From Stem Cells to Cancer: Balancing Immortality and Neoplasia

Total Page:16

File Type:pdf, Size:1020Kb

From Stem Cells to Cancer: Balancing Immortality and Neoplasia Oncogene (2004) 23, 5092–5094 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $30.00 www.nature.com/onc COMMENTARY From stem cells to cancer: balancing immortality and neoplasia W Nicol Keith*,1 1Centre for Oncology & Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow, Garscube Estate, Switchback Rd., Glasgow G61 1BD, UK In this issue of Oncogene,Serakinci et al show that adult the hMSC in more detail, a number of groups have stem cells can be targets for neoplastic transformation. therefore used the forced expression of telomerase to After transducing human adult mesenchymal stem cells extend the replicative capacity of hMSC with consider- (hMSC) with the telomerase hTERT gene,and growing able success (Shi et al., 2002; Simonsen et al., 2002). In them for many population doublings in culture,Serakinci this latter study, hMSC, rendered replicatively immortal et al observed that the transduced cells developed by the ectopic expression of telomerase, were shown to characteristics consistent with transformation including retain the functional characteristics and differentiation loss of contact inhibition,anchorage independence and potential of the hMSC from which they were derived, tumour formation in mice. Underlying these changes were and on transplantation into immunodeficient mice they alterations to genes involved in cell cycle regulation and formed bone tissue more effectively than their normal senescence as well as oncogene activation. The importance counterparts, but no tumours (Simonsen et al, 2002). In of these observations is twofold. Firstly,showing that stem terms of stem cell therapeutics these results were very cells can become tumours raises a note of caution for stem encouraging, however, with a commendable lack of cell therapeutics. Secondly,the findings lend support to complacency, this same group has investigated the the stem cell hypothesis of cancer development,and neoplastic potential of the hMSC more exhaustively. provide an experimental system in which the tantalizing As a result, it is now clear that telomerase-modified hint of new diagnostic,prognostic,and therapeutic hMSC can accumulate premalignant changes on con- opportunities offered by this concept can be explored tinued division in culture, in some cases to the extent of further. acquiring the ability to form tumours in immunodefi- Oncogene (2004) 23, 5092–5094. doi:10.1038/sj.onc.1207762 cient mice (Figure 3, Serakinci et al., 2004). Published online 26April 2004 While the role that stem cells play in tissue home- ostasis is clear, their contribution to the development of Keywords: mesenchyme; stem cell; cancer stem cell; cancer is still an issue of much debate (Table 1) (Marx, telomerase; neoplasia; mesenchymal stem cell 2003; Preston et al., 2003). However, for a tumour to grow, metastasise and recur after therapeutic interven- tion, the presence of a subpopulation of cells with extensive self-renewal capacity and thus stem cell Stem cells can be defined as having extensive self- properties would make biological sense. The stem cell renewal capacity and also the ability to differentiate into hypothesis of cancer development further proposes that a wide variety of cell types. Stem cells can be found both stem cells are particularly susceptible targets of carci- in the embryo (ES cells) and in adult tissues (Preston nogenesis and consequently the origin of many cancers. et al., 2003). While the embryonic stem cells are able to Although stem cells are rare and so have a low target give rise to all cell types required for mammalian number for carcinogenesis, their potential to continue to development, the less well characterized adult stem cells divide over a long period of time may make them more appear to have a more restricted lineage potential but likely to accumulate the requisite number of molecular may be essential for tissue repair and renewal (Figure 1). alterations to cause cancer. A high replicative potential An example of an adult stem cell is the mesenchymal therefore confers a high malignant potential on the stem stem cell (hMSC) which is present in a variety of tissues cell. This malignant potential may be held in check by but prevalent in the bone marrow. As shown in Figure 2, suppressing telomerase expression, as by supplying telo- the hMSC can differentiate into a variety of adult merase to the hMSC, Serakinci et al are able to uncover mesenchymal tissues such as bone, cartilage, adipose the latent neoplastic potential of the adult stem cell. and muscle (Simonsen et al., 2002). Interestingly, despite Whereas the neoplastic potential of the stem cell having stem cell qualities, the hMSC has limited has been obvious to haematologists for many years, replicative capacity in tissue culture and lacks expression data to support a cancer stem cell basis for solid of the immortalizing enzyme, telomerase (Simonsen tumours has been sparse (Passegue et al., 2003). et al., 2002; Zimmermann et al., 2003). In order to study Recently