Extending the Faust VST Architecture with Polyphony, Portamento and Pitch Bend Yan Michalevsky Julius O

Total Page:16

File Type:pdf, Size:1020Kb

Extending the Faust VST Architecture with Polyphony, Portamento and Pitch Bend Yan Michalevsky Julius O Extending the Faust VST Architecture with Polyphony, Portamento and Pitch Bend Yan Michalevsky Julius O. Smith Andrew Best Department of Electrical Center for Computer Research in Blamsoft, Inc. Engineering, Music and Acoustics (CCRMA), [email protected] Stanford University Stanford University [email protected] AES Fellow [email protected] Abstract VST (Virtual Studio Technology) plugin stan- We introduce the vsti-poly.cpp architecture for dard was released by Steinberg GmbH (famous the Faust programming language. It provides sev- for Cubase and other music and sound produc- eral features that are important for practical use of tion products) in 1996, and was followed by the Faust-generated VSTi synthesizers. We focus on widespread version 2.0 in 1999 [8]. It is a partic- the VST architecture as one that has been used tra- ularly common format supported by many older ditionally and is supported by many popular tools, and newer tools. and add several important features: polyphony, note Some of the features expected from a VST history and pitch-bend support. These features take plugin can be found in the VST SDK code.2 Faust-generated VST instruments a step forward in Examining the list of MIDI events [1] can also terms of generating plugins that could be used in Digital Audio Workstations (DAW) for real-world hint at what capabilities are expected to be im- music production. plemented by instrument plugins. We also draw from our experience with MIDI instruments and Keywords commercial VST plugins in order to formulate sound feature requirements. Faust, VST, Plugin, DAW In order for Faust to be a practical tool for generating such plugins, it should support most 1 Introduction of the features expected, such as the following: Faust [5] is a popular music/audio signal pro- • Responding to MIDI keyboard events cessing language developed by Yann Orlarey et al. at GRAME,1 with contributions from a com- • Polyphony munity of developers. The toolset en- Faust • Portamento ables the generation of standalone synthesizers as well as plugins for various operating systems • Pitch-bending (wheel controlled) and environments. Considering a conve- Faust • Arpeggio nient tool and a fast way for prototyping and even creating production level sound effects and • Other effects dependent on note occurrence synthesizers, we would like to use Faust in com- history bination with real-world music production tools and DAWs (Digital Audio Workstations). All of the plugin formats mentioned above can be generated from Faust code with varying We believe it is necessary to facilitate work- levels of feature support. For example, there ing with tools such as Cubase, Ableton or other is a very complete faust2lv2 shell-script dis- DAWs providing a similar level of user experi- tributed with Faust provided by Albert Gräf ence and features. In the past ten years those [3]. There is also a highly useful faust2au tools shifted from relying on built-in PC sound- script by Reza Payami that is still under devel- blaster or external MIDI-controlled modules to opment. Useful VST 2.4 plugins can be gener- a plugin based architecture. Plugins are used ated using the faust2vst script, and relatively to generate sound and apply audio effects. Sev- limited VSTi plugins (i.e., VST synthesizer or eral common plugin architectures exist: VST, “instrument” plugins) can be generated using Apple’s Audio Unit (AU), LV2 (the successor faust2vsti. Initial VSTi support was limited of LADSPA and DSSI under Linux OS). The 2Specifically in the PlugCanDos namespace, declared 1http://faust.grame.fr in audioeffectx.cpp (in VST 2.4 SDK) a single voice (implemented in the Faust archi- The VST plugin controls are created and up- tecture file vsti-mono.cpp). dated using the vstUI class. There is an in- This paper describes the VSTi support stance of vstUI held by the Faust class which is implemented in the Faust architecture file used for knobs and sliders controlled by the user vsti-poly.cpp.3 This effort adds polyphony via the graphical interface or by mapping MIDI support, pitch-bend, note-history, and other fea- controls. This instance is for controlling param- tures described below. Pitch-bend and note his- eters that are global and should affect every note tory support facilitates effects such as porta- played. The instances of vstUI that are created mento slide,4 and creating arpeggiators. Finally, as part of each Voice instance are for control- we provide an example of how it can be used ling per note parameters (frequency, gain, pre- to create instruments. We demonstrate using viously played frequency and gate). The Faust Faust-generated VST plugins