Botulinum C2 Toxin ADP-Ribosylates Actin and Enhances O2- Production and Secretion but Inhibits Migration of Activated Human Neutrophils

Total Page:16

File Type:pdf, Size:1020Kb

Botulinum C2 Toxin ADP-Ribosylates Actin and Enhances O2- Production and Secretion but Inhibits Migration of Activated Human Neutrophils Botulinum C2 toxin ADP-ribosylates actin and enhances O2- production and secretion but inhibits migration of activated human neutrophils. J Norgauer, … , R Seifert, K Aktories J Clin Invest. 1988;82(4):1376-1382. https://doi.org/10.1172/JCI113741. Research Article The binary botulinum C2 toxin ADP-ribosylated the actin of human neutrophils. Treatment of human neutrophils with botulinum C2 toxin for 45 min increased FMLP-stimulated superoxide anion (O2-) production 1.5-5-fold, whereas only a minor fraction of the cellular actin pool (approximately 20%) was ADP-ribosylated. Effects of botulinum C2 toxin depended on toxin concentrations, presence of both components of the toxin, and incubation time. Cytochalasin B similarly enhanced O2- production. The effects of botulinum C2 toxin and cytochalasin B were additive at submaximally, but not maximally effective concentrations and incubation time of either toxin. Botulinum C2 toxin also enhanced stimulation of O2- production by Con A and platelet-activating factor, but not by phorbol 12-myristate 13-acetate (PMA). Botulinum C2 toxin increased FMLP-induced release of N-acetyl-glucosaminidase by 100-250%; release of vitamin B12- binding protein induced by FMLP and PMA was enhanced by approximately 150 and 50%, respectively. Botulinum C2 toxin blocked both random migration of neutrophils and migration induced by FMLP, complement C5a, leukotriene B4, and a novel monocyte-derived chemotactic agent. The data suggest that botulinum C2 toxin-catalyzed ADP-ribosylation of a minor actin pool has a pronounced effect on the activation of human neutrophils by various stimulants. Find the latest version: https://jci.me/113741/pdf Botulinum C2 Toxin ADP-Ribosylates Actin and Enhances 02 Production and Secretion but Inhibits Migration of Activated Human Neutrophils Johannes Norgauer,* Eckhard Kownatzki,* Roland Seifert,l and Klaus Aktories* *Rudolf-Buchheim-Institutfur Pharmakologie der Justus-Liebig-Universitdt, D-6300 Giessen, Federal Republic ofGermany; tAbteilung Experimentelle Dermatologie der Universitdts-Hautklinik, D-7800 Freiburg i.B., Federal Republic of Germany; and §Institutfur Pharmakologie der Freien Universitdt Berlin, D-1000 Berlin, Federal Republic of Germany Abstract terfere with leukocyte activation caused by various chemotac- tic stimulants (7-9). Not only phenomena obviously related to The binary botulinum C2 toxin ADP-ribosylated the actin of cell motile functions are regulated by cytoskeletal elements. human neutrophils. Treatment of human neutrophils with bot- Several findings indicate an involvement of cytoskeleton pro- ulinum C2 toxin for 45 min increased FMLP-stimulated su- teins in activation of NADPH oxidase by chemotactic agents peroxide anion (O°) production 1.5-5-fold, whereas only a (7-10). Again, this conclusion was mainly drawn from the minor fraction of the cellular actin pool (- 20%) was ADP-ri- findings that cytochalasins drastically increased the O2 pro- bosylated. Effects of botulinum C2 toxin depended on toxin duction caused by neutrophil stimulatory agents like FMLP, concentrations, presence of both components of the toxin, and platelet-activating factor (PAF),' and Con A (7-9). incubation time. Cytochalasin B similarly enhanced O2 pro- Botulinum C2 toxin belongs to a class of bacterial ADP-ri- duction. The effects of botulinum C2 toxin and cytochalasin B bosyltransferases that modify actin (1 1, 12). The toxin is bi- were additive at submaximally, but not maximally effective nary in structure and consists of components I (C2 I) and II concentrations and incubation time of either toxin. Botulinum (C2 II) (13). Whereas C2 I (Mr 50,000) possesses ADP-ribosyl- C2 toxin also enhanced stimulation of O2 production by Con A transferase activity, C2 II (Mr 100,000) is apparently involved and platelet-activating factor, but not by phorbol 12-myristate in the binding of the