The Power and Promise of Computers That Learn by Example
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARW 2015 Austrian Robotics Workshop
ARW 2015 Austrian Robotics Workshop Proceedings Austrian Robotics Workshop 2015 ARW 2015 hosted by Institute of Networked and Embedded Systems http://nes.aau.at Alpen-Adria Universität Klagenfurt Welcome to ARW 2015! NES has organized and hosted the Austrian Robotics Workshop (ARW) 2015 on May 7-8 in Klagenfurt. With more than 80 participants and speakers from eight dif- ferent countries this workshop grew into an international event where people from academia and industry meet - botics. Two keynote speakers gave inspiring talks on their thrilling research in robotics. Sabine Hauert from Bristol Robotics Laboratory and University of Bristol explained the development of nano-robots and how they may sup- port medical treatment. Werner Huber from BMW Group Research and Technology presented the self-driving cars, which have received a lot of media coverage lately. In addition, participants from industry and academia pre- sented and demonstrated their demos and posters during an interesting joint session. We have invited people to observe live demonstrations and discuss recent advan- cements face to face. NES members also demonstrated the SINUS project and its achievements in autonomous multi-UAV mission, communication architecture, collision avoidance, path planning, and video streaming. The Austrian Robotics Workshop 2016 will take place in Wels. Hope to see you there! Christian Bettstetter, Torsten Andre, Bernhard Rinner, Saeed Yahyanejad ARW 2015 Austrian Robotics Workshop We warmly acknowledge the support of our sponsors: Committees, -
Lecture Note on Deep Learning and Quantum Many-Body Computation
Lecture Note on Deep Learning and Quantum Many-Body Computation Jin-Guo Liu, Shuo-Hui Li, and Lei Wang∗ Institute of Physics, Chinese Academy of Sciences Beijing 100190, China November 23, 2018 Abstract This note introduces deep learning from a computa- tional quantum physicist’s perspective. The focus is on deep learning’s impacts to quantum many-body compu- tation, and vice versa. The latest version of the note is at http://wangleiphy.github.io/. Please send comments, suggestions and corrections to the email address in below. ∗ [email protected] CONTENTS 1 introduction2 2 discriminative learning4 2.1 Data Representation 4 2.2 Model: Artificial Neural Networks 6 2.3 Cost Function 9 2.4 Optimization 11 2.4.1 Back Propagation 11 2.4.2 Gradient Descend 13 2.5 Understanding, Visualization and Applications Beyond Classification 15 3 generative modeling 17 3.1 Unsupervised Probabilistic Modeling 17 3.2 Generative Model Zoo 18 3.2.1 Boltzmann Machines 19 3.2.2 Autoregressive Models 22 3.2.3 Normalizing Flow 23 3.2.4 Variational Autoencoders 25 3.2.5 Tensor Networks 28 3.2.6 Generative Adversarial Networks 29 3.3 Summary 32 4 applications to quantum many-body physics and more 33 4.1 Material and Chemistry Discoveries 33 4.2 Density Functional Theory 34 4.3 “Phase” Recognition 34 4.4 Variational Ansatz 34 4.5 Renormalization Group 35 4.6 Monte Carlo Update Proposals 36 4.7 Tensor Networks 37 4.8 Quantum Machine Leanring 38 4.9 Miscellaneous 38 5 hands on session 39 5.1 Computation Graph and Back Propagation 39 5.2 Deep Learning Libraries 41 5.3 Generative Modeling using Normalizing Flows 42 5.4 Restricted Boltzmann Machine for Image Restoration 43 5.5 Neural Network as a Quantum Wave Function Ansatz 43 6 challenges ahead 45 7 resources 46 BIBLIOGRAPHY 47 1 1 INTRODUCTION Deep Learning (DL) ⊂ Machine Learning (ML) ⊂ Artificial Intelli- gence (AI). -
AI Computer Wraps up 4-1 Victory Against Human Champion Nature Reports from Alphago's Victory in Seoul
The Go Files: AI computer wraps up 4-1 victory against human champion Nature reports from AlphaGo's victory in Seoul. Tanguy Chouard 15 March 2016 SEOUL, SOUTH KOREA Google DeepMind Lee Sedol, who has lost 4-1 to AlphaGo. Tanguy Chouard, an editor with Nature, saw Google-DeepMind’s AI system AlphaGo defeat a human professional for the first time last year at the ancient board game Go. This week, he is watching top professional Lee Sedol take on AlphaGo, in Seoul, for a $1 million prize. It’s all over at the Four Seasons Hotel in Seoul, where this morning AlphaGo wrapped up a 4-1 victory over Lee Sedol — incidentally, earning itself and its creators an honorary '9-dan professional' degree from the Korean Baduk Association. After winning the first three games, Google-DeepMind's computer looked impregnable. But the last two games may have revealed some weaknesses in its makeup. Game four