with MuLab [4] class implementation of the setParameter inter- and Renoise [7] workstations. We also discuss face method is broadcasting any change in the possible future improvements and additions. global plugin parameter to all Voice instances. Related work Handling MIDI events For handling MIDI events and polyphony sup- Faust VSTi architecture handles MIDI events port in a Faust architecture file, we bene- delegated by the VST host. The host sends the fited from the MIDI plugin section of [3] and events to the plugin by calling processEvents. the Faust DSSI architecture-file source code An event of type kVstMidiType indicates a dssi.cpp. Additionally, vsti-mono.cpp was MIDI event. useful as a basis for our extended Faust VSTi Note On architecture. A MIDI note-on event (status byte is 0x9) re- 2 Design sults in searching for a free voice instance to handle the new note in the freeVoices list con- Following the convention introduced by Albert tained in the Faust class. The search proceeds Gräf for [2] and [3] et faust2pd faust2lv2 in a classic round robin pattern as found in hard- al. [6], the VST architecture file implements ware synthesizers. If a free voice is found, the functionality for recognizing the “freq”, “gate” voice is designated as the new voice, otherwise and “gain” -control labels to set the note Faust the oldest playing voice is stolen and designated and velocity upon MIDI Note-On events (0x90) as the new voice. Its frequency is set according and to set the gate to 0 for a MIDI Note-Off to the note number, the gain parameter is set event (0x80). One approach to implementing according to the note velocity, and the gate is polyphony for the VSTi architecture is doing it set to 1. An entry is added to playingVoices, similarly to the DSSI plugin architecture. The mapping the note to the voice index, and the “freq”, “gate” and “gain” are mapped to the con- voice index is removed from the freeVoices list. trols multiple times which enables playing si- The previously played note is saved in order to multaneously a predefined maximum number of enable the portamento slide. notes. The VST format operates with multiple sam- We combine the approaches taken in ples in a processing block. The note-on event in- and . Figure 1 vsti-mono.cpp dssi.cpp cludes a sample offset within the current block. shows a UML diagram describing our design These deltas are stored in a list so that multi- ( ). A VST host interacts with vsti-poly.cpp ple note-on events can be handled in the block. the VST plugin through the AudioEffectX The note to voice allocation occurs within the interface. The class defines the func- Faust processing loop, so that each note starts at its tionality of the plugin by implementing that correct sample position within the block. interface. The mydsp class performs the signal processing and synthesis—it is the code that is Note Off actually produced by the Faust compiler. We A MIDI note-off event (status byte is 0x8) re- instantiate mydsp for each voice (Voice class). sults in searching for the corresponding Voice instance in the playingVoices list contained in 3 It is expected that this name will later change to the Faust class. The gate is then set to 0. Be- vsti.cpp. The faust2vsti command-line script will of course be updated as well in that case. cause the voice may have a release tail after the 4Although for a monophonic synthesizer portamento gate is zeroed, a silence detection algorithm is can be implemented by smoothing the input frequency. used to determine when the voice index should Figure 1: Faust VSTi design be added to the freeVoices list. The voice out- the range -1..1 and broadcast the value to all put must be below the silence threshold for an voices thus affecting all currently playing notes. entire block before it is marked as free. Silence The frequency is not updated by the architec- detection allows sounding voices to not be re- ture, as it is the responsibility of the Faust code allocated prematurely and also provides better to use the pitchbend control value. This sepa- CPU efficiency compared to always processing ration enables the user to ignore or handle the all voices. Like note-on events, note-off events pitch-bend MIDI event according to the desired are sample accurate within a block. behavior. Pitch Bend All-notes-off Event A MIDI pitch bend is indicated by status byte The All-notes-off MIDI event is indicated by a 0xE. The MIDI event pitch argument has values note number of 0, and velocity 0. Like the sin- in the range 0..16384. We normalize it to be in gle note-off event, the voice gate is set to 0 and entered into the release silence detection state. This is done for all active voices. Portamento Slide Implementation We demonstrated the very common portamento slide effect by creating a Faust VSTi based on the sawtooth synthesizer that is part of the Faust oscillator library (oscillator.lib).