however, a number of groups have demon- strated the presence of subpopulations of cells within *Correspondence: WN Keith; E-mail: [email protected] tumour biopsies from brain and breast cancers to Published online 26April 2004 have stem cell characteristics (Al-Hajj et al., 2003; Commentary WN Keith 5093 Figure 1 Maintaining the stem cell phenotype. Through a process of asymmetric division, the stem cell produces one daughter cell identical to stem cell and therefore capable of self-renewal and a second progenitor cell that becomes committed to differentiation. The self-renewal capacity of a cancer stem cell parallels that of a stem cell and so the stem cell may be protected by a block to Figure 3 Neoplastic development of the hMSC. In order to transformation that can be overcome during carcinogenesis become transformed, the hMSC may have to subvert normal proliferative, cell fate and differentiation signals Hemmati et al., 2003; Singh et al., 2003). These findings together with those of Serakinci et al. (2004) lend tremendous support to the cancer stem cell hypothesis (Table 1). However, they do not exclude the possibility that cancers can arise from non-stem cell populations. If malignant potential is linked to the replicative potential of the target cell for carcinogenesis, less aggressive tumours would be predicted to arise from non-stem cells. Alternatively, a non-stem cell could acquire a stem cell phenotype during carcinogenesis. The identification of cancer stem cells strongly suggests that these cells are the key targets for future therapeutic development as they fuel the replicative capacity of the cancer. However, in order to develop such therapies, relevant, representative tissue culture models will be necessary. In this respect, the work described by Serakinci makes a significant contribution, and their choice of the hMSC is a fortuitous one. As illustrated in Figure 2, the hMSC has the potential to give rise to a wide variety of differentiated tissues, and the stem cell hypothesis of cancer development postu- lates that it may also be the origin of a clinically interesting range of cancers. Thus the hMSC seems an ideal system in which to study the adult stem cell as a target for transformation, and the molecular basis Figure 2 Relationship between the hMSC and cancer. The underlying this process. Serakinci et al. have already mesenchymal stem cell gives rise to a variety of differentiated cells provided some valuable information on the molecular types. In turn, many of these tissues can give rise to cancers of mesenchymal origin. This raises the interesting question as to what changes that accompany the neoplastic transformation is the target cell for neoplastic transformation within the normal of the hMSC. It will be important to see whether cancer mesenchymal tissue stem cells can be identified in human mesenchymal Oncogene Commentary WN Keith 5094 Table 1 The stem cell hypothesis of cancer development Basic postulates Stem cells are present in adult tissues and can be targets for carcinogenesis and transformation Although stem cells are rare, they have a high malignant potential because they continue to divide over a long period of time and are therefore more likely to accumulate the requisite number of molecular alterations to cause cancer Mutations in pathways disturbing proliferative lifespan, cell cycle and differentiation may be required to reveal the full malignant potential of the cancer stem cell The self-renewing capacity of cancer stem cells parallels that of normal stem cells A small number of cancer stem cells can fuel the growth of a large tumour mass Empirical support A number of haematological malignancies have stem cell characteristics, for example CML Recent studies on solid tumours have shown that the capacity for self-renewal is limited to a subpopulation of tumour cells, and that these can be distinguished from cells without this capacity by markers typical of stem cells The experiments of Serakinci et al. show that mesenchymal adult stem cells can form tumours after being transduced by telomerase. By contrast, numerous studies have transduced non-stem cells with telomerase without observing neoplastic transformation Outstanding questions Are all adult tissue stem cells targets for neoplastic transformation? Do all cancers arise from normal stem cells? Is a cancer stem cell necessary for long-term tumour growth? Is malignant potential related to the replicative potential of the target cell for carcinogenesis? How do cancer stem cells differ from normal stem cells? Are the pathways regulating self-renewal the same for both normal stem cells and the cancer stem cell? Can the biology of the cancer stem cell be used for patient benefit? Diagnostics: detection of cancer stem cell markers Prognostics: does the cancer stem cell determine clinical outcome? Therapeutics: can therapeutics be developed that specifically target the cancer stem cell? tumours and to what extent the experimental system produce replicatively immortal cultures of adult stem recapitulates the natural development of these tumours cells for transplantation may need to proceed with in vivo.