toxin to the cell membrane. The substrate 13-acetate (PMA). Botulinum C2 toxin increased FMLP-in- of botulinum C2 toxin is nonmuscle G actin, but not polymer- duced release of N-acetyl-glucosaminidase by 100-250%; re- ized F actin (12, 14). Moreover, the covalent modification of lease of vitamin B12-binding protein induced by FMLP and actin blocks the ability of actin to polymerize (1 1, 12, 15). This PMA was enhanced by - 150 and 50%, respectively. Botuli- ability to inhibit actin polymerization thus qualifies botuli- num C2 toxin blocked both random migration of neutrophils num C2 toxin as a new tool with which to study the role of and migration induced by FMLP, complement C5a, leuko- actin in various cell functions. Therefore, these results triene B4, and a novel monocyte-derived chemotactic agent. prompted us to study the effects of botulinum C2 toxin on The data suggest that botulinum C2 toxin-catalyzed ADP-ri- activation of human neutrophils by various stimulants and bosylation of a minor actin pool has a pronounced effect on the compare its effects with those of cytochalasin B. activation of human neutrophils by various stimulants. Methods Introduction Materials. FMLP, SOD, cytochalasin B, l-O-alkyl-2-acetyl-sn-gly- Activation of neutrophils by chemotactic agents induces cellu- cero-3-phosphocholine (PAF), phorbol 12-myristate 13-acetate lar responses like cell shape change, migration, degranulation, (PMA), thymidine, leupeptin, p-nitro-phenyl-N-acetyl-i-glucosamide, and phagocytosis (1). All these events depend on cellular mo- and PMSF were obtained from Sigma Chemical (Deisenhofen, FRG). tile functions and the dynamic processes involved in restruc- Dextran T 500 and Ficoll-Hypaque were purchased from Pharmacia turing of the cytoskeleton (1, 2). Recent studies have indicated Fine Chemicals (Freiburg, FRG); ATP from Boehringer Mannheim- GmbH (Mannheim, FRG); and Triton X-100 from SERVA Feinbio- that actin, besides its role in muscle contraction, is basically chemical & Co. (Heidelberg, FRG). Xylol and toluene were obtained involved in cellular motile processes of such nonmuscle cells from Roth GmbH & Co. KG (Karlsruhe, FRG); [57Co]- as neutrophils and platelets (2, 3). In nonmuscle cells, these cyanocobalamine and [32P]NAD from Amersham Buchler (Braunsch- motile functions are apparently associated with changes in the weig, FRG); and Con A from Miles Laboratories, Inc. (Munich, FRG). state of actin polymerization. It thus has been shown that Leukotriene B4 (LTB4), the chemotactic split peptide C5a, and the activation of neutrophils or platelets is accompanied by a rapid monocyte-derived chemotactic agent (MOC) were produced as de- increase in polymerized actin (3-5). Moreover, agents that scribed (16). Botulinum C2 toxin was prepared and activated essen- block actin polymerization, like cytochalasins (6), largely in- tially as described (13). Pertussis toxin was kindly donated by Dr. Yajima (Kobe, Japan). 3-,Am-pore size cellulose nitrate filters were purchased from Sartorius GmbH (Gottingen, FRG). Address reprint requests to Dr. Klaus Aktories, Rudolf-Buchheim- Preparation of human neutrophils. To determine °2 production Institut fir Pharmakologie, Frankfurterstrasse 107, D-6300 Giessen, and for the ADP-ribosylation assay, human neutrophils were isolated Federal Republic of Germany. from freshly drawn venous blood obtained from healthy donors, es- Received for publication 9 February 1988 and in revised form 20 sentially as described by Markert et al. (17). To determine migration May 1988. J. Clin. Invest. 1. Abbreviations used in this paper: C2 I, component I ofbotulinum C2 © The American Society for Clinical Investigation, Inc. toxin; C2 II, component II of botulinum C2 toxin; MOC, monocyte- 0021-9738/88/10/1376/07 $2.00 derived chemotactic agent; PAF, platelet-activating factor (l-O-alkyl- Volume 82, October 1988, 1376-1382 2-acetyl-sn-glycero-3-phosphocholine). 1376 J. Norgauer, E. Kownatzki, R. Seifert, and K. Aktories and enzyme release, neutrophils were isolated as described (16). Either Figure 1. FMLP con- isolation procedure resulted in 95% of neutrophils with viability 24 centration dependence > 95%, as measured by trypan blue exclusion. Toxin treatment of 20 of O° production by neutrophils for up to at least 150 min did not reduce viability of cells. 