totally changed the Go world’s view on AlphaGo’s dominance because it made it clear that the computer can 'bug' — or at least play very poor moves when on the losing side. It was obvious that Lee felt under much less pressure than in game three. And he adopted a different style, one based on taking large amounts of territory early on rather than immediately going for ‘street fighting’ such as making threats to capture stones. This style – called ‘amashi’ – seems to have paid off, because on move 78, Lee produced a play that somehow slipped under AlphaGo’s radar. David Silver, a scientist at DeepMind who's been leading the development of AlphaGo, said the program estimated its probability as 1 in 10,000. -
Accelerators and Obstacles to Emerging ML-Enabled Research Fields
Life at the edge: accelerators and obstacles to emerging ML-enabled research fields Soukayna Mouatadid Steve Easterbrook Department of Computer Science Department of Computer Science University of Toronto University of Toronto [email protected] [email protected] Abstract Machine learning is transforming several scientific disciplines, and has resulted in the emergence of new interdisciplinary data-driven research fields. Surveys of such emerging fields often highlight how machine learning can accelerate scientific discovery. However, a less discussed question is how connections between the parent fields develop and how the emerging interdisciplinary research evolves. This study attempts to answer this question by exploring the interactions between ma- chine learning research and traditional scientific disciplines. We examine different examples of such emerging fields, to identify the obstacles and accelerators that influence interdisciplinary collaborations between the parent fields. 1 Introduction In recent decades, several scientific research fields have experienced a deluge of data, which is impacting the way science is conducted. Fields such as neuroscience, psychology or social sciences are being reshaped by the advances in machine learning (ML) and the data processing technologies it provides. In some cases, new research fields have emerged at the intersection of machine learning and more traditional research disciplines. This is the case for example, for bioinformatics, born from collaborations between biologists and computer scientists in the mid-80s [1], which is now considered a well-established field with an active community, specialized conferences, university departments and research groups. How do these transformations take place? Do they follow similar paths? If yes, how can the advances in such interdisciplinary fields be accelerated? Researchers in the philosophy of science have long been interested in these questions. -
The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design
The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design Jeffrey Dean Google Research [email protected] Abstract The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore’s Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today. Introduction The past decade has seen a remarkable series of advances in machine learning (ML), and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas [LeCun et al. 2015]. Major areas of significant advances include computer vision [Krizhevsky et al. 2012, Szegedy et al. 2015, He et al. 2016, Real et al. 2017, Tan and Le 2019], speech recognition [Hinton et al. -
ARCHITECTS of INTELLIGENCE for Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS of INTELLIGENCE
MARTIN FORD ARCHITECTS OF INTELLIGENCE For Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS OF INTELLIGENCE THE TRUTH ABOUT AI FROM THE PEOPLE BUILDING IT MARTIN FORD ARCHITECTS OF INTELLIGENCE Copyright © 2018 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. Acquisition Editors: Ben Renow-Clarke Project Editor: Radhika Atitkar Content Development Editor: Alex Sorrentino Proofreader: Safis Editing Presentation Designer: Sandip Tadge Cover Designer: Clare Bowyer Production Editor: Amit Ramadas Marketing Manager: Rajveer Samra Editorial Director: Dominic Shakeshaft First published: November 2018 Production reference: 2201118 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK ISBN 978-1-78913-151-2 www.packt.com Contents Introduction ........................................................................ 1 A Brief Introduction to the Vocabulary of Artificial Intelligence .......10 How AI Systems Learn ........................................................11 Yoshua Bengio .....................................................................17 Stuart J. -
Technology Innovation and the Future of Air Force Intelligence Analysis