Recommended publications
  • Stem Cells and Cancer
    Stem Cells and Cancer Cancer Education Project Stem Cells and Cancer Overview: This series of activities is designed to introduce students to the theory that some cancers arise from cancer stem cells. This theory provides a possible explanation for why cancers reoccur after cancer treatment. It also provides insights that may lead to new types of chemotherapy drugs. • Part 1: Stem Cells and Cancer PowerPoint (40 minutes) Students view a PowerPoint presentation that introduces stem cell biology and shows ways that cancer stem cell research might lead to more effective cancer therapy treatments. Students answer questions as they view the PowerPoint. Then they create a cartoon strip to illustrate their understanding of cancer stem cells. • Part 2: The Bad Seed: Rare stem cells appear to drive cancers (20 minutes) Students read a brief article that introduces stem cell biology and explains how cancer stem cell research might lead to more effective cancer therapy treatments. Students answer questions based on this article. This activity may be done in class or for homework. • Part 3: Plant Derivative Attacks the Roots of Leukemia (20 minutes) Students read a brief article on the development of a potential chemotherapy agent that specifically targets cancer stem cells. Students answer questions based on this article. This activity may be done in class or for homework. • Part 4: Clinical Trials: Parthocet (40 minutes) Students answer questions about the design of a large-scale, randomized, double-blind clinical trial to determine if Parthocet (a fictitious chemotherapy drug) is safe and effective. Life Sciences Learning Center – Cancer Education Project 1 Copyright © 2007, University of Rochester May be copied for classroom use Stem Cells and Cancer Teacher Instructions - Part 1 Stem Cells and Cancer PowerPoint Presentation Students view a PowerPoint presentation that introduces stem cell biology and shows ways that cancer stem cell research might lead to more effective cancer therapy treatments.
    [Show full text]
  • The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models
    biomolecules Review The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models Meera Krishnan 1, Sahil Kumar 1, Luis Johnson Kangale 2,3 , Eric Ghigo 3,4 and Prasad Abnave 1,* 1 Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; [email protected] (M.K.); [email protected] (S.K.) 2 IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France; [email protected] 3 Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France; [email protected] 4 TechnoJouvence, 13385 Marseille, France * Correspondence: [email protected] Abstract: Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differ- entiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz.
    [Show full text]
  • Epigenetic Metabolites License Stem Cell States
    CHAPTER SIX Epigenetic metabolites license stem cell states Logeshwaran Somasundarama,b,†, Shiri Levya,b,†, Abdiasis M. Husseina,b, Devon D. Ehnesa,b, Julie Mathieub,c, Hannele Ruohola-Bakera,b,∗ aDepartment of Biochemistry, University of Washington, Seattle, WA, United States bInstitute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States cDepartment of Comparative Medicine, University of Washington, Seattle, WA, United States ∗ Corresponding author: e-mail address: [email protected] Contents 1. Introduction 210 2. Stem cell energetics 210 3. Metabolism of quiescent stem cells 212 3.1 Adult stem cells 212 3.2 Pluripotent stem cell quiescence, diapause 216 4. Metabolism of active stem cells 217 4.1 Metabolism after fertilization 217 4.2 Metabolism of pre-implantation and post-implantation pluripotent stem cells 218 4.3 Metabolism of actively cycling adult stem cells: MSC as case-study 220 5. HIF, the master regulator of metabolism 222 6. Epigenetic signatures and epigenetic metabolites 224 6.1 Epigenetic signatures of naïve and primed pluripotent stem cells 224 6.2 Epigenetic signatures of adult stem cells 227 6.3 Epigenetic metabolites 228 7. Conclusion 229 Acknowledgments 230 References 230 Further reading 240 Abstract It has become clear during recent years that stem cells undergo metabolic remodeling during their activation process. While these metabolic switches take place in pluripotency as well as adult stem cell populations, the rules that govern the switch are not clear. † Equal contribution. # Current Topics in Developmental Biology, Volume 138 2020 Elsevier Inc. 209 ISSN 0070-2153 All rights reserved. https://doi.org/10.1016/bs.ctdb.2020.02.003 210 Logeshwaran Somasundaram et al.
    [Show full text]
  • Cancer Stem Cells and Nucleolin As Drivers of Carcinogenesis
    pharmaceuticals Review Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis Laura Sofia Carvalho 1,Nélio Gonçalves 1 , Nuno André Fonseca 1,2 and João Nuno Moreira 1,3,* 1 CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; laurasofi[email protected] (L.S.C.); [email protected] (N.G.); [email protected] (N.A.F.) 2 TREAT U, SA—Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal 3 UC—University of Coimbra, CIBB, Faculty of Pharmacy (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal * Correspondence: [email protected]; Tel.: +351-239-820-190 Abstract: Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies Keywords: tumor heterogeneity; drug resistance; cancer stem cells; nucleolin; targeted therapies; epithelial-to-mesenchymal transition Citation: Carvalho, L.S.; Gonçalves, N.; Fonseca, N.A.; Moreira, J.N.
    [Show full text]
  • Translational Applications of Adult Stem Cell-Derived Organoids Jarno Drost1,2,* and Hans Clevers1,2,3,‡
    © 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 968-975 doi:10.1242/dev.140566 PRIMER Translational applications of adult stem cell-derived organoids Jarno Drost1,2,* and Hans Clevers1,2,3,‡ ABSTRACT of organotypic organoids from single Lgr5-positive ISCs (Sato Adult stem cells from a variety of organs can be expanded long- et al., 2009). These organoids contained all cell types of the ‘ ’ term in vitro as three-dimensional organotypic structures termed intestinal epithelium and were structured into proliferative crypt ‘ ’ organoids. These adult stem cell-derived organoids retain their organ and differentiated villus compartments, thereby retaining the identity and remain genetically stable over long periods of time. The architecture of the native intestine (Sato et al., 2009). In addition ability to grow organoids from patient-derived healthy and diseased to Wnt/R-spondin, epidermal growth factor (EGF) (Dignass and tissue allows for the study of organ development, tissue homeostasis Sturm, 2001), noggin (BMP inhibitor) (Haramis et al., 2004) and an and disease. In this Review, we discuss the generation of adult artificial laminin-rich extracellular matrix (provided by Matrigel) stem cell-derived organoid cultures and their applications in in vitro complemented the cocktail for successful in vitro propagation of disease modeling, personalized cancer therapy and regenerative mouse ISC-derived organoids (Sato et al., 2009). At the same time, medicine. Ootani et al. reported another Wnt-driven in vitro culture of ISCs (Ootani et al., 2009). In contrast to Sato et al., this culture was not KEY WORDS: Adult stem cells, Organoids, Disease modelling, based on defined growth factors.
    [Show full text]
  • Cancer from the Perspective of Stem Cells and Misappropriated Tissue Regeneration Mechanisms
    Leukemia (2018) 32:2519–2526 https://doi.org/10.1038/s41375-018-0294-7 REVIEW ARTICLE Corrected: Correction Stem cell biology Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms 1,2 1 1 1,2 1 Mariusz Z. Ratajczak ● Kamila Bujko ● Aaron Mack ● Magda Kucia ● Janina Ratajczak Received: 8 September 2018 / Accepted: 17 September 2018 / Published online: 30 October 2018 © The Author(s) 2018. This article is published with open access Abstract Tumorigenesis can be considered as pathologically misappropriated tissue regeneration. In this review we will address some unresolved issues that support this concept. First, we will address the issue of the identity of cancer-initiating cells and the presence of cancer stem cells in growing tumors. We will also ask are there rare and distinct populations of cancer stem cells in established tumor cell lines, or are all of the cells cancer stem cells? Second, the most important clinical problem with cancer is its metastasis, and here a challenging question arises: by employing radio-chemotherapy for tumor treatment, do we unintentionally create a prometastatic microenvironment in collateral organs? Specifically, many factors upregulated in response to radio-chemotherapy-induced injury may attract highly migratory cancer cells that survived initial treatment. 1234567890();,: 1234567890();,: Third, what is the contribution of normal circulating stem cells to the growing malignancy? Do circulating normal stem cells recognize a tumor as a hypoxia-damaged tissue that needs
    [Show full text]
  • Adult Spinal Cord Stem Cells Generate Neurons After Transplantation in the Adult Dentate Gyrus
    The Journal of Neuroscience, December 1, 2000, 20(23):8727–8735 Adult Spinal Cord Stem Cells Generate Neurons after Transplantation in the Adult Dentate Gyrus Lamya S. Shihabuddin, Philip J. Horner, Jasodhara Ray, and Fred H. Gage The Salk Institute, Laboratory of Genetics, La Jolla, California 92037 The adult rat spinal cord contains cells that can proliferate and population of cells into the adult rat spinal cord resulted in their differentiate into astrocytes and oligodendroglia in situ. Using differentiation into glial cells only. However, after heterotopic clonal and subclonal analyses we demonstrate that, in contrast transplantation into the hippocampus, transplanted cells that to progenitors isolated from the adult mouse spinal cord with a integrated in the granular cell layer differentiated into cells char- combination of growth factors, progenitors isolated from the acteristic of this region, whereas engraftment into other hip- adult rat spinal cord using basic fibroblast growth factor alone pocampal regions resulted in the differentiation of cells with display stem cell properties as defined by their multipotentiality astroglial and oligodendroglial phenotypes. The data indicate and self-renewal. Clonal cultures derived from single founder that clonally expanded, multipotent adult progenitor cells from a cells generate neurons, astrocytes, and oligodendrocytes, con- non-neurogenic region are not lineage-restricted to their devel- firming the multipotent nature of the parent cell. Subcloning opmental origin but can generate region-specific neurons in vivo analysis showed that after serial passaging, recloning, and ex- when exposed to the appropriate environmental cues. pansion, these cells retained multipotentiality, indicating that they Key words: spinal cord; stem cells; FGF; transplantation; neu- are self-renewing.
    [Show full text]
  • Cancer Stem Cells: a New Approach to Tumor Development
    REVIEW ARTICLE KOBAYASHI NCC ET AL. Cancer stem cells: a new approach to tumor development NATÁLIA CRISTINA CIUFA KOBAYASHI1*, SAMUEL MARCOS RIBEIRO DE NORONHA2 1Full Teaching Degree in Biological Sciences – Graduate degree in Molecular Biology, United Metropolitan Colleges (FMU), São Paulo, SP, Brazil 2PhD – Department of Allergy and Immunology, University of São Paulo (USP), São Paulo, SP, Brazil SUMMARY Many theories have been proposed to explain the origins of cancer. Currently, evidences show that not every tumor cell is capable of initiating a tumor. Only a small part of the cancer cells, called cancer stem cells (CSCs), can generate a tumor identical to the original one, when removed from human tumors and transplanted into immunosuppressed mice. The name given to these cells co- mes from the resemblance to normal stem cells, except for the fact that their abi- lity to divide is infinite. These cells are also affected by their microenvironment. Many of the signaling pathways, such as Wnt, Notch and Hedgehog, are altered in this tumoral subpopulation, which also contributes to abnormal prolifera- tion. Researchers have found several markers for CSCs; however, much remains to be studied, or perhaps a universal marker does not even exist, since they vary Study conducted at United among tumor types and even from patient to patient. It was also found that Metropolitan Colleges (FMU) cancer stem cells are resistant to radiotherapy and chemotherapy. This may ex- Article received: 4/24/2014 plain the re-emergence of the disease, since they are not completely eliminated Accepted for publication: 4/24/2014 and minimal amounts of CSCs can repopulate a tumor.
    [Show full text]
  • Advances in Therapeutic Targeting of Cancer Stem Cells Within the Tumor Microenvironment: an Updated Review
    cells Review Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review 1,2, , 1,2, 1,2, Kevin Dzobo * y , Dimakatso Alice Senthebane y, Chelene Ganz y, Nicholas Ekow Thomford 3,4 , Ambroise Wonkam 3 and Collet Dandara 3 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; [email protected] (D.A.S.); [email protected] (C.G.) 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa 3 Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; [email protected] (N.E.T.); [email protected] (A.W.); [email protected] (C.D.) 4 Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana * Correspondence: [email protected]; Tel.: +27-842953708 These authors contributed equally to this work. y Received: 7 July 2020; Accepted: 11 August 2020; Published: 13 August 2020 Abstract: Despite great strides being achieved in improving cancer patients’ outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs).
    [Show full text]
  • Radial Glia Give Rise to Adult Neural Stem Cells in the Subventricular Zone
    Radial glia give rise to adult neural stem cells in the subventricular zone Florian T. Merkle*†, Anthony D. Tramontin*†, Jose´ Manuel Garcı´a-Verdugo‡, and Arturo Alvarez-Buylla*§ *Department of Neurological Surgery, Developmental and Stem Cell Biology Program, Box 0525, University of California, San Francisco, CA 94143; and ‡Instituto Cavanilles, Universidad de Valencia, 46100 Valencia, Spain Communicated by Fernando Nottebohm, The Rockefeller University, Millbrook, NY, October 22, 2004 (received for review September 1, 2004) Neural stem cells with the characteristics of astrocytes persist in the ventricle of postnatal day (P) 0 mice (29). We show that these subventricular zone (SVZ) of the juvenile and adult brain. These radial glial cells give rise to neurons, astrocytes, ependymal cells, cells generate large numbers of new neurons that migrate through and oligodendrocytes. More importantly, we show that these the rostral migratory stream to the olfactory bulb. The develop- neonatal radial glial cells give rise to the SVZ astrocytes that mental origin of adult neural stem cells is not known. Here, we maintain neurogenesis in the adult mammalian brain. This work describe a lox–Cre-based technique to specifically and permanently identifies the neonatal origin of adult SVZ neural stem cells. label a restricted population of striatal radial glia in newborn mice. Within the first few days after labeling, these radial glial cells gave Materials and Methods rise to neurons, oligodendrocytes, and astrocytes, including astro- Labeling of P0 Radial Glia by Striatal Adenovirus (Ad) Injection. All cytes in the SVZ. Remarkably, the rostral migratory stream con- protocols followed the guidelines of the Laboratory Animal tained labeled migratory neuroblasts at all ages examined, includ- Resource Center at the University of California, San Francisco.
    [Show full text]
  • Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells
    Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1079 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Article Cancer cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells. Authors Karina E. Gomez1, FangLong Wu2,3, Stephen B. Keysar1, J. Jason Morton1, Bettina Miller1, Tugs-Saikhan Chimed1, Phuong N. Le1, Cera Nieto1, Farshad N. Chowdhury1, Anit Tyagi1, Traci R. Lyons1,4, Christian D. Young2, Hongmei Zhou3, Hilary L. Somerset2, Xiao-Jing Wang2,4,5, and Antonio Jimeno1,4. Affiliation 1 Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus (CU AMC), CO, 80045. 2 Department of Pathology, CU AMC, CO, 80045. 3 State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. 4 Gates Center for Regenerative Medicine, CU AMC, CO, 80045. 5 Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA. Corresponding Author Antonio Jimeno M.D., Ph.D., Professor of Medicine/Oncology, and Otolaryngology. University of Colorado Cancer Center, and Gates Center for Regenerative Medicine. University of Colorado Anschutz Medical Campus. 12801 East 17th Avenue, Room L18-8101B, Aurora, CO 80045, USA. [email protected] 1 Downloaded from cancerres.aacrjournals.org on September 28, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 14, 2020; DOI: 10.1158/0008-5472.CAN-20-1079 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Organoid Research Techniques
    2ïäÞëìæá5âðâÞïàå7âàåëæîòâð Cover Image: STEMCELL Technologies Copyright © 2019 Wiley Periodicals, Inc. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the prior permission in writing from the copyright holder. 2ïäÞëìæá5âðâÞïàå7âàåëæîòâð CONTENTS 3 INTRODUCTION 6 HISTORIC MILESTONES 12 IN PRACTICE 25 PROBLEMS & SOLUTIONS 27 WHAT’S NEXT 29 REFERENCES 31 FURTHER READING 2ïäÞëìæá5âðâÞïàå7âàåëæîòâð INTRODUCTION Ì, KHDUG DERXW RUJDQRLGV DQG WKRXJKW WKH\ PLJKW EH WKH SHUIHFW PRGHO WR VWXG\ DOO WKH SURFHVVHV WKDW ,ÊP LQWHUHVWHG LQÍ VD\V 7DPDUD =LHWHN 3ULQFLSDO ,QYHVWLJDWRU LQ WKH 1XWULWLRQ3K\VLRORJ\/DERUDWRU\DWWKH7HFKQLFDO8QLYHUVLW\ RI 0XQLFK %HIRUH XVLQJ RUJDQRLGV =LHWHNÊV JURXS ZRUNHG Eoth witK DQ LQ YLYRÈPLFHÈDQG LQ YLWURÈFHOO OLQHVÈ V\VWHP WR DQVZHU WKHLU UHVHDUFK TXHVWLRQV EXW WKH\ ZHUH RQ WKH KXQW IRU D V\VWHP WKDW FRPELQHG WKH DGYDQWDJHV RI ERWK 8VLQJ SULPDU\ FHOO FXOWXUHV ZDV DQ LPSURYHPHQW EXWEHFDXVHWKHFHOOVFRXOGQÊWEHSDVVDJHGLWZDVQRWDORQJ WHUP V\VWHP 6R =LHWHN XVHG RUJDQRLG PRGHO V\VWHPV WR EHWWHU XQGHUVWDQG LQWHVWLQDO QXWULHQW WUDQVSRUW DQG VHQVLQJ. In recent years, our cumulative understanding of organ physiology, development, and maintenance has resulted in the creation of three- GLPHQVLRQDO ' RUJDQRLGVÈFXOWXUHG'FHOOVWUXFWXUHVWKDWPRGHO features of organ function, composition, and development. Given that the RUJDQVRIRXUERG\RFFXS\'VSDFHRUJDQRLGVEHWWHUUHSUHVHQWWKHSK\VL- ological system than their two-dimensional culture counterparts for the purpose of organ
    [Show full text]