16 human neutrophils. ADP-ribosylation assay. ADP-ribosylation was performed essen- L_ CX 12/ (Top) Influence of cyto- tially as described (12, 15). Briefly, neutrophils (10' cells/ml) were > 8 { /chalasin B. Human incubated I E / /neutrophils (106 cells) with 400 ng/ml C2 and 1.6 Mg/ml C2 II of botulinum toxin 4. in a buffer containing 138 mM NaCl, 6 mM KCI, 2 mM CaCl2, 1 mM were preincubated with Na2HPO4, 5 mM NaHCO3, 5.5 mM glucose, and 20 mM Hepes, pH , I , , , , (o) and without (X) 2 7.5, for the indicated periods of time. Thereafter, the cells were washed 0 10-9 I -8 1 -7 10-6 ug/ml cytochalasin B twice; lysed in a medium containing 10 mM triethanolamine-HCI (pH fMLP (M) for 2 min. Treated neu- 7.5), 0.5 mM PMSF, 0.1 g/ml leupeptin, and 25 mM EDTA; frozen; trophils were stimulated thawed; homogenized; and finally used in the ADP-ribosylation assay. with the indicated con- ADP-ribosylation of neutrophil lysates (- 1 mg of protein/tube) was 24 centrations of FMLP carried out in a buffer containing 50 mM triethanolamine-HCl (pH C 20i for 15 minandthereaf- 7.4), 10 mM thymidine, 0.5 mM ATP, 4 mM MgCl2, 1 MM [32P]NAD 16/ terO production was (- I uCi), 0.02% BSA (wt/vol) and 1 Mg/mi botulinum C2 toxin com- 2M 12 determined asde- O.,,, ponent I. The incubation was carried out for 10 min at 37°C. The o8 Xscribed. (Bottom) Influ- reaction was stopped by the addition of 20 gl of a buffer containing d" E ence of botulinum C2 10% (wt/vol) SDS, 10% (wt/vol) saccharose, 1% (vol/vol) 2-mercap- *5 toxin. Human neutro- toethanol, and 100 mM Tris-HCI, pH 7.4. Thereafter, the radioactively o * _'__ phils (10' cells) were labeled proteins were analyzed by SDS-PAGE according to Laemmli 0 10-9 10-8 10-7 10-6 preincubated with (o) (18).
Recommended publications
  • Nicotine Induces Polyspermy in Sea Urchin Eggs Through a Non-Cholinergic Pathway Modulating Actin Dynamics
    cells Article Nicotine Induces Polyspermy in Sea Urchin Eggs through a Non-Cholinergic Pathway Modulating Actin Dynamics 1,2 1, 2 1, Nunzia Limatola , Filip Vasilev y, Luigia Santella and Jong Tai Chun * 1 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, I-80121 Napoli, Italy; [email protected] (N.L.); [email protected] (F.V.) 2 Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, I-80121 Napoli, Italy; [email protected] * Correspondence: [email protected] Current address: Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CRCHUM) y Montreal, QC H2X 0A9, Canada. Received: 8 November 2019; Accepted: 21 December 2019; Published: 25 December 2019 Abstract: While alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors. Unlike acetylcholine and carbachol, nicotine uniquely induced drastic rearrangement of egg cortical microfilaments in a dose-dependent way. Such cytoskeletal changes appeared to render the eggs more receptive to sperm, as judged by the significant alleviation of polyspermy by latrunculin-A and mycalolide-B. In addition, our fluorimetric assay provided the first evidence that nicotine directly accelerates polymerization kinetics of G-actin and attenuates depolymerization of preassembled F-actin. Furthermore, nicotine inhibited cofilin-induced disassembly of F-actin.
    [Show full text]
  • Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases
    Mar. Drugs 2014, 12, 2539-2589; doi:10.3390/md12052539 OPEN ACCESS marine drugs ISSN 1660–3397 www.mdpi.com/journal/marinedrugs Review Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases Clara Grosso 1, Patrícia Valentão 1, Federico Ferreres 2 and Paula B. Andrade 1,* 1 REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (C.G.); [email protected] (P.V.) 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-22042-8654; Fax: +351-22609-3390. Received: 30 January 2014; in revised form: 10 April 2014 / Accepted: 16 April 2014 / Published: 2 May 2014 Abstract: Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted. Keywords: aragonite; conotoxins; neurodegeneration; neuroinflammation; Aβ peptide; tau hyperphosphorylation; protein kinases; receptors; voltage-dependent ion channels; cyclooxygenases Mar.