Recommended publications
  • A Framework for Embedded Digital Musical Instruments
    A Framework for Embedded Digital Musical Instruments Ivan Franco Music Technology Area Schulich School of Music McGill University Montreal, Canada A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. © 2019 Ivan Franco 2019/04/11 i Abstract Gestural controllers allow musicians to use computers as digital musical instruments (DMI). The body gestures of the performer are captured by sensors on the controller and sent as digital control data to a audio synthesis software. Until now DMIs have been largely dependent on the computing power of desktop and laptop computers but the most recent generations of single-board computers have enough processing power to satisfy the requirements of many DMIs. The advantage of those single-board computers over traditional computers is that they are much smaller in size. They can be easily embedded inside the body of the controller and used to create fully integrated and self-contained DMIs. This dissertation examines various applications of embedded computing technologies in DMIs. First we describe the history of DMIs and then expose some of the limitations associated with the use of general-purpose computers. Next we present a review on different technologies applicable to embedded DMIs and a state of the art of instruments and frameworks. Finally, we propose new technical and conceptual avenues, materialized through the Prynth framework, developed by the author and a team of collaborators during the course of this research. The Prynth framework allows instrument makers to have a solid starting point for the de- velopment of their own embedded DMIs.
    [Show full text]
  • Embedded Real-Time Audio Signal Processing with Faust Romain Michon, Yann Orlarey, Stéphane Letz, Dominique Fober, Dirk Roosenburg
    Embedded Real-Time Audio Signal Processing With Faust Romain Michon, Yann Orlarey, Stéphane Letz, Dominique Fober, Dirk Roosenburg To cite this version: Romain Michon, Yann Orlarey, Stéphane Letz, Dominique Fober, Dirk Roosenburg. Embedded Real- Time Audio Signal Processing With Faust. International Faust Conference (IFC-20), Dec 2020, Paris, France. hal-03124896 HAL Id: hal-03124896 https://hal.archives-ouvertes.fr/hal-03124896 Submitted on 29 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2, 2020 EMBEDDED REAL-TIME AUDIO SIGNAL PROCESSING WITH FAUST Romain Michon,a;b Yann Orlarey,a Stéphane Letz,a Dominique Fober,a and Dirk Roosenburgd;e aGRAME – Centre National de Création Musicale, Lyon, France bCenter for Computer Research in Music and Acoustics, Stanford University, USA dTIMARA, Oberlin Conservatory of Music, USA eDepartment of Physics, Oberlin College, USA [email protected] ABSTRACT multi-channel audio, etc.). These products work in conjunction with specialized Linux distributions where audio processing tasks FAUST has been targeting an increasing number of embedded plat- forms for real-time audio signal processing applications in recent are carried out outside of the operating system, allowing for the years.
    [Show full text]
  • Computer Music
    THE OXFORD HANDBOOK OF COMPUTER MUSIC Edited by ROGER T. DEAN OXFORD UNIVERSITY PRESS OXFORD UNIVERSITY PRESS Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2009 by Oxford University Press, Inc. First published as an Oxford University Press paperback ion Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data The Oxford handbook of computer music / edited by Roger T. Dean. p. cm. Includes bibliographical references and index. ISBN 978-0-19-979103-0 (alk. paper) i. Computer music—History and criticism. I. Dean, R. T. MI T 1.80.09 1009 i 1008046594 789.99 OXF tin Printed in the United Stares of America on acid-free paper CHAPTER 12 SENSOR-BASED MUSICAL INSTRUMENTS AND INTERACTIVE MUSIC ATAU TANAKA MUSICIANS, composers, and instrument builders have been fascinated by the expres- sive potential of electrical and electronic technologies since the advent of electricity itself.