C O R P O R A T I O N LANCE MENTHE, DAHLIA ANNE GOLDFELD, ABBIE TINGSTAD, SHERRILL LINGEL, EDWARD GEIST, DONALD BRUNK, AMANDA WICKER, SARAH SOLIMAN, BALYS GINTAUTAS, ANNE STICKELLS, AMADO CORDOVA Technology Innovation and the Future of Air Force Intelligence Analysis Volume 2, Technical Analysis and Supporting Material RR-A341-2_cover.indd All Pages 2/8/21 12:20 PM For more information on this publication, visit www.rand.org/t/RRA341-2 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0633-0 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2021 RAND Corporation R® is a registered trademark. Cover: U.S. Marine Corps photo by Cpl. William Chockey; faraktinov, Adobe Stock. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. -
An Abstract of the Dissertation Of
AN ABSTRACT OF THE DISSERTATION OF Karina A. Roundtree for the degree of Doctor of Philosophy in Mechanical Engineering presented on August 21, 2020. Title: Achieving Transparency in Human-Collective Systems Abstract approved: H. Onan Demirel Julie A. Adams Collective robotic systems are biologically-inspired and exhibit behaviors found in spa- tial swarms (e.g., fish), colonies (e.g., ants), or a combination of both (e.g., bees). Collec- tive robotic system popularity continues to increase due to their apparent global intel- ligence and emergent behaviors. Many applications can benefit from the incorporation of collectives, including environmental monitoring, disaster response missions, and in- frastructure support. Human-collective system designers continue to debate how best to achieve transparency in human-collective systems in order to attain meaningful and insightful information exchanges between the operator and collective, enable positive operator influence on collectives, and improve the human-collective’s performance. Few human-collective evaluations have been conducted, many of which have only assessed how embedding transparency into one system design element (e.g., models, visualizations, or control mechanisms) may impact human-collective behaviors, such as the human-collective performance. This dissertation developed a transparency defi- nition for collective systems that was leveraged to assess how to achieve transparency in a single human-collective system. Multiple models and visualizations were evalu- ated for a sequential best-of-n decision-making task with four collectives. Transparency was evaluated with respect to how the model and visualization impacted human oper- ators who possess different capabilities, operator comprehension, system usability, and human-collective performance. Transparency design guidance was created in order to aid the design of future human-collective systems. -
The Perceived Ethics of Artificial Intelligence
Markets, Globalization & Development Review Volume 5 Number 2 Article 3 2020 The Perceived Ethics of Artificial Intelligence Ross Murray University of Texas Rio Grande Valley Follow this and additional works at: https://digitalcommons.uri.edu/mgdr Part of the Business Law, Public Responsibility, and Ethics Commons, Economics Commons, Marketing Commons, Other Business Commons, Science and Technology Studies Commons, and the Sociology Commons Recommended Citation Murray, Ross (2020) "The Perceived Ethics of Artificial Intelligence," Markets, Globalization & Development Review: Vol. 5: No. 2, Article 3. DOI: 10.23860/MGDR-2020-05-02-03 Available at: https://digitalcommons.uri.edu/mgdr/vol5/iss2/3https://digitalcommons.uri.edu/mgdr/vol5/ iss2/3 This Article is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Markets, Globalization & Development Review by an authorized editor of DigitalCommons@URI. For more information, please contact [email protected]. The Perceived Ethics of Artificial Intelligence This article is available in Markets, Globalization & Development Review: https://digitalcommons.uri.edu/mgdr/vol5/ iss2/3 Murray: Ethics of Artificial Intelligence The Perceived Ethics of Artificial Intelligence Introduction Artificial Intelligence (AI) has been embedded in consumer products and services in thousands of products such as Apple’s iPhone, Amazon’s Alexa, Tesla’s autonomous vehicles, Facebook’s algorithms that attempt to increase click-through optimization, and smart vacuum cleaners. As products and services attempt to imitate the intelligence of humans – although the products and services are not making decisions based upon their own moral values – the moral values of the employees and business ethics of corporations that create the products and services are being coded into the technology that is evidenced in these products. -