    [Show full text]
  • Fungi.Mycotoxins.Pdf
    Fungi: Mycotoxin: Acremonium crotocinigenum Crotocin Aspergillus favus Alfatoxin B, cyclopiazonic acid Aspergillus fumigatus Fumagilin, gliotoxin Aspergillus carneus Critrinin Aspergillus clavatus Cytochalasin, patulin Aspergillus Parasiticus Alfatoxin B Aspergillus nomius Alfatoxin B Aspergillus niger Ochratoxin A, malformin, oxalicacid Aspergillus nidulans Sterigmatocystin Aspergillus ochraceus Ochratoxin A, penicillic acid Aspergillus versicolor Sterigmatocystin, 5 ethoxysterigmatocystin Aspergillus ustus Ausdiol, austamide, austocystin, brevianamide Aspergillus terreus Citreoviridin Alternaria Alternariol, altertoxin, altenuene, altenusin, tenuazonic acid Arthrinium Nitropropionic acid Bioploaris Cytochalasin, sporidesmin, sterigmatocystin Chaetomium Chaetoglobosin A,B,C. Sterigmatocystin Cladosporium Cladosporic acid Clavipes purpurea Ergotism Cylindrocorpon Trichothecene Diplodia Diplodiatoxin Fusarium Trichothecene, zearalenone Fusarium moniliforme Fumonisins Emericella nidulans Sterigmatocystin Gliocladium Gliotoxin Memnoniella Griseofulvin, dechlorogriseofulvin, epidecholorgriseofulvin, trichodermin, trichodermol Myrothecium Trichothecene Paecilomyces Patulin, viriditoxin Penicillium aurantiocandidum Penicillic acid Penicillium aurantiogriseum Penicillic acid Penicillium brasalianum Penicillic acid Penicillium brevicompactum Mycophenolic acid Penicillium camemberti Cyclopiazonic acid Penicillium carneum Mycophenolic acid, Roquefortine C Penicillium crateriforme Rubratoxin Penicillium citrinum Citrinin Penicillium commune Cyclopiazonic
    [Show full text]
  • Eosinophil Functions Mitogen-Activated Protein Kinase In
    The Differential Role of Extracellular Signal-Regulated Kinases and p38 Mitogen-Activated Protein Kinase in Eosinophil Functions This information is current as of September 30, 2021. Tetsuya Adachi, Barun K. Choudhury, Susan Stafford, Sanjiv Sur and Rafeul Alam J Immunol 2000; 165:2198-2204; ; doi: 10.4049/jimmunol.165.4.2198 http://www.jimmunol.org/content/165/4/2198 Downloaded from References This article cites 57 articles, 38 of which you can access for free at: http://www.jimmunol.org/content/165/4/2198.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 30, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Differential Role of Extracellular Signal-Regulated Kinases and p38 Mitogen-Activated Protein Kinase in Eosinophil Functions1 Tetsuya Adachi, Barun K. Choudhury, Susan Stafford, Sanjiv Sur, and Rafeul Alam2 The activation of eosinophils by cytokines is a major event in the pathogenesis of allergic diseases.
    [Show full text]
  • Calcium Dependence of Phalloidin-Induced Liver Cell Death (Toxin/Plasma Membrane/Cytochalasin B/Microfilaments/Scanning Electron Microscopy) AGNES B
    Proc. Nati. Acad. Sci. USA Vol. 77, No. 2, pp. 1177-1180, February 1980 Medical Sciences Calcium dependence of phalloidin-induced liver cell death (toxin/plasma membrane/cytochalasin B/microfilaments/scanning electron microscopy) AGNES B. KANE, ELLORA E. YOUNG, FRANCIS A. X. SCHANNE, AND JOHN L. FARBER* Department of Pathology and the Fels Research Institute, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 Communicated by Hans Popper, December 10, 1979 ABSTRACT The role of Ca2+ in toxic liver cell death was Phalloidin is a toxic bicyclic heptapeptide isolated from the studied with primary cultures of adult rat hepatocytes. Within mushroom Amanita phalloides (16, 17). Treated animals die 1 hr of exposure to phalloidin, a bicyclic heptapeptide isolated within a few hours with a hemorrhagic necrosis of the liver from the mushroom Amanita phalloides, at 50 ,g/ml, 60-70% of the cells were dead (trypan blue stainable). There was no loss characterized by numerous nonfatty vacuoles (18). Phalloidin of viability of the same cells exposed to phalloidin in culture is active on rat hepatocytes in uitro, where it produces easily medium devoid of Ca2+. A marked structural alteration of the observed deformations of the cell surface that accompany the surface of the phalloidin-treated hepatocytes characterized by death of the cells (14, 15). The protrusions or evaginations of innumerable evaginations seen by scanning electron microscopy the plasma membrane seen by scanning electron microscopy occurred in the presence or absence of Ca2+. Pretreatment of are felt to to the of the the cells with cytochalasin B at Ig/ml10 prevented the surface correspond invaginations plasma alteration and the death of the cells in Ca2+ medium.
    [Show full text]
  • Contractile Dysfunction in Heart Failure and Familial Hypertrophic Cardiomyopathy
    CONTRACTILE DYSFUNCTION IN HEART FAILURE AND FAMILIAL HYPERTROPHIC CARDIOMYOPATHY By YI-HSIN CHENG Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Adviser: Dr. Julian E. Stelzer Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY January, 2014 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of __________Yi-Hsin Cheng ________________________________ candidate for the _________Doctoral_______________________degree *. (signed)__________Corey Smith_______________________ (chair of the committee) ___________Julian Stelzer ______________________ ___________Thomas Nosek _____________________ ___________David Van Wagoner _________________ ___________Brian Hoit _________________________ ___________Xin Yu ___________________________ (date) ______September 10th, 2013________________ *We also certify that written approval has been obtained for any proprietary material contained therein. ii DEDICATION To my family overseas, who have supported me and allowed me to pursue anything I want. To my boyfriend, who has helped me through the conflicts and struggles due to the nature of this work and led me on the right path. To my vegan mentors and community, who continue to give me hope. iii TABLE OF CONTENTS List of Tables ix List of Figures x Acknowledgements xii List of Abbreviations xv Abstract xx Chapter 1: Cardiac Health and Disease 22 1.1 Introduction 22 1.2 Cardiac Structure and Functions 23 1.2.1 Heart Structure and Functions
    [Show full text]
  • Difference in F-Actin Depolymerization Induced by Toxin B from The
    Toxins 2013, 5, 106-119; doi:10.3390/toxins5010106 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Difference in F-Actin Depolymerization Induced by Toxin B from the Clostridium difficile Strain VPI 10463 and Toxin B from the Variant Clostridium difficile Serotype F Strain 1470 Martin May 1, Tianbang Wang 1, Micro Müller 2 and Harald Genth 1,* 1 Institute of Toxicology Hannover Medical School, Hannover D-30625, Germany; E-Mails: [email protected] (M.M.); [email protected] (T.W.) 2 Institute of Biophysical Chemistry, Hannover Medical School, Hannover D-30625, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-511-532-9168; Fax: +49-511-532-2879. Received: 14 November 2012; in revised form: 14 December 2012 / Accepted: 28 December 2012 / Published: 11 January 2013 Abstract: Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the causative agent of the C. difficile-associated diarrhea (CDAD) and its severe form, the pseudomembranous colitis (PMC). TcdB from the C. difficile strain VPI10463 mono-glucosylates (thereby inactivates) the small GTPases Rho, Rac, and Cdc42, while Toxin B from the variant C. difficile strain serotype F 1470 (TcdBF) specifically mono-glucosylates Rac but not Rho(A/B/C). TcdBF is related to lethal toxin from C. sordellii (TcsL) that glucosylates Rac1 but not Rho(A/B/C). In this study, the effects of Rho-inactivating toxins on the concentrations of cellular F-actin were investigated using the rhodamine-phalloidin-based F-actin ELISA.
    [Show full text]
  • Impact of Actin Filament Stabilization on Adult Hippocampal and Olfactory Bulb Neurogenesis
    The Journal of Neuroscience, March 3, 2010 • 30(9):3419–3431 • 3419 Development/Plasticity/Repair Impact of Actin Filament Stabilization on Adult Hippocampal and Olfactory Bulb Neurogenesis Golo Kronenberg,1,2,5* Karen Gertz,1,2* Tina Baldinger,1 Imke Kirste,5 Sarah Eckart,3 Ferah Yildirim,1 Shengbo Ji,1 Isabella Heuser,5 Helmut Schro¨ck,6 Heide Ho¨rtnagl,4 Reinhard Sohr,4 Pierre Chryso Djoufack,7 Rene´Ju¨ttner,8 Rainer Glass,8 Ingo Przesdzing,1 Jitender Kumar,8 Dorette Freyer,1 Rainer Hellweg,3 Helmut Kettenmann,8 Klaus Benno Fink,7 and Matthias Endres1,2 1Klinik und Poliklinik fu¨r Neurologie, 2Center for Stroke Research Berlin, 3Klinik fu¨r Psychiatrie und Psychotherapie, and 4Institut fu¨r Pharmakologie und Toxikologie, Charite´-Universita¨tsmedizin Berlin, D-10117 Berlin, Germany, 5Klinik und Hochschulambulanz fu¨r Psychiatrie und Psychotherapie, Charite´- Universita¨tsmedizin Berlin, D-14050 Berlin, Germany, 6Institut fu¨r Neurophysiologie, Medizinische Fakulta¨t Mannheim, Universita¨t Heidelberg, D-68167 Mannheim, Germany, 7Institut fu¨r Pharmakologie und Toxikologie, Universita¨t Bonn, D-53113 Bonn, Germany, and 8Max Delbru¨ck Center for Molecular Medicine, D-13092 Berlin, Germany Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca 2ϩ-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn Ϫ/Ϫ) mice as a model system for actin filament stabiliza- tion. In Gsn Ϫ/Ϫ mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed.
    [Show full text]
  • Emergence of a Bacterial Clone with Enhanced Virulence by Acquisition of a Phage Encoding a Secreted Phospholipase A2 Izabela Sitkiewicz*, Michal J
    Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2 Izabela Sitkiewicz*, Michal J. Nagiec*†, Paul Sumby*, Stephanie D. Butler‡, Colette Cywes-Bentley§, and James M. Musser*¶ *Center for Molecular and Translational Human Infectious Diseases Research, Methodist Hospital Research Institute, Houston, TX 77030; ‡Southwest Foundation for Biomedical Research, San Antonio, TX 78227; and §Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 Communicated by Richard M. Krause, National Institutes of Health, Bethesda, MD, September 1, 2006 (received for review July 20, 2006) The molecular basis of pathogen clone emergence is relatively frequency and severity of serotype M3 invasive infections (3). poorly understood. Acquisition of a bacteriophage encoding a Humans with GAS infections seroconvert to SlaA, indicating previously unknown secreted phospholipase A2 (designated SlaA) that this protein is made during infection (3). In addition, SlaA has been implicated in the rapid emergence in the mid-1980s of a has enzymatic activity against several phospholipid head groups new hypervirulent clone of serotype M3 group A Streptococcus. and acyl chains located at the sn-2 position (14). For example, Although several lines of circumstantial evidence suggest that SlaA SlaA cleaves and releases arachidonic acid, a potent mediator of is a virulence factor, this issue has not been addressed experimen- the inflammatory cascade. tally. We found that an isogenic ⌬slaA mutant strain was signifi- With the goal of directly testing the hypothesis that SlaA cantly impaired in ability to adhere to and kill human epithelial cells contributes to pathogenesis, we made a ⌬slaA isogenic mutant compared with the wild-type parental strain.
    [Show full text]
  • Internalization and Phagosome Escape Required for Francisella to Induce Human Monocyte IL-1␤ Processing and Release
    Internalization and phagosome escape required for Francisella to induce human monocyte IL-1␤ processing and release Mikhail A. Gavrilin*, Imad J. Bouakl*, Nina L. Knatz†, Michelle D. Duncan*, Mark W. Hall*†, John S. Gunn‡§, and Mark D. Wewers*¶ *Davis Heart and Lung Research Institute, ‡Department of Molecular Virology and Immunology and Medical Genetics, and §Center for Microbial Interface Biology, Ohio State University, Columbus, OH 43210; and †Columbus Children’s Research Institute, Columbus, OH 43205 Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and approved November 15, 2005 (received for review May 23, 2005) Macrophage responses to Francisella infection have been charac- IL-1␤ has a key role in initiating and maintaining the inflam- terized previously by subdued proinflammatory responses; how- matory response. It is synthesized as biologically inactive 31-kDa ever, these studies have generally focused on macrophage cell precursor (pro-IL-1␤). To be active, pro-IL-1␤ must first be lines or monocyte-derived macrophages. Therefore, we studied the processed to a 17-kDa mature molecule and released. This ability of fresh human blood monocytes to engulf and respond to process is controlled by the IL-1␤-converting enzyme Francisella by using the live vaccine strain variant and Francisella (caspase-1) (9). A specific configuration of the intracellular novicida. Because Francisella organisms have been reported to host-defense molecules that is composed predominately of mem- escape from the phagolysosome into the cytosol, we hypothesized bers of the NLR family is called the inflammasome (10). The that this escape may trigger the activation of caspase-1.
    [Show full text]
  • The Pharmacologist 2 0 0 8 March
    Vol. 50 Number 1 The Pharmacologist 2 0 0 8 March Happy Birthday ASPET!!! th 100 Anniversary Celebration Details Inside: Don’t Miss the ASPET Centennial Meeting At Experimental Biology 2008 April 5-9, 2008, San Diego Featuring: Exciting Opening Reception: DJ, Food, Drinks and more Special Centennial Symposia: Exciting topics from each division Centennial Store: Selling ASPET merchandise for the first time ever ASPET Birthday Party: A Street Festival in the Gaslamp District ASPET Student Fiesta: Band, Food, and Drinks Nobel Laureate Reception: For Students to meet Nobel Laureates Great Giveaways: Luggage Tags, Pins, Posters, Compendiums Abel Number Lounge: Look up your Abel Number Plus Much More!! Also Inside this Issue: ASPET Election Results ASPET Award Winners 2008 EB 2008 Program Grid Special Executive Officer Interview Abstracts from the Great Lakes Chapter and Southeastern Chapter Meetings A Publication of the American Society for 1 Pharmacology and Experimental Therapeutics - ASPET Volume 50 Number 1, 2008 The Pharmacologist is published and distributed by the American Society for Pharmacology and Experimental Therapeutics. The PHARMACOLOGIST Editor Suzie Thompson EDITORIAL ADVISORY BOARD News Bryan F. Cox, Ph.D. Ronald N. Hines, Ph.D. Terrence J. Monks, Ph.D. Election Results . page 3 COUNCIL Award Winners for 2008. page 4 President Kenneth P. Minneman, Ph.D. EB 2008 Program Grid . page 12 President-Elect ASPET Centennial Update . page 17 Joe A. Beavo, Ph.D. Past President Special Centennial Feature: The View From the Elaine Sanders-Bush, Ph.D. Executive Office . page 21 Secretary/Treasurer Annette E. Fleckenstein, Ph.D. Special Lecture: The Origin and Development of Secretary/Treasurer-Elect Behavioral Pharmacology .
    [Show full text]
  • Distribution and Lateral Mobility of Voltage-Dependent Sodium Channels in Neurons Kimon J
    Distribution and Lateral Mobility of Voltage-dependent Sodium Channels in Neurons Kimon J. Angelides, Lawrence W. Elmer, David Loftus,* and Elliot Elson* Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030; and * Department of Biological Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110 Abstract. Voltage-dependent sodium channels are dis- lateral diffusion of sodium channels in the axon hil- tributed nonuniformly over the surface of nerve cells lock is restricted, apparently in two different ways. and are localized to morphologically distinct regions. Not only do sodium channels in these regions diffuse Fluorescent neurotoxin probes specific for the voltage- more slowly (10-1°-10-H cm2/s), but also they are dependent sodium channel stain the axon hillock 5-10 prevented from diffusing between axon hillock and cell times more intensely than the cell body and show body. No regionalization or differential mobilities were punctate fluorescence confined to the axon hillock observed, however, for either tetramethylrhodamine- which can be compared with the more diffuse and phosphatidylethanolamine, a probe of lipid diffusion, uniform labeling in the cell body. Using fluorescence or FITC-succinyl concanavalin A, a probe for glyco- photobleaching recovery (FPR) we measured the proteins. During the maturation of the neuron, the lateral mobility of voltage-dependent sodium channels plasma membrane differentiates and segregates voltage- over specific regions of the neuron. Nearly all sodium dependent sodium channels into local compartments channels labeled with specific neurotoxins are free to and maintains this localization perhaps either by direct diffuse within the cell body with lateral diffusion cytoskeletal attachments or by a selective barrier to coefficients on the order of 10-9 cm2/s.
    [Show full text]