    [Show full text]
  • Implementing a Parametric EQ Plug-In in C++ Using the Multi-Platform VST Specification
    2003:044 C EXTENDED ESSAY Implementing a parametric EQ plug-in in C++ using the multi-platform VST specification JONAS EKEROOT SCHOOL OF MUSIC Audio Technology Supervisor: Jan Berg 2003:044 • ISSN: 1402 – 1773 • ISRN: LTU - CUPP - - 03/44 - - SE Implementing a parametric EQ plug-in in C++ using the multi-platform VST specification Jonas Ekeroot Division of Sound Recording School of Music in Pite˚a Lule˚aUniversity of Technology April 23, 2003 Abstract As the processing power of desktop computer systems increase by every year, more and more real-time audio signal processing is per- formed on such systems. What used to be done in external effects units, e.g. adding reverb, can now be accomplished within the com- puter system using signal processing code modules – plug-ins. This thesis describes the development of a peak/notch parametric EQ VST plug-in. First a prototype was made in the graphical audio program- ming environment Max/MSP on MacOS, and then a C++ implemen- tation was made using the VST Software Development Kit. The C++ source code was compiled on both Windows and MacOS, resulting in versions of the plug-in that can be used in any VST host application on Windows and MacOS respectively. Writing a plug-in relieves the programmer of the burden to deal directly with audio interface details and graphical user interface specifics, since this is taken care of by the host application. It can thus be an interesting way to start developing audio DSP algorithms, since the host application also provides the op- portunity to listen to and measure the performance of the implemented plug-in algorithm.
    [Show full text]
  • Audio Signal Processing in Faust
    Audio Signal Processing in Faust Julius O. Smith III Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University, Stanford, California 94305 USA jos at ccrma.stanford.edu Abstract Faust is a high-level programming language for digital signal processing, with special sup- port for real-time audio applications and plugins on various software platforms including Linux, Mac-OS-X, iOS, Android, Windows, and embedded computing environments. Audio plugin formats supported include VST, lv2, AU, Pd, Max/MSP, SuperCollider, and more. This tuto- rial provides an introduction focusing on a simple example of white noise filtered by a variable resonator. Contents 1 Introduction 3 1.1 Installing Faust ...................................... 4 1.2 Faust Examples ...................................... 5 2 Primer on the Faust Language 5 2.1 Basic Signal Processing Blocks (Elementary Operators onSignals) .......... 7 2.2 BlockDiagramOperators . ...... 7 2.3 Examples ........................................ 8 2.4 InfixNotationRewriting. ....... 8 2.5 Encoding Block Diagrams in the Faust Language ................... 9 2.6 Statements ...................................... ... 9 2.7 FunctionDefinition............................... ...... 9 2.8 PartialFunctionApplication . ......... 10 2.9 FunctionalNotationforOperators . .......... 11 2.10Examples ....................................... 11 1 2.11 Summary of Faust NotationStyles ........................... 11 2.12UnaryMinus ..................................... 12 2.13 Fixing
    [Show full text]
  • How to Create Music with GNU/Linux
    How to create music with GNU/Linux Emmanuel Saracco [email protected] How to create music with GNU/Linux by Emmanuel Saracco Copyright © 2005-2009 Emmanuel Saracco How to create music with GNU/Linux Warning WORK IN PROGRESS Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available on the World Wide Web at http://www.gnu.org/licenses/fdl.html. Revision History Revision 0.0 2009-01-30 Revised by: es Not yet versioned: It is still a work in progress. Dedication This howto is dedicated to all GNU/Linux users that refuse to use proprietary software to work with audio. Many thanks to all Free developers and Free composers that help us day-by-day to make this possible. Table of Contents Forword................................................................................................................................................... vii 1. System settings and tuning....................................................................................................................1 1.1. My Studio....................................................................................................................................1 1.2. File system..................................................................................................................................1 1.3. Linux Kernel...............................................................................................................................2
    [Show full text]
  • Radium: a Music Editor Inspired by the Music Tracker
    Radium: A Music Editor Inspired by the Music Tracker Kjetil Matheussen Norwegian Center for Technology in Music and the Arts. (NOTAM) Sandakerveien 24D, Bygg F3 N-0473 Oslo Norway [email protected] Abstract Musical events are defined with pure text. Radium is a new type of music editor inspired by The event C#3 5-32-000 plays the note C the music tracker. Radium's interface differs from sharp at octave 3 using instrument number 5 at the classical music tracker interface by using graphi- volume 32. The last three zeroes can be used cal elements instead of text and by allowing musical for various types of sound effects, or to set new events anywhere within a tracker line. tempo. Chapter 1: The classical music tracker interface The tables are called patterns, and a song and how Radium differs from it. Chapter 2: Ra- usually contains several patterns. To control dium Features: a) The Editor; b) The Modular the order patterns are playbed back, we use a Mixer; c) Instruments and Audio Effects; d) In- strument Configuration; e) Common Music Nota- playlist. For example, if we have three patterns, tion. Chapter 3: Implementation details: a) Paint- a typical song could have a playlist like this: ing the Editor; b) Smooth Scrolling; c) Embed- 1, 2, 1, 2, 3, 1, 2. ding Pure Data; d) Collecting Memory Garbage in C and C++. Chapter 4: Related software. 1.1 How Radium Differs from the Classical Tracker Interface Keywords Radium4 differs from the music tracker inter- Radium, Music Tracker, GUI, Pure Data, Graphics face by using graphical elements instead of text Programming.
    [Show full text]
  • Proyecto Fin De Grado
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN PROYECTO FIN DE GRADO TÍTULO: Implementación de un sintetizador en un kit de desarrollo de bajo coste AUTOR: Arturo Fernández TITULACIÓN: Grado en Ingeniería de Sonido e Imagen TUTOR: Antonio Mínguez Olivares DEPARTAMENTO: Teoría de la señal y Comunicación VºBº Miembros del Tribunal Calificador: PRESIDENTE: Eduardo Nogueira Díaz TUTOR: Antonio Mínguez Olivares SECRETARIO: Francisco Javier Tabernero Gil Fecha de lectura: Calificación: El Secretario, Agradecimientos − A mis padres y mi hermana, por apoyarme en todos los aspectos (con discrepancias inevitables) a lo largo de esta carrera de fondo. − A mis amigos y la novia, por no verme el pelo durante largos periodos de tiempo. − A los profesores que han conseguido despertar mi interés y dedicarme horas en tutorías. − A mi tutor por aceptar mi propuesta y tutelar el proyecto sin pensárselo. − A mi cuñado Rafa, que, a pesar de estar eternamente abarrotado, sacaba un hueco para ayudarme en los momentos más difíciles, motivarme y guiarme a lo largo de todos estos años. Sin su ayuda, esto no habría sido posible. − Finalmente, darme las gracias a mí mismo, por aguantar este ritmo de vida, tener la ambición de seguir y afrontar nuevos retos. Como me dice mi padre: “Tú hasta que no llegues a la Luna, no vas a parar, ¿no?”. Implementación de un sintetizador en un kit de desarrollo de bajo coste Resumen La realización de este proyecto consiste en el diseño de un sintetizador ‘Virtual Analógico’ basado en sintetizadores de los años 60 y 70. Para ello, se estudia la teoría que conforma la topología básica de los sintetizadores sustractivos, así como, los elementos que intervienen en la generación y modificación del sonido.