Hunt, E. R., & Hauert, S. (2020). a Checklist for Safe Robot Swarms. Nature Machine Intelligence
Hunt, E. R. , & Hauert, S. (2020). A checklist for safe robot swarms. Nature Machine Intelligence. https://doi.org/10.1038/s42256-020- 0213-2 Peer reviewed version Link to published version (if available): 10.1038/s42256-020-0213-2 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Nature Research at https://www.nature.com/articles/s42256-020-0213-2 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ 1 A checklist for safe robot swarms 2 3 Edmund Hunt and Sabine Hauert* 4 Engineering Mathematics, Bristol Robotics Laboratory, University of Bristol 5 6 *corresponding author: [email protected] 7 8 Standfirst: As robot swarms move from the laboratory to real world applications, a routine 9 checklist of questions could help ensure their safe operation. 10 11 Robot swarms promise to tackle problems ranging from food production and natural 12 disaster response, to logistics and space exploration1–4. As swarms are deployed outside the 13 laboratory in real world applications, we have a unique opportunity to engineer them to be 14 safe from the get-go. Safe for the public, safe for the environment, and indeed, safe for 15 themselves. -
Machine Learning Conference Report
Part of the conference series Breakthrough science and technologies Transforming our future Machine learning Conference report Machine learning report – Conference report 1 Introduction On 22 May 2015, the Royal Society hosted a unique, high level conference on the subject of machine learning. The conference brought together scientists, technologists and experts from across academia, industry and government to learn about the state-of-the-art in machine learning from world and UK experts. The presentations covered four main areas of machine learning: cutting-edge developments in software, the underpinning hardware, current applications and future social and economic impacts. This conference is the first in a new series organised This report is not a verbatim record, but summarises by the Royal Society, entitled Breakthrough Science the discussions that took place during the day and the and Technologies: Transforming our Future, which will key points raised. Comments and recommendations address the major scientific and technical challenges reflect the views and opinions of the speakers and of the next decade. Each conference will focus on one not necessarily that of the Royal Society. Full versions technology and cover key issues including the current of the presentations can be found on our website at: state of the UK industry sector, future direction of royalsociety.org/events/2015/05/breakthrough-science- research and the wider social and economic implications. technologies-machine-learning The conference series is being organised through the Royal Society’s Science and Industry programme, which demonstrates our commitment to reintegrate science and industry at the Society and to promote science and its value, build relationships and foster translation. -
Arxiv:1709.02779V1 [Quant-Ph] 8 Sep 2017 I
Machine learning & artificial intelligence in the quantum domain Vedran Dunjko Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria Max Planck Institute of Quantum Optics, Garching 85748, Germany Email: [email protected] Hans J. Briegel Institute for Theoretical Physics, University of Innsbruck Innsbruck 6020, Austria Department of Philosophy, University of Konstanz, Konstanz 78457, Germany Email: [email protected] Abstract. Quantum information technologies, on the one side, and intelligent learning systems, on the other, are both emergent technologies that will likely have a transforming impact on our society in the future. The respective underlying fields of basic research { quantum information (QI) versus machine learning and artificial intelligence (AI) { have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been prob- ing the question to what extent these fields can indeed learn and benefit from each other. QML explores the interaction between quantum computing and machine learning, inves- tigating how results and techniques from one field can be used to solve the problems of the other. In recent time, we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for machine learning problems, critical in our \big data" world. Conversely, machine learning already permeates many cutting-edge technologies, and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical machine learning optimization used in quantum experiments, quan- tum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents.