AIR FORCE HISTORICAL SOCIETY President Marshal of the Royal Air Force Sir Michael Beetham GCB CBE DFC AFC Vice-President Air Marshal Sir Frederick Sowrey KCB CBE AFC Committee Chairman Air Vice-Marshal N B Baldwin CB CBE FRAeS Vice-Chairman Group Captain J D Heron OBE Secretary Group Captain K J Dearman Membership Secretary Dr Jack Dunham PhD CPsychol AMRAeS Treasurer J Boyes TD CA Members Air Commodore H A Probert MBE MA *J S Cox Esq BA MA *Dr M A Fopp MA FMA FIMgt *Group Captain N Parton BSc (Hons) MA MDA MPhil CEng FRAeS RAF *Wing Commander D Robertson RAF Wing Commander C Cummings Editor & Publications Wing Commander C G Jefford MBE BA Manager *Ex Officio 4 CONTENTS EARLY HISTORICAL PERSPECTIVES AND EMERGING 8 STAFF TARGETS by Air Chf Mshl Sir Patrick Hine JET LIFT by Prof John F Coplin 14 EVOLUTION OF THE PEGASUS VECTORED
    [Show full text]
  • FINAL PROGRAM #Aiaascitech
    4–8 JANUARY 2016 SAN DIEGO, CA The Largest Event for Aerospace Research, Development, and Technology FINAL PROGRAM www.aiaa-SciTech.org #aiaaSciTech 16-928 WHAT’S IMPOSSIBLE TODAY WON’T BE TOMORROW. AT LOCKHEED MARTIN, WE’RE ENGINEERING A BETTER TOMORROW. We are partnering with our customers to accelerate manufacturing innovation from the laboratory to production. We push the limits in additive manufacturing, advanced materials, digital manufacturing and next generation electronics. Whether it is solving a global crisis like the need for clean drinking water or travelling even deeper into space, advanced manufacturing is opening the doors to the next great human revolution. Learn more at lockheedmartin.com © 2014 LOCKHEED MARTIN CORPORATION VC377_164 Executive Steering Committee AIAA SciTech 2016 2O16 Welcome Welcome to the AIAA Science and Technology Forum and Exposition 2016 (AIAA SciTech 2016) – the world’s largest event for aerospace research, development, and technology. We are confident that you will come away from San Diego inspired and with the tools necessary to continue shaping the future of aerospace in new and exciting ways. From hearing preeminent industry thought leaders, to attending sessions where cutting- edge research will be unveiled, to interacting with peers – this will be a most fulfilling week! Our organizing committee has worked hard over the past year to ensure that our plenary sessions examine the most critical issues facing aerospace today, such as aerospace science and Richard George Lesieutre technology policy, lessons learned from a half century of aerospace innovation, resilient design, Christiansen The Pennsylvania and unmanned aerial systems. We will also focus on how AIAA and other stakeholders in State University Sierra Lobo, Inc.
    [Show full text]
  • A Perspective on 15 Years of Proof-Of-Concept Aircraft
    NASA Reference Publication . 1- 1- August 1987 / A Perspective on 15 Years of Proof-of-ConceptAircraft Development and Flight Research at Arnes-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 197 0- 1985 David D. Few NASA NASA Reference Publication 1187 . 1987 A Perspective on 15 Years of Proof-of-ConceptAircraft Development and Flight Research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985 David D. Few Ames Research Center Mofett Field, Calfa ornia National Aeronautics and Space Administration Scientific and Technical Information Office NOMENCLATURE i CL coefficient of lift i. CTOL conventional takeoff and landing DARPA Defense Advanced Research Projects Agency v DTNSRDC David Taylor Naval Systems Research and Development Center KTAS knots true air speed PNdB perceived noise level in decibels R&T research and technology RCF rotating cylinder flap SCAS stability and control augmentation system STOL shor t takeoff and landing STOVL shoft takeoff and vertical landing TOFL takeoff field length T/W thrust-weight VC critical control speed V/STOL vertical/short takeoff and landing V/STOLAND vertical/short takeoff and landing avionics system VTOL vertical takeoff and landing iii SUMMARY This paper defines a proof-of-concept (POC) aircraft and briefly describes the concept of interest for each of the six aircraft developed by the Ames-Moffett Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft.
    [Show full text]
  • Alternative to High-Speed Helicopters Or Tilt-Rotor Aircraft
    The Moller Skycar: An Simple, Low-cost Alternative to High-Speed Helicopters or Tilt-rotor Aircraft Why are all the major helicopter companies trying to build faster helicopters? Obviously the short answer is money. A representative from Piasecki says "The military will spend $40 billion over the next 20 years recapitalizing its (helicopter) fleet." Helicopters Historically, vertical flight has required a compromise between hover performance and forward speed. Low disk loading aircraft, such as helicopters, fall on the left of the graph below, along with their desirable attributes (hover efficiency, low speed controllability, low downwash, and hover endurance). Higher disk loading aircraft, such as Harriers and the Joint Strike Fighter (JSF), trade off decreased hovering capabilities for speed and increased operating costs. Enablers for advances in helicopter technology are primarily in aircraft engineering and control systems. Now, rotor vibrations can be reduced using “active control”, which consists of placing sensors around the helicopter to detect the onset of vibration and then using force generators on various parts of the frame to vibrate in such a way that they cancel out the original tremors. Advanced computer modeling has also made it possible to design more efficient rotors. Additional propellers provide additional forward thrust and increase speed and/or assist with braking. Computerized “fly-by-wire” controls allow these new helicopters to be flown relatively easily. For example, the Sikorsky X2 incorporates several new technologies and has successfully demonstrated them in a flight environment. These technologies include an integrated fly-by-wire system that allows the engine/rotor/propulsor system to operate efficiently, with full control of rotor rpm throughout the flight envelope, high lift-to-drag rigid blades, low drag hub fairings, and Active Vibration Control.
    [Show full text]
  • Design Optimization of High-Speed Proprotor Aircraft
    f /,W-.-o5 NASA Technical Memorandum 103988 Design Optimization of High-Speed Proprotor Aircraft David R. Schleicher, James D. Phillips, and Kevin B. Carbajal (NASA-TM-I03988) DESIGN N94-26151 OPTIMIZATION OF HIGH-SPEEO PROPROTOR AIRCRAFT (NASA) 4O p Unclas G3/05 0208973 April 1993 National Aeronautics and Space Adminisb'ation "TL_',.h.._ NASA Technical Memorandum 103988 Design Optimization of High-Speed Proprotor Aircraft David R. Schleicher, James D. Phillips, and Kevin B. Carbajal Ames Research Center, Moffett Field, California April 1993 I_d/LqA National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 Contents Page Summary ................................................................................................................................................................................ 1 Nomenclature ......................................................................................................................................................................... I 1. Introduction ................................................................................................................................................................. I 2. Configurations and Mission ....................................................................................................................................... 2 3. Aircraft Synthesls .......................................................................................................................................................
    [Show full text]
  • Aviation Week & Space Technology
    Airbus Sees Greener CEO Q&A What Led to USAF’s Future in Hydrogen RICH MEDIA Safran’s Petitcolin RICH MEDIA NGAD Demonstrator EXCLUSIVE EXCLUSIVE $14.95 SEPTEMBER 28-OCTOBER 11, 2020 QUIET REVOLUTION Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • MODELING of TILTWING AIRCRAFT DYNAMICS AS LINEAR SYSTEM 1. Introduction Understanding and Accurate Modeling of Systems Behavior
    MODELING OF TILTWING AIRCRAFT DYNAMICS AS LINEAR SYSTEM JOHANNA HOLSTEN* PHILIPP HARTMANN* DIETER MOORMANN* *Institute of Flight System Dynamics, RWTH Aachen University, Wüllnerstr. 7, 52064 Aachen, Germany [email protected] Abstract In this paper the nonlinear system dynamics of a tiltwing aircraft is linearized at a variation of operating points. Effect of linearization on dynamic behavior is analyzed in comparison to the original nonlinear model. Aircraft in tiltwing configuration combine the advantages of helicopters, such as hovering and vertical take-off and landing capabilities, with the advantages of conventional fixed- wing aircraft. During transition of tiltwing aircraft between hovering and aerodynamic horizontal forward flight, tilting the wing from vertical to horizontal position (and vice versa) poses a significant change in configuration. In combination with the given large velocity range this influences the control device effectiveness significantly. At the same time, tilting the wing provides an additional control variable. These aspects make designing a tiltwing flight controller complex. For controller design and analysis, linearization of the system dynamics as LTI model allows direct analysis of its stability margins. In this paper we show that the linear model of the tiltwing aircraft represents the nonlinear system sufficiently for controller analysis and design. Additionally it provides insight into changing dynamics and allows further analysis in the frequency domain. Keywords Tiltwing Aircraft; Flight System Dynamics. 1. Introduction Understanding and accurate modeling of systems behavior is a necessity when aiming at robust control performance. A linear model in contrast to a nonlinear model allows direct analysis and simplifies the control design process. Furthermore, state-space representations are more suitable for numerical calculations.
    [Show full text]
  • The a Graduate Team Aircraft Design Stanford University
    The A Graduate Team Aircraft Design June 1, 1999 Stanford University The Cardinal: A 1999 AIAA Graduate Team Aircraft Design TH E St a n f o r d Un iv er s it y A 1999 AIAA GRADUATE TEAM AIRCRAFT PROPOSAL PROJECT LEADER: Patrick LeGresley Jose Daniel Cornejo AIAA Member Number 144155 AIAA Member Number 143144 MS Expected June 1999 MS Expected March 2000 [email protected] [email protected] Teal Bathke Jennifer Owens AIAA Member Number 183891 AIAA Member Number 113704 MS Expected June 2000 MS Expected December 1999 [email protected] [email protected] Angel Carrion Ryan Vartanian AIAA Member Number 183513 AIAA Member Number 154990 MS Expected March 2000 MS Expected June 1999 [email protected] [email protected] ADVISORS: Dr. Juan Alonso Dr. Ilan Kroo Assistant Professor Professor Stanford University Aeronautics & Astronautics Stanford University Aeronautics & Astronautics [email protected] [email protected] “When I was a student in college, just flying an airplane seemed a dream…” ~Charles Lindbergh JUNE 1, 1999 “When I was a student in college, just flying an airplane seemed a dream…” June 1, 1999 Signature Page ~Charles Lindbergh The Cardinal: A 1999 AIAA Graduate Team Aircraft Design EXECUTIVE SUMMARY Commuting from center-city to center-city is not viable with existing aircraft due to the lack of available runways in metropolitan areas for airplanes and higher expense of helicopter service. The Cardinal is a Super Short Takeoff and Landing (SSTOL) aircraft which attempts to fill this gap. The major goal of this airplane design is to fulfill the desire for center-city to center-city travel by utilizing river “barges” for short takeoffs and landings to avoid construction of new runways or heliports.
    [Show full text]