    [Show full text]
  • MOTIF XS Editor Installation Guide
    MOTIF XS Editor Installation Guide ATTENTION SOFTWARE LICENSING AGREEMENT PLEASE READ THIS SOFTWARE LICENSE AGREEMENT (“AGREEMENT”) CAREFULLY BEFORE USING THIS SOFTWARE. YOU ARE ONLY PERMITTED TO USE THIS SOFTWARE PURSUANT TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. THIS AGREEMENT IS BETWEEN YOU (AS AN INDIVIDUAL OR LEGAL ENTITY) AND YAMAHA CORPORATION (“YAMAHA”). BY DOWNLOADING, INSTALLING, COPYING, OR OTHERWISE USING THIS SOFTWARE YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE WITH THE TERMS, DO NOT DOWNLOAD, INSTALL, COPY, OR OTHERWISE USE THIS SOFTWARE. IF YOU HAVE DOWNLOADED OR INSTALLED THE SOFTWARE AND DO NOT AGREE TO THE TERMS, PROMPTLY DELETE THE SOFTWARE. 1. GRANT OF LICENSE AND COPYRIGHT Yamaha hereby grants you the right to use one copy of the software program(s) and data (“SOFTWARE”) accompanying this Agreement. The term SOFTWARE shall encompass any updates to the accompanying software and data. The SOFTWARE is owned by Yamaha and/or Yamaha’s licensor(s), and is protected by relevant copyright laws and all applicable treaty provisions. While you are entitled to claim ownership of the data created with the use of SOFTWARE, the SOFTWARE will continue to be protected under relevant copyrights. • You may use the SOFTWARE on your computer(s). • You may make one copy of the SOFTWARE in machine-readable form for backup purposes only, if the SOFTWARE is on media where such backup copy is permitted. On the backup copy, you must reproduce Yamaha's copyright notice and any other proprietary legends that were on the original copy of the SOFTWARE.
    [Show full text]
  • Guido Van Rossum on PYTHON 3 Get Your Sleep From
    JavaScript | Inform 6 & 7 | Falcon | Sleep | Enlightenment | PHP LINUX JOURNAL ™ THE STATE OF LINUX AUDIO SOFTWARE LANGUAGES Since 1994: The Original Magazine of the Linux Community OCTOBER 2008 | ISSUE 174 Inform 7 REVIEWED JavaScript | Inform 6 & 7 | Falcon | Sleep Enlightenment PHP Audio | Inform 6 & 7 Falcon JavaScript Don’t Get Eaten HP Media by a Grue! Vault 5150 Scalent’s Managing Virtual Operating PHP Code Environment Guido van Rossum on PYTHON 3 Get Your Sleep from OCTOBER Java www.linuxjournal.com 2008 $5.99US $5.99CAN 10 ISSUE Martin Messner Enlightenment E17 Insights from SUSE’s Lightweight Alternative 174 + Security Team Lead to KDE and GNOME 0 09281 03102 4 MULTIPLY ENERGY EFFICIENCY AND MAXIMIZE COOLING. THE WORLD’S FIRST QUAD-CORE PROCESSOR FOR MAINSTREAM SERVERS. THE NEW QUAD-CORE INTEL® XEON® PROCESSOR 5300 SERIES DELIVERS UP TO 50% 1 MORE PERFORMANCE*PERFORMANCE THAN PREVIOUS INTEL XEON PROCESSORS IN THE SAME POWERPOWER ENVELOPE.ENVELOPE. BASEDBASED ONON THETHE ULTRA-EFFICIENTULTRA-EFFICIENT INTEL®INTEL® CORE™CORE™ MICROMICROARCHITECTURE, ARCHITECTURE IT’S THE ULTIMATE SOLUTION FOR MANAGING RUNAWAY COOLING EXPENSES. LEARN WHYWHY GREAT GREAT BUSINESS BUSINESS COMPUTING COMPUTING STARTS STARTS WITH WITH INTEL INTEL INSIDE. INSIDE. VISIT VISIT INTEL.CO.UK/XEON INTEL.COM/XEON. RELION 2612 s 1UAD #ORE)NTEL®8EON® RELION 1670 s 1UAD #ORE)NTEL®8EON® PROCESSOR PROCESSOR s 5SERVERWITHUPTO4" s )NTEL@3EABURG CHIPSET s )DEALFORCOST EFFECTIVE&ILE$" WITH-(ZFRONTSIDEBUS APPLICATIONS s 5PTO'"2!-IN5CLASS s 2!32ELIABILITY !VAILABILITY LEADINGMEMORYCAPACITY 3ERVICEABILITY s -ANAGEMENTFEATURESTOSUPPORT LARGECLUSTERDEPLOYMENTS 34!24).'!4$2429.00 34!24).'!4$1969.00 Penguin Computing provides turnkey x86/Linux clusters for high performance technical computing applications.
    [Show full text]
  • Aaltomanual1.5.Pdf
    Making and organizing sounds with AALTO A comprehensive guide to signals, scribbles and patching by Madrona Labs is manual is released under the Creative Commons Attribution 3.0 Unported License. You may copy, distribute, transmit and adapt it, for any purpose, provided you include the following attribution: Aalto and the Aalto manual by Madrona Labs. http://madronalabs.com. Version 1.5, February 2014. Written by George Cochrane and Randy Jones. Illustrated by David Chandler. Typeset in Adobe Minion using the TEX document processing system. Any trademarks mentioned are the sole property of their respective owners. Such mention does not imply any endorsement of or associ- ation with Madrona Labs. Introduction What is Aalto? It’s tempting to think of Aalto as a mere soware synthe- sizer, yet another sound source, huddling amongst the teeming masses of such instruments that lurk within the menus of your favorite audio program. However, that would be doing it a disservice, for Aalto is, we think, really special. We like to think of it as a carefully craed box of sonic tools, few enough to learn easily, but flexible enough to combine in surprisingly powerful ways. Of course, it’s also just a good everyday instrument, if that’s what you want. Aalto, like many modular synthesizers, comes stocked with oscil- lators, filters, envelope generators, and goodies such as a waveshaper section and an especially nice one-knob reverb. Aalto’s twist (at least, the one we chortle about as we sip vintage armagnac in our secret lair halfway up the Space Needle,) is that thanks to the unique patching in- terface, making your own sounds with Aalto, even complicated ones, need not be a chore.
    [Show full text]
  • Schwachstellen Der Kostenfreien Digital Audio Workstations (Daws)
    Schwachstellen der kostenfreien Digital Audio Workstations (DAWs) BACHELORARBEIT zur Erlangung des akademischen Grades Bachelor of Science im Rahmen des Studiums Medieninformatik und Visual Computing eingereicht von Filip Petkoski Matrikelnummer 0727881 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Associate Prof. Dipl.-Ing. Dr.techn Hilda Tellioglu Mitwirkung: Univ.Lektor Dipl.-Mus. Gerald Golka Wien, 14. April 2016 Filip Petkoski Hilda Tellioglu Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Disadvantages of using free Digital Audio Workstations (DAWs) BACHELOR’S THESIS submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Media Informatics and Visual Computing by Filip Petkoski Registration Number 0727881 to the Faculty of Informatics at the Vienna University of Technology Advisor: Associate Prof. Dipl.-Ing. Dr.techn Hilda Tellioglu Assistance: Univ.Lektor Dipl.-Mus. Gerald Golka Vienna, 14th April, 2016 Filip Petkoski Hilda Tellioglu Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Filip Petkoski Wienerbergstrasse 16-20/33/18 , 1120 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 14. April 2016 Filip Petkoski v Kurzfassung Die heutzutage moderne professionelle Musikproduktion ist undenkbar ohne Ver- wendung von Digital Audio Workstations (DAWs).
    [Show full text]